CN116768536A - 由金属采矿和生产废物制备冷熔混凝土和水泥组合物的方法 - Google Patents

由金属采矿和生产废物制备冷熔混凝土和水泥组合物的方法 Download PDF

Info

Publication number
CN116768536A
CN116768536A CN202310268507.4A CN202310268507A CN116768536A CN 116768536 A CN116768536 A CN 116768536A CN 202310268507 A CN202310268507 A CN 202310268507A CN 116768536 A CN116768536 A CN 116768536A
Authority
CN
China
Prior art keywords
weight
combinations
group
cold
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310268507.4A
Other languages
English (en)
Other versions
CN116768536B (zh
Inventor
R·朱布罗德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Geopolymer Solutions LLC
Original Assignee
Geopolymer Solutions LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Geopolymer Solutions LLC filed Critical Geopolymer Solutions LLC
Publication of CN116768536A publication Critical patent/CN116768536A/zh
Application granted granted Critical
Publication of CN116768536B publication Critical patent/CN116768536B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/006Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mineral polymers, e.g. geopolymers of the Davidovits type
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • C04B28/26Silicates of the alkali metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B12/00Cements not provided for in groups C04B7/00 - C04B11/00
    • C04B12/04Alkali metal or ammonium silicate cements ; Alkyl silicate cements; Silica sol cements; Soluble silicate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/26Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/0409Waste from the purification of bauxite, e.g. red mud
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/08Flue dust, i.e. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/12Waste materials; Refuse from quarries, mining or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • C04B20/023Chemical treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/082Acids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/04Carboxylic acids; Salts, anhydrides or esters thereof
    • C04B24/06Carboxylic acids; Salts, anhydrides or esters thereof containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/12Nitrogen containing compounds organic derivatives of hydrazine
    • C04B24/14Peptides; Proteins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/12Natural pozzuolanas; Natural pozzuolana cements; Artificial pozzuolanas or artificial pozzuolana cements other than those obtained from waste or combustion residues, e.g. burned clay; Treating inorganic materials to improve their pozzuolanic characteristics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/20Retarders
    • C04B2103/22Set retarders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mining & Mineral Resources (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Processing Of Solid Wastes (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Treatment Of Sludge (AREA)

Abstract

本文描述了使用采矿废物制备冷熔混凝土和水泥的方法。

Description

由金属采矿和生产废物制备冷熔混凝土和水泥组合物的方法
技术领域
本发明涉及处理采矿废物以制备含有和不含有金属碳酸盐的冷熔混凝土和水泥组合物。
背景技术
采矿作业会产生含有金属氧化物、氢氧化物、碳酸盐、亚硫酸盐、硫酸盐、硫化物以及其他固体和液体化学物质的废品(采矿残渣)。例如,从铝土矿矿物配方中提取氧化铝的拜耳法产生了大量潜在有害的含有氢氧化钠、氧化亚铁、二氧化硅、氧化铝、氢氧化钙、钛以及其他微量材料的铝土矿残渣,并且有时还具有放射性。提取一吨氧化铝会产生一至两吨铝土矿残渣。铝土矿残渣在未使用的料堆中堆积数代。此外,因为大多数残渣蓄积池不一定位于铝土矿源附近,所以许多不同的铝土矿源残渣可以存在于具有稍微可变特征的单个蓄积池中。
主要处理以用于电池的锂以碳酸盐的形式在露天矿坑中进行开采,但盐水采矿和处理也很常用。锂处理和采矿的副产品包括各种亚硫酸盐、硫酸盐、碳酸盐、氧化物以及氢氧化物。盐水采矿的废物通常产生两种单独的材料,一种包含金属氢氧化物和氧化物,另一种包含亚硫酸盐。金属氢氧化物和氧化物由锰、亚铁、镁和其他次要材料组成。亚硫酸盐主要由锌组成,但也含有锂和其他金属。
铜、金、银、铀、煤以及许多其他材料的开采和处理会产生矿尾渣或其他需要永久储存的废物。这些材料中有许多含有危险化学物质、重金属或者具有高或低pH的材料。所有这些材料都含有大量的SiO2
发明内容
发明人发现了一种使用采矿废物制备冷熔混凝土和水泥(cold fusion concreteand cement)的方法。该方法除了可以将潜在危险的采矿废物转化为有用的材料之外,在一些实施例中,该方法还可以通过将二氧化碳转化为金属碳酸盐来执行碳封存(carbonsequestration)的功能。因此,在一个方面,公开了一种生产冷熔(cold fusion)混凝土组合物的方法,包括组合以下材料以产生具有可倾倒稠度的冷熔混凝土组合物:
(a)按重量计20%至70%的采矿废物;
(b)按重量计5%至30%的碱金属硅酸盐或硅酸盐五水合物;
(c)按重量计1%至15%选自由以下组成的组的凝固减缓剂(set reducingagent):四硼酸钠、硼酸、柠檬酸及其组合;
(d)按重量计20%至70%选自由以下组成的组的的试剂:磨细粒化高炉矿渣、飞灰、包含按重量计约1%至60%的氢氧化钙的合成或天然火山灰及其组合;
(e)按重量计0.01%至2%选自由以下组成的组的有助于共价键形成的试剂:酪蛋白酸钠、酪蛋白酸钙、天然蛋白质、合成蛋白质及其组合;
(f)按重量计0.01%至2%选自由以下组成的组的能够使组合物收缩最小化的试剂:氧化物、氢氧化物、硫酸盐及其组合;以及
(g)水。
可以使用的采矿废物的实例包括铝土矿废物、金属矿尾渣、锂采矿废物、煤尾渣及其组合。在一些实施例中,该方法包括用解离剂预处理采矿废物,然后加入按采矿废物重量0.2%至15%计的二氧化碳源以形成金属碳酸盐。二氧化碳源可以是气体、超临界液体或气泡的形式。
解离剂可以选自由以下组成的组:过氧化氢、酸及其组合。例如,在一些实施例中,解离剂是选自由以下组成的组的酸:草酸、盐酸、碳酸、硝酸、磷酸、乙酸及其组合。
在一些实施例中,该方法包括在加入二氧化碳源之前,用按重量计5%至35%的pH调节剂预处理采矿废物,使得采矿废物的pH在8至14之间。在一些实施例中,可以在解离剂之前施用pH调节剂。pH调节剂可以选自由以下组成的组:碱金属氢氧化物、碱金属硅酸盐、赤泥及其组合。
在一些实施例中,该方法包括通过将组合物暴露于环境条件、直流电电荷、交流电电荷、紫外光、100℉至160℉的温度或其组合来固化组合物,直到获得所需强度。
在一些实施例中,该方法包括向组合物中加入按重量计20%至60%的骨料(aggregate)。骨料可以是天然存在或合成的骨料。在一些实施例中,通过将冷熔混凝土组合物分离成200μm至50mm的粒级并固化粒级来生产骨料。
在第二方面,公开了一种生产冷熔水泥组合物的方法,包括组合以下材料:
(a)按重量计20%至70%的采矿废物;
(b)按重量计5%至30%的碱金属硅酸盐或硅酸盐五水合物;
(c)按重量计1%至15%选自由以下组成的组的凝固减缓剂:四硼酸钠、硼酸、柠檬酸及其组合;
(d)按重量计20%至70%选自由以下组成的组的试剂:磨细粒化高炉矿渣、飞灰、包含按重量计约1%至60%的氢氧化钙的合成或天然火山灰及其组合;
(e)按重量计0.01%至2%选自由以下组成的组的有助于共价键形成的试剂:酪蛋白酸钠、酪蛋白酸钙、天然蛋白质、合成蛋白质及其组合;以及
(f)按重量计0.01%至2%选自由以下组成的组的能够使组合物收缩最小化的试剂:氧化物、氢氧化物、硫酸盐及其组合。
可以使用的采矿废物的实例包括铝土矿废物、金属矿尾渣、锂采矿废物、煤尾渣及其组合。在一些实施例中,该方法包括(a)用解离剂预处理采矿废物,然后加入按采矿废物重量0.2%至15%计的二氧化碳源以形成金属碳酸盐;以及(b)将金属碳酸盐干燥并研磨至最大粒度为50微米的粉末。在一些实施例中,该方法包括将冷熔水泥组合物研磨至0.1微米至5微米的粒度。
下文结合附图和具体说明对本发明的一个或多个实施例进行详细阐述。根据说明书和附图以及权利要求书,本发明的其他特征、目的和优点将变得显而易见。
附图说明
图1的流程图示出了处理采矿废物以形成冷熔混凝土或水泥的流程图,其中采矿废物是赤泥。
图2的流程图示出了处理采矿废物以形成冷熔混凝土或水泥的流程图,其中采矿废物是矿尾渣。
图3的流程图示出了处理采矿废物以形成冷熔混凝土或水泥的流程图,其中采矿废物是锂盐水废物。
具体实施方式
A.定义
如本文所用,术语“冷熔混凝土”或“冷熔水泥”是表征含二氧化硅和铝的火山灰的工业术语,该火山灰被碱金属、碱金属盐和碱金属氢氧化物和氧化物活化并结合,该碱金属氢氧化物和氧化物是配置的火山灰所固有的,形成用于运输、基础设施和一般建筑以及施工工业的硬化材料,并作为特种耐化学和/或耐热混凝土。冷熔混凝土和水泥可以使用或可以不使用波特兰(Portland)材料,并且不使用液体氢氧化物添加剂作为主要活化剂或pH提升剂。根据本公开内容,冷熔混凝土或水泥作为水硬水泥总体上符合水硬水泥的ASTMC1157标准性能规范。
如本文所用,术语“地质聚合物(geopolymer)水泥”或“碱活化水泥”是表征含二氧化硅和铝的火山灰的工业术语,该火山灰被碱金属、碱金属盐和碱金属氢氧化物活化并结合,形成用于运输、基础设施和一般建筑以及施工工业的硬化材料,并作为特种耐化学和/或耐热混凝土。地质聚合物和碱活化水泥可以含有或不含有波特兰材料,最典型的是含有液体氢氧化物和硅酸盐作为活化剂,以获得耐久性和强度。虽然冷熔混凝土通常符合水硬水泥的要求,并且冷熔混凝土通常被定义为地质聚合物水泥,但是地质聚合物水泥通常不符合水硬水泥的要求,因为它们通常不被水活化,而是被液体硅酸盐和氢氧化物活化。
如本文所用,术语“胶结材料”是指细粒材料,当用于混凝土中时,其本身具有胶结价值,例如冷熔混凝土水泥、地质聚合物水泥、波特兰水泥、混合水硬水泥以及膨胀水泥,或者这些材料与飞灰、其他生的或煅烧的天然火山灰、硅灰、铝硅酸盐、煅制二氧化硅、高岭土、绿坡缕石、沸石、硅藻土和/或磨细粒化高炉矿渣组合产生胶结效果。
如本文所用,术语“骨料”是指被破碎或研磨并在波特兰、地质聚合物和冷熔型混凝土中用作填料的任何天然或合成的骨料。骨料是与胶结介质一起用于形成混凝土或砂浆的粒状材料,例如沙子、砾石、碎石和铁高炉矿渣。
如本文所用,术语“凝固时间迟缓剂(Set Time Retarder)”是指加入到波特兰、地质聚合物或冷熔水泥和混凝土中以迟缓凝固时间,并在各种特征的施工和维护过程中提供更多的可操作时间的任何干燥或液体混合物。
如本文所用,术语“蛋白质”或“合成蛋白质材料”指包括一个或多个氨基酸残基长链的大生物分子或大分子。对于在地质聚合物或冷熔型水泥或混凝土中有用的蛋白质,DNA链必须在混合物硅酸盐和产生的氢氧化物之间产生共价键,从而暂时调节离子浓度(向上或向下)并减少和/或消除大多数地质聚合物型水泥中固有的发粘和胶粘的特性,并在蛋白质效应由于pH降低、温度偏差或时间而终止后的重组过程中减少来自离子的较高质量重组造成的混合物体积变化。
如本文所用,术语“矿尾渣”是指采矿和处理各种矿物和金属(包括金、铜、银、铀、锂、亚铁和其他碱金属、碱土金属、过渡金属和其他金属)的残渣或副产品。采矿和处理用于发电的煤所产生的废渣被称为“尾渣”。
如本文所用,术语“赤泥”是指从铝土矿中提取氧化铝的拜耳法留下的碱性残渣。术语“赤泥”有时称为“褐泥”,“褐泥”是从“赤泥”中另外提取氧化铝的残渣。
如本文所用,术语“料液(liquor)”是指用过的或重复使用的液体,其最初包括单一液体如氢氧化钠,用于从组合物、产品、有机物或矿物中提取各种材料,但在初次使用后变得富含组合物、产品、有机物或矿物的溶解组分,但仍用于继续提取,无论是否增加新鲜液体。
如本文所用,术语“硅酸钙铝水合物”或“硅酸钙水合物”是标识在冷熔混凝土、波特兰水泥混凝土、地质聚合物混凝土和碱活化混凝土中形成硅酸盐水合物的通用术语。长链分子结构在各种混凝土之间可能不同,但具有可变离子浓度的二氧化硅分子总是存在的。
如本文所用,术语“离子液体”或“离子酸”是指用于解离各种离子键从而使金属与二氧化碳反应形成金属碳酸盐的任何液体。“解离”是指在形成金属碳酸盐之前金属离子的物理转化。
B.总体描述
发明人发现,当与冷熔混凝土和水泥技术组合时,采矿废物中的氢氧化物和硅酸盐是有益的。这是在使用赤泥开发冷熔混凝土材料时发现的,赤泥是拜耳法从铝土矿中提取氧化铝的残渣。图1所示的流程图大体上描述了该过程。
如背景技术中所讨论的,拜耳法留下了富含氢氧化钠的废物。富含氢氧化钠的废物沉积在大型蓄积池中,在该大型蓄积池中铝土矿中的二氧化硅浓度被消化成氢氧化钠,留下可变摩尔浓度和组合的硅酸钠和氢氧化钠,以及其他附着和解离的金属材料。
类似地,拜耳法中使用的氢氧化钠在更新或用新的氢氧化钠替换之前重复使用数次。在最初使用后,氢氧化钠被氧化铝工业称为“料液(liquor)”,正如许多其他工业(如造纸工业)所定义的那样。当料液被重复使用时,其二氧化硅含量增加,直到二氧化硅和其他材料的含量过高,以致于由于料液不能有效消化铝土矿矿物中的氧化铝而必须对该料液进行更新或处理。
料液是赤泥的重要部分。由于料液中二氧化硅含量高,料液本身是在有或没有赤泥固体的冷熔混凝土中使用的可行候选物,作为从火山灰中进一步消化额外二氧化硅的高pH材料,与火山灰的氢氧化钙部分反应生成硅酸钙水合物(calcium silicate hydrate,CSH)/硅酸钙铝水合物(calcium silicate aluminum hydrate,CSAH),并与其他冷熔混凝土成分反应以获得超过3,000磅/平方英寸(psi)强度的抗压强度,具有低至可忽略的体积变化和受控的凝固时间。含有或不含有赤泥的料液的组合可以产生高强度、极低渗透性以及由于高二氧化硅含量而对气候变化和化学暴露具有极高抗性的混凝土材料。
如背景技术中所讨论的,锂处理和采矿的副产品包括包含锌、亚铁、锰、钠、钙和镁的各种亚硫酸盐、硫酸盐、硅酸盐、碳酸盐和氢氧化物。副产品通常分为两侧,包括氢氧化物侧和亚硫酸盐/硫酸盐侧。发明人发现,使用冷熔混凝土技术,锂废物的氢氧化物侧可以与二氧化碳一起被隔绝,从而产生金属碳酸盐,并且锂废物的硫化物侧可以用氢氧化物处理,从而将硫化物转化为反应的碳酸锌,同时释放和捕获氢气。反应后的碳酸盐可以在冷熔混凝土中用作填料和氧化锌阻挡层(镀锌金属),并且氢气可以被捕获用于氢燃料发电或其他过程。图3所示的流程图大体上描述了该过程。
除了锂之外,如在背景技术中所讨论的来自金、银、铜、钛、镁以及其他金属的废料收集在蓄积池和料堆中,并且被称为尾渣。金属矿尾渣含有高含量的二氧化硅以及氢氧化物、亚硫酸盐、硫化物、硫酸盐、氧化物、氯化物和其他对冷熔混凝土有益或无害的材料。这些废物中有许多含有除非永久限制在混凝土块(如冷熔混凝土)中否则会渗入水中的不需要的材料,例如重金属、砷和其他材料。在图2所示的流程图中大体上描述了在冷熔混凝土中掺入矿尾渣的过程。
煤用于加热和发电,但未使用的尾渣在美国和国外都是重大问题。煤尾渣是在发电厂中不能有效燃烧的碳含量较低的过载的煤。煤尾渣含有钙、氧化亚铁、铝、二氧化硅、碳以及各种其他材料。在干燥和破碎之后,将二氧化碳引入煤尾渣中,在其中将二氧化碳隔绝在氢氧化物组分中,从而转化成碳酸盐。然后,经隔绝的尾渣可以在冷熔混凝土中用作胶结材料的一部分,或者经隔绝的尾渣可以用作二氧化碳的永久储存物,用作采煤的回收装置,用作土壤填充材料,或者与冷熔混凝土混合以生产骨料。
C.金属碳酸盐的制备。
可以生产金属碳酸盐以用作例如二氧化碳隔离填埋场、道路/高速公路/机场基层的骨料、沥青路面的骨料、混凝土的骨料或二氧化碳的简单永久储存机构。
金属碳酸盐的制备可以发生在碱金属、碱土金属、过渡金属或其他金属中。制备碱土金属或碱金属碳酸盐通常是生产金属碳酸盐的最方便的来源,并且很多时候包括将金属的粒度减小到最大约20微米,并将金属暴露于水和二氧化碳中。水用于使包含单个碱土/碱金属原子和一个氧原子的氧化物保留氢原子,使该氢氧化物与二氧化碳反应并形成碳酸盐。水还用作润滑剂和密封剂,以接收二氧化碳并彻底结合和分布二氧化碳和氢氧化物,用于彻底结合和过渡。另一种生产金属碳酸盐的简单方法是将金属氧化物/氢氧化物暴露于过氧化氢中,以首先部分地或完全地解离氧化物,然后引入二氧化碳。可以对每种氧化物/氢氧化物进行测试,以确定最佳碳酸盐开发方法,并通过XRD、XRF或其他合适的分析方案进行验证。
最典型地,过渡金属和其他金属必须在暴露于二氧化碳之前解离。例如,铁氧化物的最佳溶解是在低pH下通过使用草酸、盐酸、碳酸或其他酸达到的,这些酸通过提供其电子形成Fe+3离子而用作还原剂;在低pH环境中使氧化物醇化的时间由所用的酸决定,可以在约2到48小时之间变化。然后,这些可用的铁离子将与氧化的草酸盐结合形成草酸铁[Fe(C2O4)2]-。一旦这些草酸铁形成,在加入过氧化氢之前,必须通过加入硅酸盐、赤泥或氢氧化物将pH调节至升高的pH。这将使得过氧化氢用作还原剂将Fe+3离子还原成Fe+2,使铁离子相容以与碳酸盐结合。然后通过使用泡沫气泡、液态二氧化碳或二氧化碳气体来注入二氧化碳而产生碳酸盐。
在使用碳酸输送二氧化碳的情况中,二氧化碳将被加入到水中形成碳酸,然后加入到上述解离的混合物中。由于这种弱酸将被加入到碱性溶液中,它会使其质子去质子化以形成碳酸盐。
用草酸溶解氧化铁:
补充说明:在高温(100摄氏度)下用草酸溶解氧化铁会加速该过程。
如果引入不同的酸来代替草酸,则酸和酸的共轭碱的化学式将改变。
过氧化氢与铁离子在碱性溶液中反应:
2Fe3++H2O2+2OH-→2Fe2++O2+2H2O
补充说明:过氧化氢既可以用作氧化剂,也可以用作还原剂(取决于pH)。为了使其起到还原剂的作用,必须在升高的pH下加入。
形成碳酸盐:
CO2+H2O→H2CO3
铁离子与碳酸盐结合形成碳酸铁:
如前所述,一旦碳酸盐形成,它们就可以被用作填料或掺入各种建筑材料中。
D.冷熔混凝土的制备
冷熔混凝土是一种二氧化硅占主要的化学材料,依赖于直接配置的二氧化硅(硅酸盐,其在与水的放热反应阶段,消化并与SiO2火山灰结合)、各种矿物和矿山废料的玻璃状成分,以达到约70%的SiO2含量,这与玻璃化学材料非常相似。二氧化硅、铝、各种氢氧化物和氧化物以及铝土矿、锂、金、铜、银或来自冷熔混凝土的主要或占多数成分的其他采矿废物中的钙成分。因此,冷熔混凝土和采矿废物之间存在协同作用。废物中的亚铁和其他金属成分在最终产品中不会产生有害反应,并且重金属可以安全地封装在玻璃基质中。
冷熔混凝土可以由采矿废物通过组合不同浓度的下列材料来生产,从而达到规定的强度、凝固时间、渗透性、体积稳定性、耐化学性和耐气候变化性:
按重量计约20%至70%的采矿废物。废物可以是未处理的,或者已经全部或部分处理成碳酸盐的废物;
按重量计约5%至30%的碱金属硅酸盐或硅酸盐五水合物(例如,硅酸钠、硅酸钙或硅酸钾);
按重量计约5%至15%的凝固时间迟缓剂,例如四硼酸钠、硼酸、柠檬酸或其组合;
按重量计约20%至70%的磨细粒化高炉矿渣、飞灰或包含按重量计约1%至60%的氢氧化钙的其他合成或天然火山灰;
按重量计约0.01%至2%的酪蛋白酸钠、酪蛋白酸钙或有助于形成共价键的其他(天然或合成的)蛋白质;
按重量计约0.01%至2%的氧化物或氢氧化物(例如,镁、钙、钾、锂、铝)或硫酸盐(例如,钙、镁、钾、锂),其抑制混合物中的塑性、干燥和自生收缩,从而减少体积变化;以及
如果需要,足量的水,以产生可倾倒的稠度。
混凝土混合物可以在环境条件下正常固化,用热固化,或用电处理固化。
如果可溶性碳酸盐或碳酸氢盐从固化的混凝土混合物中沉淀出来,使用浓度为0.01%至5%(以采矿废物计)的沸石、硅藻土、聚乙烯醇、含氟表面活性剂或聚合物可能会有帮助。
使用目前在波特兰水泥混凝土中使用的浓度为按重量计1%至25%的微纤维和长纤维可能有助于根据目标修正模量性质、增加强度和减少开裂。
E.水泥的制备
在预拌混凝土或其他生产设施中制备包含到冷熔混凝土混合物中的干水泥配制物可按如下方式进行:在预拌混凝土或其他生产设施中制备用于掺入冷熔混凝土混合物的干水泥配方可按如下方式进行:
如上所述制备碳酸盐并干燥碳酸盐。干燥至恒重后,将碳酸盐加入搅拌机中,并与以下物质混合:
按重量计约5%至30%的碱金属硅酸盐或硅酸盐五水合物(例如,硅酸钠、硅酸钙或硅酸钾);
按重量计约5%至15%的凝固迟缓剂,例如四硼酸钠、硼酸或柠檬酸;
按重量计约20%至70%的磨细粒化高炉矿渣、飞灰或包含按重量计约1%至60%的氢氧化钙的其他合成或天然火山灰;
按重量计约0.01%至2%的酪蛋白酸钠、酪蛋白酸钙或有助于形成共价键的其他(天然或合成的)蛋白质;
按重量计约0.01%至2%的氧化物或氢氧化物(例如,镁、钙、钾、锂、铝)或硫酸盐(例如,钙、镁、钾、锂),其抑制混合物中的塑性、干燥和自生收缩,从而减少体积变化;以及
将材料研磨至最大约10微米的大小,但更优选约0.5至5微米的大小。
通过将水泥与骨料(金属碳酸盐或天然存在的矿物材料)和水混合以达到所需的强度和粘度,水泥可用于标准混凝土生产。混凝土混合物可以在环境条件下正常固化,用热固化,或用电处理固化。
如果可溶性碳酸盐或碳酸氢盐从固化的混凝土混合物中沉淀出来,使用浓度为0.01%至5%的沸石、硅藻土、PVA、含氟表面活性剂或聚合物是有帮助的。
已经描述了主题的特定实施例。然而,应理解,还可以进行各种修改、替换和变更。因此,其他实施例仍包含在所附权利要求的范围内。

Claims (15)

1.一种生产冷熔混凝土组合物的方法,包括组合以下材料以产生具有可倾倒稠度的冷熔混凝土组合物:
(a)按重量计20%至70%的采矿废物;
(b)按重量计5%至30%的碱金属硅酸盐或硅酸盐五水合物;
(c)按重量计1%至15%选自由以下组成的组的凝固减缓剂:四硼酸钠、硼酸、柠檬酸及其组合;
(d)按重量计20%至70%选自由以下组成的组的试剂:磨细粒化高炉矿渣、飞灰、包含按重量计约1%至60%的氢氧化钙的合成或天然火山灰及其组合;
(e)按重量计0.01%至2%选自由以下组成的组的有助于共价键形成的试剂:酪蛋白酸钠、酪蛋白酸钙、天然蛋白质、合成蛋白质及其组合;
(f)按重量计0.01%至2%选自由以下组成的组的能够使组合物收缩最小化的试剂:氧化物、氢氧化物、硫酸盐及其组合;以及
(g)水。
2.根据权利要求1所述的方法,其中所述采矿废物选自由以下组成的组:铝土矿废物、金属矿尾渣、锂采矿废物、煤尾渣及其组合。
3.根据权利要求1所述的方法,包括用解离剂预处理所述采矿废物,然后加入按采矿废物重量0.2%至15%计的二氧化碳源以形成金属碳酸盐。
4.根据权利要求3所述的方法,其中所述解离剂选自由以下组成的组:过氧化氢、酸及其组合。
5.根据权利要求4所述的方法,其中所述解离剂是选自由以下组成的组的酸:草酸、盐酸、碳酸、硝酸、磷酸、乙酸及其组合。
6.根据权利要求3所述的方法,包括在加入所述二氧化碳源之前,用按采矿废物重量5%至35%计的pH调节剂处理预处理采矿废物,使得所述采矿废物的pH在8和13之间。
7.根据权利要求3所述的方法,其中所述二氧化碳源为气体、超临界液体或气泡的形式。
8.根据权利要求6所述的方法,其中所述pH调节剂选自由以下组成的组:碱金属氢氧化物、碱金属硅酸盐、赤泥及其组合。
9.根据权利要求1所述的方法,还包括通过将所述组合物暴露于环境条件、直流电电荷、交流电电荷、紫外光、100℉至160℉的温度或其组合来固化所述组合物,直到达到所需的强度。
10.根据权利要求1所述的方法,还包括向所述组合物中加入按重量计20%至60%的骨料。
11.根据权利要求10所述的方法,其中所述骨料通过以下方式生产:
将冷熔混凝土组合物分离成200μm至50mm范围内的粒级并固化所述粒级。
12.一种制备冷熔水泥组合物的方法,包括组合以下材料以形成冷熔水泥组合物:
(a)按重量计20%至70%的采矿废物;
(b)按重量计5%至30%的碱金属硅酸盐或硅酸盐五水合物;
(c)按重量计1%至15%选自由以下组成的组的凝固减缓剂:四硼酸钠、硼酸、柠檬酸及其组合;
(d)按重量计20%至70%选自由以下组成的组的试剂:磨细粒化高炉矿渣、飞灰、包含按重量计约1%至60%的氢氧化钙的合成或天然火山灰及其组合;
(e)按重量计0.01%至2%选自由以下组成的组的有助于共价键形成的试剂:酪蛋白酸钠、酪蛋白酸钙、天然蛋白质、合成蛋白质及其组合;以及
(f)按重量计0.01%至2%选自由以下组成的组的能够使组合物收缩最小化的试剂:氧化物、氢氧化物、硫酸盐及其组合。
13.根据权利要求12所述的方法,包括:
(g)用解离剂预处理所述采矿废物,然后加入按采矿废物重量0.2%至15%计的二氧化碳源以形成金属碳酸盐;以及
(h)将所述金属碳酸盐干燥并研磨至最大粒度为50微米的粉末。
14.根据权利要求12所述的方法,还包括将所述冷熔水泥组合物研磨至0.1至5微米的粒度。
15.根据权利要求13所述的方法,还包括将所述冷熔水泥组合物研磨至0.1至5微米的粒度。
CN202310268507.4A 2022-03-16 2023-03-16 由金属采矿和生产废物制备冷熔混凝土和水泥组合物的方法 Active CN116768536B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/696,793 US11390562B1 (en) 2022-03-16 2022-03-16 Process for preparing cold fusion concrete and cement compositions from metal mining and production waste
US17/696,793 2022-03-16

Publications (2)

Publication Number Publication Date
CN116768536A true CN116768536A (zh) 2023-09-19
CN116768536B CN116768536B (zh) 2024-08-27

Family

ID=82384975

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310268507.4A Active CN116768536B (zh) 2022-03-16 2023-03-16 由金属采矿和生产废物制备冷熔混凝土和水泥组合物的方法

Country Status (8)

Country Link
US (1) US11390562B1 (zh)
EP (1) EP4249449A3 (zh)
CN (1) CN116768536B (zh)
AU (1) AU2023201637B1 (zh)
BR (1) BR102023004822A2 (zh)
CA (1) CA3192899C (zh)
MX (1) MX2023003078A (zh)
ZA (1) ZA202303592B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011145080A1 (en) * 2010-05-20 2011-11-24 A.S.I.U. S.P.A. A process for the production of hydrogen, the sequestration of carbon dioxide and the production of building materials starting from slags and/or industrial ashes
KR101598766B1 (ko) * 2015-12-11 2016-02-29 주식회사 베스톤건설 내구성이 증진된 시멘트 조성물
US9670096B1 (en) * 2016-08-04 2017-06-06 Geopolymer Solutions LLC High strength, density controlled cold fusion concrete cementitious spray applied fireproofing
US20190084882A1 (en) * 2016-05-20 2019-03-21 The Catholic University Of America Control of time of setting of geopolymer compositions containing high-ca reactive aluminosilicate materials

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110271876A1 (en) * 2009-01-09 2011-11-10 Stephen Alter Geopolymer compositions
US8617452B2 (en) 2010-08-13 2013-12-31 Srmz Technical, Inc. Methods of making a construction material with a voltage
CN103803938A (zh) * 2013-12-27 2014-05-21 广西吉顺能源科技有限公司 一种用于墙面的防火保温材料及其制作工艺
US9944560B2 (en) 2016-08-04 2018-04-17 Geopolymer Solutions LLC Fire resistant coating
US10196310B2 (en) 2016-08-04 2019-02-05 Geopolymer Solutions LLC Cold fusion concrete
CN108911607B (zh) * 2018-08-22 2021-04-02 黄国城 装配式墙体材料及其制备方法
CN110540387A (zh) * 2019-09-05 2019-12-06 张建华 一种轻质节能混凝土及其制备方法
CN110590249A (zh) * 2019-09-05 2019-12-20 张建华 一种生产泡沫混凝土的原材料及其制备方法
US10954162B1 (en) 2019-09-24 2021-03-23 Geopolymer Solutions, LLC Protective coating
CN113149530B (zh) * 2021-04-29 2022-10-14 山东大学 一种赤泥改性泡沫轻质土及其制备方法和应用
CN113264717B (zh) * 2021-06-11 2023-03-21 东北大学 大掺量固废基碱激发泡沫混凝土及其制备方法
CN114163256B (zh) * 2021-11-16 2022-12-23 山东大学 一种多孔囊体降噪隔音材料及其制备方法与应用
CN114149219B (zh) * 2022-02-09 2022-04-26 河北工业大学 一种常温养护保温隔热材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011145080A1 (en) * 2010-05-20 2011-11-24 A.S.I.U. S.P.A. A process for the production of hydrogen, the sequestration of carbon dioxide and the production of building materials starting from slags and/or industrial ashes
KR101598766B1 (ko) * 2015-12-11 2016-02-29 주식회사 베스톤건설 내구성이 증진된 시멘트 조성물
US20190084882A1 (en) * 2016-05-20 2019-03-21 The Catholic University Of America Control of time of setting of geopolymer compositions containing high-ca reactive aluminosilicate materials
US9670096B1 (en) * 2016-08-04 2017-06-06 Geopolymer Solutions LLC High strength, density controlled cold fusion concrete cementitious spray applied fireproofing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
赵人达等: ""地聚物混凝土收缩研究综述"", 《硅酸盐通报》, vol. 39, no. 6, pages 1695 - 1702 *

Also Published As

Publication number Publication date
CA3192899C (en) 2024-01-16
EP4249449A3 (en) 2023-12-13
AU2023201637B1 (en) 2023-06-15
CA3192899A1 (en) 2023-05-12
CN116768536B (zh) 2024-08-27
BR102023004822A2 (pt) 2023-09-26
US11390562B1 (en) 2022-07-19
EP4249449A2 (en) 2023-09-27
MX2023003078A (es) 2024-03-06
ZA202303592B (en) 2023-10-25

Similar Documents

Publication Publication Date Title
Moghadam et al. Preparation and application of alkali-activated materials based on waste glass and coal gangue: A review
JP2738853B2 (ja) 廃棄物の安定化、固化及び貯蔵方法
Cheah et al. Recent advances in slag-based binder and chemical activators derived from industrial by-products–A review
Samarakoon et al. Recent advances in alkaline cement binders: A review
Li et al. Mineralization and utilization of CO2 in construction and demolition wastes recycling for building materials: A systematic review of recycled concrete aggregate and recycled hardened cement powder
US11174185B2 (en) Methods and systems for multi-stage encapsulation of wastes and production thereof into aggregate products
Ślosarczyk et al. A literature review of the latest trends and perspectives regarding alkali-activated materials in terms of sustainable development
Zhang et al. Effects of pretreated recycled powder substitution on mechanical properties and microstructures of alkali-activated cement
Li et al. Recycling of waste incineration bottom ash and heavy metal immobilization by geopolymer production
Karrech et al. Management and valorisation of delithiated β-spodumene and its processing stream
Benzaazoua et al. Key issues related to behaviour of binders in cemented paste backfilling
CN116768536B (zh) 由金属采矿和生产废物制备冷熔混凝土和水泥组合物的方法
Ahmed et al. Carbon dioxide sequestration in cementitious materials: A review of techniques, material performance, and environmental impact
JP2001199753A (ja) 舗装建設用組成物
KR100375407B1 (ko) 폐기물의 중금속 용출방지를 위한 고형체 제조방법 및이에 의해 제조된 고형체
Jamalimoghadam et al. Solidification and utilization of municipal solid waste incineration ashes: Advancements in alkali-activated materials and stabilization techniques, a review
EP4155279A1 (en) Method for manufacturing supplementary cementitious material
Siddique et al. Cement kiln dust
OA21211A (en) Process for preparing cold fusion concrete and cement compositions from metal mining and production waste.
Jhatial et al. A Review on Emerging Cementitious Materials, Reactivity Evaluation and Treatment Methods. Buildings 2023, 13, 526
Panias et al. The geopolymerization technology for the utilization of mining and metallurgical solid wastes
KR102654370B1 (ko) 함수율이 높은 산업부산물을 이용한 무시멘트계 경화체 조성물
KR100375408B1 (ko) 폐기물을 재활용하기 위한 고화제
CN118005308B (zh) 垃圾焚烧飞灰基复合掺合料、低碳胶凝材料及制备方法
Danner et al. Alkali-reduced Bauxite Residue as Novel SCM

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant