CN116774150A - 一种适用于油气管道内检测器与清管器的跟踪定位系统 - Google Patents

一种适用于油气管道内检测器与清管器的跟踪定位系统 Download PDF

Info

Publication number
CN116774150A
CN116774150A CN202211560222.XA CN202211560222A CN116774150A CN 116774150 A CN116774150 A CN 116774150A CN 202211560222 A CN202211560222 A CN 202211560222A CN 116774150 A CN116774150 A CN 116774150A
Authority
CN
China
Prior art keywords
target
sound source
pipeline detection
probe
upstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211560222.XA
Other languages
English (en)
Inventor
张勇
罗飞
高斌
王其军
谌梁
姜世强
鲁鹏
唐超
陈帅
袁明蛟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Smart Pig Detection Technology Chengdu Co ltd
Sichuan Deyuan Pipeline Technology Co ltd
Original Assignee
Smart Pig Detection Technology Chengdu Co ltd
Sichuan Deyuan Pipeline Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smart Pig Detection Technology Chengdu Co ltd, Sichuan Deyuan Pipeline Technology Co ltd filed Critical Smart Pig Detection Technology Chengdu Co ltd
Priority to CN202211560222.XA priority Critical patent/CN116774150A/zh
Publication of CN116774150A publication Critical patent/CN116774150A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

本发明提供一种适用于油气管道内检测器与清管器的跟踪定位系统,包括由若干监测器,每一个监测器连接至少一个上游探头和至少一个下游探头;每一个监测器用于接收与其相连的上、下游探头的声源信号;当监测到目标先后经过对应的管道检测点的上、下游位置,判定目标到达该管道检测点,更新目标位置;当上游探头与下游探头接收的声源信号均持续增强且上游探头的声源信号达到最大值时,则判断目标经过对应的管道检测点的上游位置;当上游探头接收的声源信号持续减弱,下游探头接收的声源信号持续增强且达到最大值时,判断目标经过对应的管道检测点的下游位置。本发明相比单探头更加准确,防止对过球信号的误判,从而提供更好的跟踪定位服务。

Description

一种适用于油气管道内检测器与清管器的跟踪定位系统
技术领域
本发明涉及管道内检测技术,特别涉及基于一种适用于油气管道内检测器与清管器的跟踪定位技术。
背景技术
油气管道完整性是关乎油气运输安全的重要因素,管道公司对此非常关注,由于管道腐蚀或打孔盗油等破坏方式,造成管道完整性失效,将导致重大经济损失、环境、社会影响;因此需定期对管道进行检测,以发现管道腐蚀、变形、泄漏等失效情况。
在进行油气管道中运行的管道内检测器或者清管器可能会出现卡堵情况,进而造成管道企业生产安全事故。因此,每次投运道内检测器或清管器时,掌握内检测器的运行状态、运行位置十分重要。
目前,一般使用的检测器或清管球跟踪定位技术有低频电磁波法、磁信号检测法及人工跟球法;
由于钢质管道对电磁信号具有屏蔽效应,高频电磁波无法穿透管壁,需采用极低频率的电磁信号才能穿透管壁,低频电磁波法需清管器或检测器上激励低频电磁信号,穿透管道,在管道监测点布置低频信号接收机,当球通过监测点时,接收机采集到低频电磁信号,可判断球通过此处;低频信号易受环境影响,容易产生误判信号;
磁信号检测方法需要球带有强磁体,通过监测点时,信号接收机检测到磁信号,可判断球通过监测点,需要球具备强磁体,并且受管道埋地深度影响,易漏检及误判。
申请人2021年公开了一种管道内检测的实时追踪定位系统和方法202110081040.3,为掌握内检测器的运行状态与运行位置,将次声波发声器置于内检测器中,信号采集器设置在管道两端的收发球设备处,监控终端通过收发次声波信号的时间差来判断内检测器位置,通过时间差是否变化来判断是否出现卡堵。这种方式只能针对一段管道进行跟踪,难以适用于长距离且线路复杂的油气管道场景。
申请号为202010704898.6的专利申请公开了一种埋地压力管道内检测智能跟球监测桩及监测器,通过监测桩上设有的传感器模块,传感器模块使用20Hz-10KHz带宽范围内振动采集功能;传感器模块采集监测桩下方压力管道内的清管器/测径球/检测球在压力管道行走时与管壁摩擦、碰撞形成振动源;监测桩监测地下振动源波幅强弱来判断振动源通过跟球点并将采集到的数据发送给监测器进行监测。但实际场景中检测到的振动信号可能并不是过球信号。该方案提出在传感器模块结构上采取防护措施来减少空气中声音对传感器模块的干扰,但这仍然不能防止地面或者地下其他振动的干扰,容易出现误判。
发明内容
本发明所要解决的技术问题是,提供一种油气管道内检测器与清管器的跟踪定位时能减少干扰的提高声源判断准确度的系统。
本发明为解决上述技术问题所采用的技术方案是,一种适用于油气管道内检测器与清管器的跟踪定位系统,包括由若干监测器,每一个监测器连接至少一个上游探头和至少一个下游探头;
一个监测器对应一个管道检测点;
上游探头、下游探头分别设置在目标经过对应管道检测点的上、下游位置,采用振动传感器接收声源信号;所述目标为内检测器或清管器;
每一个监测器用于接收与其相连的上、下游探头的声源信号;当监测到目标先后经过对应的管道检测点的上、下游位置,判定目标到达该管道检测点,更新目标位置;
当上游探头与下游探头接收的声源信号均持续增强且上游探头的声源信号达到最大值时,则判断目标经过对应的管道检测点的上游位置;当上游探头接收的声源信号持续减弱,下游探头接收的声源信号持续增强且达到最大值时,判断目标经过对应的管道检测点的下游位置。
本发明在一处管道检测点使用至少两个以上振动传感器,并设置在管道检测点上、下游位置,追踪内检测器或清管器经过上、下游位置不同的变化趋势信号形成的组合来判断是否出现过球信号,相比单探头更加准确,防止对过球信号的误判,从而提供更好的跟踪定位服务。
进一步的,采用本发明系统能够通过记录的目标经过管道检测点上、下游位置的时间以及上、下游探头的距离计算目标经过管道检测点的瞬时速度,通过该瞬时速度能更好的描述目标在管道内的状态,同时结合目标到达上一检测点位置(也可以是任一已经到达的检测点位置)信息及时间信息、当前瞬时速度进一步更新目标在管道中的实时位置,还可以通过判断该瞬时速度是否在过球速度的合理范围内来进一步筛选过球信号,防止误判。
进一步的,采用本发明系统能够通过记录的目标经过两个管道检测点中间位置的时间以及两管道检测点的距离计算目标经过两管道检测点之间的平均速度来反映这段路程的目标状态,还可结合目标到达上一检测点位置(也可以是任一已经到达的检测点位置)信息及时间信息、当前平均速度进一步更新目标在管道中的实时位置。
本发明的有益效果是,能更精准地实现检测器或清管器的跟踪定位,通过计算瞬时速度与平均速度完善运行状态监控,准确判断检测器或清管器是否卡堵并定位。
附图说明
图1为监测器组成示意图;
图2为实施例应用场景示意图。
具体实施方式
如图1所示实施例系统包括监测器、上游探头1、下游探头2与终端。终端为PC终端和/或与移动终端。
监测器包括存储器、处理器、GPS模块、4G通信模块和电池;电池为监测器内部其他模块提供电源,处理器分别与存储器、全球定位系统GPS模块、4G通信模块、LoRa模块相连。
其中,GPS模块属于卫星通信模块的一种可替换类型,也可选择其他如北斗等其他卫星通信。在监测器中设置卫星定位模块,即可利用管道检测点对应的监测器的卫星定位信息来更新目标位置。更进一步的,还可利用声源信号更新的目标位置目标内检测器内的惯性导航数据。
4G通信模块与LoRa模块均属于无线通信模块,4G通信模块为移动通信模块的一种可替换类型,LoRa模块为低功耗广域网LPWAN通信模块的一种可替换类型。可选的,无线通信模块可包括移动通信模块、低功耗广域网LPWAN通信模块和/或卫星通信模块。移动通信模块通过移动运营商网络实现监测器间的相互通信以及与系统内的终端的通信。如图1中,4G通信模块通过移动通信网络基站、MQTT消息服务器完成与终端的通信。同样的,4G通信模块也可以用于监测器间的通信。在移动通信网络覆盖不佳的地域,可使用低功耗广域网LPWAN通信模块或卫星通信模块实现监测器间的级联传输以及与系统内的终端的通信。
处理器用于对来自上、下游探头的声源信号进行声源信号处理。声源信号处理包括滤波处理、目标声源识别、判定目标是否到达管道检测点并记录时间至存储器,根据经过的管道检测点位置来更新目标位置。
可选的,监测器的处理器与终端配合进行声源信号处理完成对目标的跟踪定位;监测器的处理器进行约定部分的声源信号处理后,通过无线通信模块将其处理结果发送至终端,由终端完成后续的声源信号处理;
或者,由监测器的处理器独立进行声源信号处理完成对目标的跟踪定位,仅将目标的跟踪定位结果发送至终端显示。
要实现本发明最基础的定位跟踪功能,监测器只需要包括存储器、处理器、通信模块和电池即可。没有卫星定位模块,管道检测点位置也可以通过其他人工的方式进行标注。监测器间可通过有线或无线方式进行通信。
系统在使用时,如图2所示,需要2个以上的监测器,每一个监测器连接至少一个上游探头和至少一个下游探头;一个监测器对应一个管道检测点;
上游探头、下游探头分别设置在目标经过对应管道检测点上方的上、下游位置,采用振动传感器接收声源信号;每一个监测器用于接收与其相连的上、下游探头的声源信号;图2中,对应监测点A设置检测器A,对应监测点B设置检测器B;监测点A连接了上游探头1、下游探头2,监测点B连接了上游探头3、下游探头4。
当监测到目标先后经过对应的管道检测点的上、下游位置,判定目标到达该管道检测点,更新目标位置;
当上游探头与下游探头接收的声源信号均持续增强且上游探头的声源信号达到最大值时,则判断目标经过对应的管道检测点的上游位置;当上游探头接收的声源信号持续减弱,下游探头接收的声源信号持续增强且达到最大值时,判断目标经过对应的管道检测点的下游位置。
图2中,将监测目标称为球,当球接近上游探头1时,上游探头1的信号会逐渐增强,下游探头2的信号也会逐渐增强,当球到达上游探头1时,上游探头1的信号达到最强值,此时记录时间为t1;球经过上游探头1之后,上游探头1的信号逐渐降低,下游探头2的信号继续增强,当球处于上游探头1和下游探头2之间时,上游探头1和下游探头2的信号基本相当,此时时间记录为t2;当球到达下游探头2时,下游探头2的信号达到最强,此时记录时间为t3;
探头1和探头2之间的距离LA,可通过地面测量得到,此时可计算出球速VA=LA/(t3-t1),此速度为球通过监测点A时的瞬时球速;
同理,当球到达监测点B时,通过探头3的时间记录为t4;在两探头中间位置记录为t5;通过探头4时记录为t6;可计算出通过监测点B的瞬时速度:VB=LB/(t6-t4);
球通过监测点A和B之间的平均速度可通过计算得出:V=LAB/(t5-t2)。
系统对于瞬时速度与平均速度的应用如下:
判断计算的目标经过管道检测点的瞬时速度是否在预设的过球速度的合理范围内,如是,则对应的声源信号属于过球信号,否则,对应的声源信号不属于过球信号出现误判,判定目标到未达该管道检测点,纠正之前更新的目标位置。
系统通过计算的目标经过两个管道检测点间的平均速度是否符合这两个管道检测点确定的管道段内的介质流量与压力环境来辅助判断目标运行状态。
进一步的,使得瞬时速度与平均速度的数据更加准确,设置一个监测器连接有一个以上的上游探头和下游探头。
瞬时速度的计算采用以下方式:
将任意一个上游探头和任意一个下游探头作为一组,利用目标经过管道检测点上、下游位置的时间以及上、下游探头的距离来计算目标经过管道检测点的瞬时速度:
其中,vi表示目标经过第i个管道检测点的速度,Li,mn表示第i个管道检测点处上游探头m与下游探头n的距离,ti,n表示目标经过第i个管道检测点下游位置的时间,ti,m表示目标经过第i个管道检测点上游位置的时间。
再遍历所有上游探头和下游探头组合后,将所有组合计算出的瞬时速度进行平均,以均值作为最终的瞬时速度结果;
可选的,按预定规则选择一个上游探头和下游探头的组合来进行瞬时速度计算。
平均速度的计算采用以下方式:
将一个管道检测点上任意一个上游探头和任意一个下游探头得到的目标经过对应的管道检测点的中点位置的中点时间,遍历所有上游探头和下游探头组合后,将所有组合计算出的中点时间进行平均,将均值作为目标经过这个管道检测点中点位置的最终的中点时间,再根据目标经过两个管道检测点中点位置的最终的中点时间以及这两个管道检测点之间的距离来计算目标经过两个管道检测点间的平均速度:
其中,vij表示目标经过第i个管道检测点与第j个管道检测点之间的平均速度,Lij表示第i个管道检测点与第j个管道检测点之间的距离,ti,mn表示目标经过第i个管道检测点中点位置的时间,tj,mn表示目标经过第j个管道检测点中点位置的时间。
可选的,按预定规则在各管道检测点上选择一个上游探头和下游探头的组合来进行平均速度计算。
进一步的,为了提高声源信号的处理准确度,还可以进行以下优化:
利用上、下游探头接收到的声源信号计算声源位置,并通过该声源位置是否位于油气管道三维图像的中心线位置来来进行目标声源识别,判断是否出现过球信号,防止对过球信号的误判。更进一步的,利用声源信号计算声源位置,将声源位置处于油气管道之外的声源信号视为第三方作业信号,并对其进行监控,当达到预设的报警条件时发送报警信号,保证管道安全。
具体的,系统对目标声源识别的具体方式为:先获取声源信号的声谱图,提取声谱图中的声纹特征输入完成训练的分类器中,由分类器输出对当前的声源信号的识别结果。声纹特征包括过零率、频谱质心、声谱衰减、均方根能量、频谱平坦度、频谱通量、基音频率、响度、尖锐度以及全局音频信号极值的归一化后的上下包络线。分类器可采用基于支持向量机的多分类器。分类器的训练数据为油气管道实际运行环境中球通过管道环焊缝、弯折管道、平直管道多种特定部位的声源信号、其他可能在周围出现的装置设备在使用时产生的声源信号以及一些危险油气管道的施工行为产生的声源信号。

Claims (16)

1.一种适用于油气管道内检测器与清管器的跟踪定位系统,其特征在于,包括由若干监测器,每一个监测器连接至少一个上游探头和至少一个下游探头;
一个监测器对应一个管道检测点;
上游探头、下游探头分别设置在目标经过对应管道检测点的上、下游位置,采用振动传感器接收声源信号;所述目标为内检测器或清管器;
每一个监测器用于接收与其相连的上、下游探头的声源信号;当监测到目标先后经过对应的管道检测点的上、下游位置,则判定目标到达该管道检测点,更新目标位置;
当上游探头与下游探头接收的声源信号均持续增强且上游探头的声源信号达到最大值时,则判断目标经过对应的管道检测点的上游位置;当上游探头接收的声源信号持续减弱,下游探头接收的声源信号持续增强且达到最大值时,判断目标经过对应的管道检测点的下游位置。
2.如权利要求1所述系统,其特征在于,系统记录目标经过管道检测点上、下游位置的时间;
利用目标经过管道检测点上、下游位置的时间以及上、下游探头的距离来计算目标经过管道检测点的瞬时速度:
其中,vi表示目标经过第i个管道检测点的速度,Li,mn表示第i个管道检测点处上游探头m与下游探头n的距离,ti,n表示目标经过第i个管道检测点下游位置的时间,ti,m表示目标经过第i个管道检测点上游位置的时间。
3.如权利要求2所述系统,其特征在于,系统判断计算的目标经过管道检测点的瞬时速度是否在预设的过球速度的合理范围内,如是,则对应的声源信号属于过球信号,否则,对应的声源信号不属于过球信号出现误判,判定目标到未达该管道检测点,纠正之前更新的目标位置。
4.如权利要求2所述系统,其特征在于,当一个监测器连接有一个以上的上游探头和下游探头时,系统在计算瞬时速度时:
将任意一个上游探头和任意一个下游探头作为一组计算出瞬时速度,遍历所有上游探头和下游探头组合后,将所有组合计算出的瞬时速度进行平均,以均值作为最终的瞬时速度结果;
或者,系统按预定规则选择一个上游探头和下游探头的组合来进行瞬时速度计算。
5.如权利要求1所述系统,其特征在于,当上游探头接收的振动信号渐弱,下游探头接收的振动信号渐强,且上游探头接收的振动信号与下游探头接收的振动信号强度最接近时,认为目标经过对应的管道检测点的中点位置;
系统记录目标经过每个的管道检测点中点位置的中点时间;
利用目标经过两个管道检测点中点位置的中点时间以及这两个管道检测点之间的距离来计算目标经过两个管道检测点间的平均速度:
其中,vij表示目标经过第i个管道检测点与第j个管道检测点之间的平均速度,Lij表示第i个管道检测点与第j个管道检测点之间的距离,ti,mn表示目标经过第i个管道检测点中点位置的时间,tj,mn表示目标经过第j个管道检测点中点位置的时间。
6.如权利要求5所述系统,其特征在于,系统通过计算的目标经过两个管道检测点间的平均速度是否符合这两个管道检测点确定的管道段内的介质流量与压力环境来辅助判断目标运行状态。
7.如权利要求5所述系统,其特征在于,当一个监测器连接有一个以上的上游探头和下游探头时,在计算平均速度时:
将一个管道检测点上任意一个上游探头和任意一个下游探头得到的目标经过对应的管道检测点的中点位置的中点时间,遍历所有上游探头和下游探头组合后,将所有组合计算出的中点时间进行平均,将均值作为目标经过这个管道检测点中点位置的最终的中点时间,再根据目标经过两个管道检测点中点位置的最终的中点时间以及这两个管道检测点之间的距离来计算目标经过两个管道检测点间的平均速度;
或者,系统按预定规则在各管道检测点上选择一个上游探头和下游探头的组合来进行平均速度计算。
8.如以上任一项权利要求所述系统,其特征在于,监测器包括电池、存储器、处理器、无线通信模块、卫星定位模块;电池为监测器内部各模块提供电源,处理器分别与存储器、卫星定位模块、无线通信模块相连;
所述卫星定位模块用于为监测器提供卫星定位信号,从而确定管道检测点位置;
所述无线通信模块用于实现各监测器间的无线数据通信;
所述处理器用于对来自上、下游探头的声源信号进行声源信号处理;
声源信号处理包括滤波处理、目标声源识别、判定目标是否到达管道检测点并记录时间至存储器,根据经过的管道检测点位置来更新目标位置。
9.如权利要求8所述系统,其特征在于,还包括终端;终端为PC终端和/或与移动终端;
监测器通过无线通信模块与终端通信;
监测器的处理器与终端配合进行声源信号处理完成对目标的跟踪定位;监测器的处理器进行约定部分的声源信号处理后,通过无线通信模块将其处理结果发送至终端,由终端完成后续的声源信号处理;
或者,由监测器的处理器独立进行声源信号处理完成对目标的跟踪定位,仅将目标的跟踪定位结果发送至终端显示。
10.如权利要求8所述系统,其特征在于,系统利用声源信号处理更新的目标位置来校准目标内部的惯性导航数据。
11.如权利要求8所述系统,其特征在于,系统利用声源信号计算声源位置,并通过该声源位置是否位于油气管道三维图像的中心线位置来进行目标声源识别。
12.如权利要求8所述系统,其特征在于,系统利用声源信号计算声源位置,将声源位置处于油气管道之外的声源信号视为第三方作业信号,并对其进行监控,当达到预设的报警条件时发送报警信号。
13.如权利要求8所述系统,其特征在于,系统对目标声源识别的具体方式为:先获取声源信号的声谱图,提取声谱图中的声纹特征输入完成训练的分类器中,由分类器输出对当前的声源信号的识别结果。
14.如权利要求13所述系统,其特征在于,所述声纹特征包括过零率、频谱质心、声谱衰减、均方根能量、频谱平坦度、频谱通量、基音频率、响度、尖锐度以及全局音频信号极值的归一化后的上下包络线。
15.如权利要求8所述系统,其特征在于,所述卫星定位模块为全球定位系统GPS模块或者北斗卫星定位系统模块。
16.如权利要求8所述系统,其特征在于,所述无线通信模块包括移动通信模块、卫星通信模块和/或低功耗广域网LPWAN通信模块。
CN202211560222.XA 2022-12-06 2022-12-06 一种适用于油气管道内检测器与清管器的跟踪定位系统 Pending CN116774150A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211560222.XA CN116774150A (zh) 2022-12-06 2022-12-06 一种适用于油气管道内检测器与清管器的跟踪定位系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211560222.XA CN116774150A (zh) 2022-12-06 2022-12-06 一种适用于油气管道内检测器与清管器的跟踪定位系统

Publications (1)

Publication Number Publication Date
CN116774150A true CN116774150A (zh) 2023-09-19

Family

ID=87991877

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211560222.XA Pending CN116774150A (zh) 2022-12-06 2022-12-06 一种适用于油气管道内检测器与清管器的跟踪定位系统

Country Status (1)

Country Link
CN (1) CN116774150A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5417112A (en) * 1993-01-11 1995-05-23 Tdw Delaware, Inc. Apparatus for indicating the passage of a pig moving within an underground pipeline
CN103697886A (zh) * 2012-09-28 2014-04-02 中国石油天然气股份有限公司 管道中心线的惯性导航测量方法
CN103733040A (zh) * 2011-06-20 2014-04-16 光学感应器控股有限公司 管道的监测
CN103761995A (zh) * 2014-01-29 2014-04-30 清华大学 具有自诊断功能的高温气冷堆外装式过球检测方法及系统
CN104237917A (zh) * 2014-09-04 2014-12-24 中国石油天然气股份有限公司 一种管道内检测器远程实时跟踪系统及方法
US20150331007A1 (en) * 2014-05-14 2015-11-19 Eni S.P.A Method and system for the continuous remote tracking of a pig device and detection of anomalies inside a pressurized pipeline

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5417112A (en) * 1993-01-11 1995-05-23 Tdw Delaware, Inc. Apparatus for indicating the passage of a pig moving within an underground pipeline
CN103733040A (zh) * 2011-06-20 2014-04-16 光学感应器控股有限公司 管道的监测
CN103697886A (zh) * 2012-09-28 2014-04-02 中国石油天然气股份有限公司 管道中心线的惯性导航测量方法
CN103761995A (zh) * 2014-01-29 2014-04-30 清华大学 具有自诊断功能的高温气冷堆外装式过球检测方法及系统
US20150331007A1 (en) * 2014-05-14 2015-11-19 Eni S.P.A Method and system for the continuous remote tracking of a pig device and detection of anomalies inside a pressurized pipeline
CN104237917A (zh) * 2014-09-04 2014-12-24 中国石油天然气股份有限公司 一种管道内检测器远程实时跟踪系统及方法

Similar Documents

Publication Publication Date Title
CN101561081B (zh) 应用自主导航机器人对油气管道泄漏的检测定位方法
US9000778B2 (en) Communication method for monitoring pipelines
CA1194960A (en) Fixing a geographical reference of a vehicle travelling through a pipeline
CN105805563B (zh) 基于随路内窥式管道泄漏及堵塞的超声检测装置与方法
CN106352243A (zh) 一种基于声波法的输气管道泄露检测系统
CN108397692B (zh) 基于噪声信号时域分段频谱分析的管道泄漏识别方法
CN106441272B (zh) 一种管道清堵机器人自动快速定位系统及方法
CN103470959A (zh) 基于多模组合定位的油气管道智能内检测装置
CN102980942B (zh) 一种金属管道检测方法
CN204062504U (zh) 管道泄漏检测装置
CN101685062B (zh) 管道变径检测装置
CN111006721B (zh) 一种针对地铁保护区的在线监测方法
CN107084313A (zh) 矿浆管道泄漏定位报警系统及方法
CN109063849B (zh) 一种管道内检测器的实时跟踪与分级定位系统及方法
CN103196991B (zh) 连续诊断管体金属腐蚀与缺陷的全覆盖瞬变电磁检测方法
CN110007352A (zh) 一种水下穿越管道检测集成系统及方法
CN109253400A (zh) 基于分布式光纤传感的管道震动感测方法及系统
CN111486345B (zh) 一种粮库地下管网液体泄漏在线监测预警方法及装置
KR101382232B1 (ko) 소음 수준 및 분포를 이용한 상시 누수진단 시스템
CN106124948A (zh) 一种内置式局放监测装置及方法
CN115854271A (zh) 城市地下管网损伤监测与修复系统及损伤识别修复方法
CN105423138A (zh) 一种用于检测油气管道渗漏的智能检测器
CN114721037A (zh) 一种智能声学技术对管道内特征的检测、定位与识别方法
KR102336715B1 (ko) 누수 여부 탐지 시스템
CN102537668B (zh) 一种管道内检测器地面标记时刻的确定方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination