CN116752043A - 一种绝缘性能优良的高磁感取向硅钢极薄带的制备方法 - Google Patents

一种绝缘性能优良的高磁感取向硅钢极薄带的制备方法 Download PDF

Info

Publication number
CN116752043A
CN116752043A CN202310731488.4A CN202310731488A CN116752043A CN 116752043 A CN116752043 A CN 116752043A CN 202310731488 A CN202310731488 A CN 202310731488A CN 116752043 A CN116752043 A CN 116752043A
Authority
CN
China
Prior art keywords
silicon steel
oriented silicon
coating
temperature
cold rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310731488.4A
Other languages
English (en)
Inventor
杨佳欣
张宁国
申明辉
赵胜利
李国保
王雄奎
杜玉泉
骆新根
张敬
何伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Iron and Steel Co Ltd
Original Assignee
Wuhan Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Iron and Steel Co Ltd filed Critical Wuhan Iron and Steel Co Ltd
Priority to CN202310731488.4A priority Critical patent/CN116752043A/zh
Publication of CN116752043A publication Critical patent/CN116752043A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D161/00Coating compositions based on condensation polymers of aldehydes or ketones; Coating compositions based on derivatives of such polymers
    • C09D161/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D167/08Polyesters modified with higher fatty oils or their acids, or with natural resins or resin acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3045Sulfates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

一种绝缘性能优良的高磁感取向硅钢极薄带的制备方法:母材选择;冷轧;退火;涂覆;待用。本发明不仅产品厚度在0.03~0.12mm,且使磁通密度B800为1.85~1.95T、损耗P1.5/400为7.50~16.50W/kg,单面层间电阻值不低于100Ω.cm2,且仅采用一次冷轧,并满足电力电子行业设备中对于低损耗、高磁感中高频用极薄取向硅钢材料,及绝缘性能在单面层间电阻值不低于100Ω.cm2的需求。

Description

一种绝缘性能优良的高磁感取向硅钢极薄带的制备方法
技术领域
本发明涉及一种取向硅钢的生产方法,具体属于一种绝缘性能优良的高磁感取向硅钢极薄带的制备方法。
背景技术
取向硅钢极薄带是将传统的取向硅钢成品经过冷轧和退火而获得,主要用作高频变压器、大功率磁放大器、脉冲变压器、脉冲发电机、通讯的轭流圈、电感、储存和记忆元件,以及在振动和辐射条件下工作的变压器,在频率为400Hz~1000Hz范围显示出极低的铁损,被视为较高频率用的变压器铁芯材料。目前取向硅钢极薄带涂层主要为磷酸盐—铬酸盐绝缘涂层,其在去应力退火前后的绝缘性、附着性存在着一定的问题,同时取向硅钢极薄带在生产成本(如二次轧制导致成本偏高)、产品质量(磁感不能达到1.92T)等方面均存在一些问题。
中国专利申请号为CN201510239650.6的文献,公开了《一种厚度0.02mm超薄取向硅钢薄带的生产方法》,其工艺:(1)第一次冷轧:采用普通取向硅钢作为钢带原料,在室温下,保证一定的变形率范围下,进行第一次冷轧;(2)中间退火:在还原气氛下,进行中间退火,退火的温度为750℃~1150℃,形成再结晶组织;(3)第二次冷轧:在室温下,保证一定的变形率范围下,进行第二次冷轧,终轧厚度为0.02mm;(4)再结晶退火:在还原气氛下,进行再结晶退火,退火的温度为750℃~1150℃,形成再结晶组织;(5)涂覆:连续涂覆绝缘涂层,得到超薄取向硅钢薄带。该文献要进行两次轧制,导致生产成本提高。
中国专利申请号为CN201810126373.1的文献,公开了《一种超薄取向硅钢板材及其制备方法》:其工艺:(1)将无底层的板材经1~5道次冷轧得到厚度为0.01mm~0.1mm的冷轧板材;(2)将冷轧板材在H2气氛的连续退火炉中再结晶退火,得到退火的板材;(3)在退火的板材的表面涂覆厚度为0.1μm~2μm的涂层,得到超薄取向硅钢板材。该文献所制备的超薄取向硅钢板材厚度为0.01mm~0.1mm,带材损耗P1.5T/400Hz为9W/kg~16W/kg,磁通密度B8为1.75T~1.90T,能满足现有的电力、电子行业中电抗器、传感器等设备中对低损、高磁感中频软磁材料的需求。该文献B8为1.75T~1.90T较低,最高为1.90T,未能满足发展的电力、电子行业中电抗器、传感器等设备中对低损、高磁感中频软磁材料的需求。
中国专利申请号为CN201911127354.1的文献,公开了《一种能提高涂层附着性能的取向硅钢及其制备方法》。其工艺:(1)炼钢,将Als含量控制在0.020%~0.035%,N含量控制在0.0050%~0.0100%,Mn含量控制在0.010%~1.00%,S含量控制在0.0030%~0.0300%,并在炼钢工序中加入少量P、Cu、Sn、Bi、Sb、Cr和As中的一种或几种(P+Cu+Sn+Bi+Sb+Cr+As≤1.80%)作为辅助抑制剂;(2)经1100℃~1400℃低温或高温加热后的热轧;(3)热轧板1000℃~1150℃常化处理,经一次冷轧、脱碳退火、渗氮处理(热轧板坯≥1260℃加热时不渗氮)、涂氧化镁隔离涂层和高温退火后,获得0.15mm~0.50mm厚度的无硅酸镁底层取向硅钢,并涂敷含钛白粉等无机填充料的有机水性醇酸树脂绝缘涂层后,获得B800≥1.80T,P17≤1.60W/kg成品性能的特殊涂层取向硅钢成品。本申请所制备的取向硅钢成品厚度为0.15mm~0.50mm,为传统厚度规格的取向硅钢,使用性能为工频50Hz下磁性能。
上述专利或涉及到加工中的二次轧制导致生产成本提高,或为传统厚度规格0.15mm~0.50mm的取向硅钢,或未进一步提高成品性能,因而不能满足电力电子行业中高频变压器、大功率磁放大器、脉冲变压器等对低损耗、高磁感的需求。
发明内容
本发明在于克服现有技术存在的不足,提供一种不仅产品厚度在0.03~0.12mm,且使磁通密度B800为1.85~1.95T、损耗P1.5/400为7.50~16.50W/kg,单面层间电阻值不低于100Ω.cm2,且仅采用一次冷轧,并满足电力电子行业设备中对于低损耗、高磁感中高频用极薄取向硅钢材料,及绝缘性能在单面层间电阻值不低于100Ω.cm2的需求的绝缘性能优良的高磁感取向硅钢极薄带的制备方法。
实现上述目的的措施:
一种绝缘性能优良的高磁感取向硅钢极薄带的制备方法,其步骤:
1)母材
母材成分Si=2.80%~3.60%,Mn=0.010%~1.00%,含P、Cu、Sn、Bi、Sb、Cr和As中的一种或几种,且满足(P+Cu+Sn+Bi+Sb+Cr+As)≤
1.80%,其余为铁和不可避免的杂质;
母材沿板宽全板面无硅酸镁底层,B800≥1.88T、P1.7/50≤1.45W/kg;
2)进行冷轧
采用常温冷轧;在冷轧累计压下率不低于65%下,经2~10道次可逆式冷轧得到厚度为0.03mm~0.12mm的产品;
3)进行退火
退火气氛为干式H2与N2的混合气体或全H2;混合气体中H2的体积含量不低于50%,其余为N2;退火温度控制在750~1050℃,并在此温度下保温30~300S;
4)进行涂覆
a、在带材的表面涂覆半有机水性醇酸树脂绝缘涂料,并控制单面涂层厚度在0.05~3.00μm;
b、对涂层进行固化:固化温度控制在150~750℃,并在此保温下保温30~180S;
C、进行常规烘干;并满足涂层经常规烘干后不挥发成分含量在30~80%;
5)待用。
其在于:所述半有机水性醇酸树脂绝缘涂料的组成及重量百分比含量为:醇酸树脂0.50~20%、氨基树脂0.50~20%、钛白粉0.50~30%、硫酸钡0.50~30%,其余为水。
优选地:固化温度控制在158~741℃,并在此保温下保温37~172S。
优选地单面涂层厚度在0.05~2.86μm。
本发明中各原料及主要工艺的作用及机理
本发明之所以选择在母材中加入Si的木材,是由于Si能够提高电阻率,降低铁损,但是Si含量提高会导致加工脆性,因此,为保证加工性需控制Si的含量,Si含量在2.80%~3.60%之间;母材中Mn为有利析出MnS形成元素,而在1100℃~1200℃低温热轧工艺取向硅钢生产中,则以AlN为主要抑制剂,而Mn含量提高可降低涡流损耗,因此控制Mn含量在0.010%~1.00%;含P、Cu、Sn、Bi、Sb、Cr和As中的一种或几种,主要用作辅助抑制剂,且可降低涡流损耗,但含量不宜过高,因此控制(P+Cu+Sn+Bi+Sb+Cr+As)≤1.80%;母材沿板宽全板面无硅酸镁底层且板面干净、光洁,二次再结晶晶粒大小均匀,有利于再轧加工,提高加工效率,B800≥1.88T、P1.7/50≤1.45W/kg,母材磁性能优良有利于获得取向硅钢极薄带优良的成品性能。本发明之所以采用一次轧制的常温冷轧工艺,经2~10道次可逆式冷轧得到冷轧带材,保证冷轧压下率>65%,冷轧成品带材厚度为0.03~0.12mm,以使降低冷轧工序制造成本,并保证获得取向硅钢极薄带优良的成品性能。
本发明之所以在还原性气氛中进行成品退火,退火温度为750~1050℃,保温时间30~300S,保护气氛为干式H2与N2的混合气体,气氛中H2的体积含量为50~100%,以使冷轧形变组织完成回复和再结晶,基体中足够数量的[110](001)晶核(高斯晶核)长大,形成以高斯晶粒为主导的再结晶组织和织构,并尽量减少极薄带带材的表面氧化。
本发明之所以在带材表面涂覆单面厚度为0.05~2.00的有机水溶性树脂绝缘涂料层,并控制涂层固化温度再150~750℃,固化保温时间再30~180S,在于以保证获得优良的极薄带成品绝缘性,即绝缘性能在单面层间电阻值不低于100Ω.cm。
本发明与现有技术相比,本发明不仅产品厚度在0.03~0.12mm,且使磁通密度B800为1.85~1.95T、损耗P1.5/400为7.50~16.50W/kg,单面层间电阻值不低于100Ω.cm2,且仅采用一次冷轧,并满足电力电子行业设备中对于低损耗、高磁感中高频用极薄取向硅钢材料,及绝缘性能在单面层间电阻值不低于100Ω.cm2的需求。
具体实施方式
下面对本发明予以详细描述:
表1为本发明各实施例及对比例的化学成分及退火工艺取值列表;
表2为本发明各实施例及对比例的涂液成分、固化工艺参数列表;
表3为本发明各实施例性及对比例性能检测情况列表。
本发明各实施例按照以下步骤生产
1)母材
母材成分Si=2.80%~3.60%,Mn=0.010%~1.00%,含P、Cu、Sn、Bi、Sb、Cr和As中的一种或几种,且满足(P+Cu+Sn+Bi+Sb+Cr+As)≤
1.80%,其余为铁和不可避免的杂质;
母材沿板宽全板面无硅酸镁底层,B800≥1.88T、P1.7/50≤1.45W/kg;
2)进行冷轧
采用常温冷轧;在冷轧累计压下率不低于65%下,经2~10道次可逆式冷轧得到厚度为0.03mm~0.12mm的产品;
3)进行退火
退火气氛为干式H2与N2的混合气体或全H2;混合气体中H2的体积含量不低于50%,其余为N2;退火温度控制在750~1050℃,并在此温度下保温30~300S;
4)进行涂覆
a、在带材的表面涂覆半有机水性醇酸树脂绝缘涂料,并控制单面涂层厚度在0.05~3.00μm;
b、对涂层进行固化:固化温度控制在150~750℃,并在此保温下保温30~180S;
C、进行常规烘干;并满足涂层经常规烘干后不挥发成分含量在30~80%;
5)待用。
表1本发明各实施例及对比例的取值列表(无硅酸镁底层取向硅钢母材相关要求、薄带退火工艺)
从表1可以看出,对比例Q1中无硅酸镁底层取向硅钢母材Si<2.80%,Mn<0.010%,Si、Mn含量偏低,母材磁感B800偏低,损耗P1.7/50偏高,导致极薄带损耗P1.5/400偏高,(P+Cu+Sn+Bi+Sb+Cr+As)>1.80%,导致热轧、冷轧加工难度加大,生产成本提高,退火温度<750℃,退火时间>300S,再结晶晶粒长大,导致极薄带成品性能整体下降,保护气氛中H2的体积含量<50%,再结晶发生不完全,导致极薄带成品性能整体下降;对比例Q2中母材Si<2.80%,Mn<0.010%,Si、Mn含量偏低,母材磁感B800偏低,母材损耗P1.7/50偏高,导致极薄带损耗P1.5/400偏高,(P+Cu+Sn+Bi+Sb+Cr+As)>1.80%,导致热轧、冷轧加工难度加大,生产成本提高,退火温度<750℃,退火时间>300S,再结晶晶粒长大,导致极薄带成品性能整体下降,保护气氛中H2的体积含量<50%,再结晶发生不完全,导致极薄带成品性能整体下降;对比例Q3中母材Si>3.60%,Mn>1.00%,(P+Cu+Sn+Bi+Sb+Cr+As)>1.80%,Si、Mn含量偏高,导致热轧、冷轧加工难度加大,生产成本提高,同时Mn>1.00%,母材性能整体下降,磁感B800偏低,损耗P1.7/50偏高,导致极薄带成品性能整体下降,退火温度>1050℃,退火时间<30S,再结晶晶粒长大,导致极薄带成品性能整体下降,保护气氛中H2的体积含量<50%,再结晶发生不完全,导致极薄带成品性能整体下降。
表2本发明各实施例及对比例的主要工艺参数列表(涂液成分、固化工艺)
说明:表2中半有机水性醇酸树脂绝缘涂料除所列物料外,其余均为水。
对比例Q1中醇酸树脂<0.50%、氨基树脂<0.50%、钛白粉<0.50%、硫酸钡<0.50%,涂层经烘干后不挥发成分含量<30%,极薄带成品层间电阻值下降,绝缘性能降低,膜厚<0.05μm,固化温度<150℃,固化时间>180S,极薄带成品层间电阻值下降,绝缘性能降低;对比例Q2中醇酸树脂<0.50%、氨基树脂<0.50%、钛白粉<0.50%、硫酸钡<0.50%,涂层经烘干后不挥发成分含量<30%,极薄带成品层间电阻值下降,绝缘性能降低,膜厚>3.00μm,固化温度>750℃,固化时间<30S,极薄带成品层间电阻值下降,绝缘性能降低,膜厚>3.00μm,导致极薄带成品损耗P1.5/400升高,整体性能下降;对比例Q3中醇酸树脂<0.50%、氨基树脂<0.50%、钛白粉<0.50%、硫酸钡<0.50%,涂层经烘干后不挥发成分含量<30%,极薄带成品层间电阻值下降,绝缘性能降低,膜厚>3.00μm,固化温度>750℃,固化时间<30S,极薄带成品层间电阻值下降,绝缘性能降低,膜厚>3.00μm,导致极薄带成品损耗P1.5/400升高,整体性能下降。
表3本发明各实施例及对比例性能检测情况列表
对比例Q1中极薄带成品磁感B800<1.85T,损耗P1.5/400>16.50W/kg,单面层间电阻值<100Ω.cm2;对比例Q2中极薄带成品磁感B800<1.85T,损耗P1.5/400>16.50W/kg,单面层间电阻值<100Ω.cm2;对比例Q3中极薄带成品磁感B800<1.85T,损耗P1.5/400>16.50W/kg,单面层间电阻值<100Ω.cm2
本具体实施方式仅为最佳例举,并非对本发明技术方案的限制性实施。

Claims (4)

1.一种绝缘性能优良的高磁感取向硅钢极薄带的制备方法,其步骤:
1)母材
母材成分Si=2.80%~3.60%,Mn=0.010%~1.00%,含P、Cu、Sn、Bi、Sb、Cr和As中的一种或几种,且满足(P+Cu+Sn+Bi+Sb+Cr+As)≤1.80%,其余为铁和不可避免的杂质;
母材沿板宽全板面无硅酸镁底层,B800≥1.88T、P1.7/50≤1.45W/kg;
2)进行冷轧
采用常温冷轧;在冷轧累计压下率不低于65%下,经2~10道次可逆式冷轧得到厚度为0.03mm~0.12mm的产品;
3)进行退火
退火气氛为干式H2与N2的混合气体或全H2;混合气体中H2的体积含量不低于50%,其余为N2;退火温度控制在750~1050℃,并在此温度下保温30~300S;
4)进行涂覆
a、在带材的表面涂覆半有机水性醇酸树脂绝缘涂料,并控制单面涂层厚度在0.05~3.00μm;
b、对涂层进行固化:固化温度控制在150~750℃,并在此保温下保温30~180S;
C、进行常规烘干;并满足涂层经常规烘干后不挥发成分含量在30~80%;
5)待用。
2.如权利要求1所述的一种绝缘性能优良的高磁感取向硅钢极薄带的制备方法,其特征在于:所述半有机水性醇酸树脂绝缘涂料的组成及重量百分比含量为:醇酸树脂0.50~20%、氨基树脂0.50~20%、钛白粉0.50~30%、硫酸钡0.50~30%,其余为水。
3.如权利要求1所述的一种绝缘性能优良的高磁感取向硅钢极薄带的制备方法,其特征在于:固化温度控制在158~741℃,并在此保温下保温37~172S。
4.如权利要求1所述的一种绝缘性能优良的高磁感取向硅钢极薄带的制备方法,其特征在于:单面涂层厚度在0.05~2.86μm。
CN202310731488.4A 2023-06-20 2023-06-20 一种绝缘性能优良的高磁感取向硅钢极薄带的制备方法 Pending CN116752043A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310731488.4A CN116752043A (zh) 2023-06-20 2023-06-20 一种绝缘性能优良的高磁感取向硅钢极薄带的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310731488.4A CN116752043A (zh) 2023-06-20 2023-06-20 一种绝缘性能优良的高磁感取向硅钢极薄带的制备方法

Publications (1)

Publication Number Publication Date
CN116752043A true CN116752043A (zh) 2023-09-15

Family

ID=87954830

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310731488.4A Pending CN116752043A (zh) 2023-06-20 2023-06-20 一种绝缘性能优良的高磁感取向硅钢极薄带的制备方法

Country Status (1)

Country Link
CN (1) CN116752043A (zh)

Similar Documents

Publication Publication Date Title
KR102120572B1 (ko) 무 방향성 전자 강판의 제조 방법
KR102071321B1 (ko) 방향성 전자 강판과 그의 제조 방법
US5803988A (en) Method for manufacturing non-oriented electrical steel sheet showing superior adherence of insulating coated layer
TWI557240B (zh) Excellent non-directional electrical steel plate with excellent magnetic properties
TWI580794B (zh) Non - directional electrical steel sheet and manufacturing method thereof
JP5610084B2 (ja) 方向性電磁鋼板およびその製造方法
JP6890181B2 (ja) 無方向性電磁鋼板およびその製造方法
EP2644716A1 (en) Method for producing directional electromagnetic steel sheet
CN111100978B (zh) 一种能提高涂层附着性能的取向硅钢及其制备方法
KR20150043504A (ko) 높은 자기유도를 가지는 일반 방향성 규소강의 제조방법
WO2017022360A1 (ja) 磁気特性に優れる無方向性電磁鋼板の製造方法
CN108474077B (zh) 取向电工钢板及其制造方法
CN116219135A (zh) 一种超薄高磁感取向硅钢的制备方法
JP2014091855A (ja) 方向性電磁鋼板の製造方法
CN114150126A (zh) 含铜一般取向硅钢及其制备方法
JP6579078B2 (ja) 方向性電磁鋼板の製造方法
JP3931842B2 (ja) 無方向性電磁鋼板の製造方法
CN116752043A (zh) 一种绝缘性能优良的高磁感取向硅钢极薄带的制备方法
CN116804255A (zh) 一种附着性优良的高磁感取向硅钢极薄带的制备方法
JP2023554123A (ja) 無方向性電磁鋼板およびその製造方法
CN116752042A (zh) 一种具有自粘结性的高磁感取向硅钢极薄带的制备方法
CN116770180A (zh) 一种可耐800℃去应力退火的高磁感取向硅钢极薄带的制备方法
CN116752041A (zh) 一种高磁感取向硅钢极薄带的制备方法
JP2001049351A (ja) 磁束密度の高い一方向性電磁鋼板の製造方法
JP3012826B2 (ja) セミプロセス無方向性電磁鋼板

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination