CN116742820A - 面向电动汽车无线供电系统的多项式拟合动态调谐方法 - Google Patents

面向电动汽车无线供电系统的多项式拟合动态调谐方法 Download PDF

Info

Publication number
CN116742820A
CN116742820A CN202311004038.1A CN202311004038A CN116742820A CN 116742820 A CN116742820 A CN 116742820A CN 202311004038 A CN202311004038 A CN 202311004038A CN 116742820 A CN116742820 A CN 116742820A
Authority
CN
China
Prior art keywords
capacitor
semi
wireless power
power supply
supply system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311004038.1A
Other languages
English (en)
Inventor
王孝强
张欣
黎宁昊
付鹏宇
马皓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202311004038.1A priority Critical patent/CN116742820A/zh
Publication of CN116742820A publication Critical patent/CN116742820A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明涉及无线电能传输技术领域,公开了一种面向电动汽车无线供电系统的多项式拟合动态调谐方法,采用副边有源整流桥实现三段式恒流‑恒功率‑恒压充电,同时在有源整流桥输入端口串联一个开关电容电路,开关电容实时补偿由于有源整流桥产生的额外电抗,保证系统零相位角的动态调谐。开关电容控制角与半有源整流桥导通控制信号通过多项式拟合函数建立联系,只需要一个反馈环路即可生成进而计算出,避免了多个环路之间的相互干扰。此外,基于多项式拟合动态调谐方法不需要额外的采样电路和同步信号调理电路,从而提高了系统的可靠性,降低了无线充电系统的控制复杂度。

Description

面向电动汽车无线供电系统的多项式拟合动态调谐方法
技术领域
本发明涉及无线电能传输技术领域,具体为一种面向电动汽车无线供电系统的多项式拟合动态调谐方法。
背景技术
近年来,无线电能传输技术因其清洁、高效和环保的优点而备受关注。它已被应用于许多应用,如生物医学植入物、水下设备和手机。与插电式充电器相比,由于用户使用更方便,世界各地的许多实验室和公司已经开展电动汽车无线充电技术研究。
目前,锂离子电池因其充电效率高、自放电低、使用寿命长而被广泛用作储能装置。为了防止电池寿命的下降和降低电源的伏安额定值,无线电池充电系统通常不仅要实现恒流(CC)-恒功率(CP)-恒压(CV)充电,还要具备零相位相角的动态调谐能力。然而,由于电池的负载范围很宽,无线充电装置同时实现这两个目标具有一定的挑战性。
通常,无线充电装置实现输出电流/电压调节的方法大致可以分为两类:一次侧控制和二次侧控制。对于一次侧控制,无线通信设备,如Zigbee、Wi-Fi和蓝牙,需要根据负载和耦合系数的变化来调节输出电流/电压。然而,无线通信信号的传输延迟和错误无法避免,导致系统不稳定和动态响应差。因此,无线充电装置首选二次侧控制方法。通常的做法是在接收器侧使用级联DC-DC变换器,由于经过两级功率变换,系统损失、成本和体积都相应增加。为了解决上述方案的问题,可采用可切换或混合补偿拓扑来实现固有的负载无关电流和负载无关电压输出。混合补偿拓扑需要辅助交流开关,这会导致额外的功率损耗和组件成本。
发明内容
针对上述问题,本发明的目的在于提供一种面向电动汽车无线供电系统的多项式拟合动态调谐方法,能够同时实现恒流(CC)-恒功率(CP)-恒压(CV)充电和ZPA动态调谐,由于控制策略基于固定的开关频率和二次侧调节,因此不需要无线反馈通信,从而提高了系统的可靠性。技术方案如下:
一种面向电动汽车无线供电系统的多项式拟合动态调谐方法,所述无线供电系统 采用双边LCC补偿网络,磁性耦合器具有初级自感、次级自感和发射线圈与接收线圈 之间的耦合互感,电能发射端采用全桥逆变器,电能接收端采用半有源整流器,用于实 现三段式恒流(CC)-恒功率(CP)-恒压(CV)充电模式。
本发明的主电路采用双边LCC补偿网络,接收端采用半有源桥整流拓扑,用于实现三段式充电特性。
在半有源整流器输入端口串联一个开关控制电容器,用于补偿半有源整流桥在调 节过程中引入的额外电抗,通过使用基于在线阻抗测量的动态调谐策略结合开关控制电容 器实时调节开关控制电容器的等效容值,使无线供电系统处于完全谐振状态。
本发明在半有源整流桥输入端口串联一个开关控制电容器电路,并用于补偿半有源桥在调节过程中引入的额外电抗,使无线充电装置能够保持完全谐振状态。
通过采用半有源整流桥输出电压和输出电阻计算出负载阻抗,通过比例-积分 控制器对半有源整流桥导通控制信号和相应参考信号之间的差值进行校正,形成开 关控制电容器的控制信号,与此同时,通过多项式拟合函数计算出开关控制电容器控制角
本发明开关控制电容器控制角与半有源整流桥导通控制信号通过多项式拟合 函数建立联系,只需要一个反馈环路即可生成半有源整流桥导通控制信号进而计算出开 关控制电容器控制角,避免了多个环路之间的相互干扰。而且,基于多项式拟合动态调谐 方法不需要额外的采样电路和同步信号调理电路,从而提高了系统的可靠性,降低了无线 充电系统的控制复杂度。
进一步的,所述双边LCC补偿网络的参数设计需满足:
(1)
其中,为无线供电系统开关角频率;为发射端补偿电感,为发射端并联补 偿电容;为次级自感,为接收线圈的串联补偿电容,为接收端并联补偿电容; 为初级自感,为发射端串联补偿电容。
本发明无线供电系统采用固定的开关频率ω和二次侧调节,不需要无线通信链路,从而提高了系统的可靠性。
更进一步的,所述开关控制电容器的等效电容值与开关控制电容器控制角 之间通过一阶线性函数拟合,其相应表达式为:
(2)
其中,为拟合系数。
本发明半有源整流桥负责改变恒流(CC)-恒功率(CP)-恒压(CV)充电模式,则可通 过动态地改变输入阻抗的值,并使用基于在线阻抗测量的动态调谐策略,结合开关控制电 容器的等效电容实时调节,使系统处于完全谐振状态。
更进一步的,所述计算出负载阻抗具体为:
无线供电系统总输入等效电阻为:
(3)
其中,为反射阻抗。
为实现零相角相位,则使总输入等效电阻的虚部为零,此时逆变器的输入阻 抗为纯阻性,系统可实现零相角相位工作,其相应理论表达式为:
(4)
其中,为接收端补偿电感,为接收端补偿电感支路的等效电抗;
半有源整流桥和负载阻抗由等效阻抗表示,且
(5)
其中,为半有源整流桥导通控制信号,为半有源整流桥的等效电阻。
更进一步的,所述通过多项式拟合函数计算出开关控制电容器控制角具体为:
所述开关控制电容器的等效电容通过相应的开关控制电容器控制角进行调 制确定:
(6)
其中,为开关控制电容器中的并联电容,为开关控制电容器中的串联电容。
最大输出电流表示为:
(7)
其中,为负载电池的充电电流;为设计裕量系数,为无线供电系统最大 输出电流;
推导出满足系统零相角相位条件下等效电抗的函数表达式:
(8)
其中,为发射线圈与接收线圈之间的耦合互感,/>为接收线圈的串联补偿电容,/>为逆变器等效交流输出电压的有效值。
在充电过程中,负载阻抗和半有源整流桥导通控制信号沿特定轨迹变化,其 相应的变化轨迹表示为:
(9)
其中,为最大功率,为最大电池电压。
根据公式(2)、公式(5)和公式(8),推导出半有源整流桥控制信号与开关控制电 容器控制角之间的多项式拟合函数表达式为:
(10)
其中,为接收端并联补偿电容的容抗,为负载阻抗。
与现有技术相比,本发明的有益效果是:
本发明提出的一种面向电动汽车无线供电系统的多项式拟合动态调谐方法中主电路采用双边LCC补偿网络,接收端采用半有源桥整流拓扑,用于实现三段式充电特性。在半有源整流桥输入端口串联一个开关控制电容器电路,并用于补偿半有源桥在调节过程中引入的额外电抗,使无线充电装置能够保持完全谐振状态。此外,动态调谐策略是基于在线阻抗计算方式,不需要额外的采样电路和同步信号产生电路,从而提高了系统的可靠性,降低了无线充电系统的控制复杂度。
附图说明
图1为本发明实施例的电动汽车无线充电系统主电路。
图2为本发明实施例的电动汽车无线充电系统交流等效电路。
图3(a)为本发明实施例的开关控制电容典型电路图。
图3(b)为本发明实施例的开关控制电容典型工作波形图。
图4为本发明实施例的电动汽车无线充电系统控制框图。
图5(a)为实施例中电动汽车无线充电系统实验波形图:CC模式(=25Ω)的稳态 波形。
图5(b)为实施例中电动汽车无线充电系统实验波形图:CP模式(=40Ω)的稳态 波形。
图5(c)为实施例中电动汽车无线充电系统实验波形图:CV模式(=82Ω)的稳态 波形。
具体实施方式
下面结合附图和具体实施例对本发明做进一步详细说明。
本发明针对现有的无线电池充电系统在实际应用难以同时满足恒流(CC)-恒功率(CP)-恒压(CV)充电并实现零相位相角调谐的功能,提供了一种面向电动汽车无线供电系统的多项式拟合动态调谐方法,其主电路如图1所示。
电动汽车无线供电系统具有双边LCC补偿网络,磁性耦合器具有初级自感、次 级自感和发射线圈与接收线圈之间的耦合互感。MOSFET开关构成 发射端逆变器;发射端补偿电感和接收端补偿电感;发射端并联补偿电容、发射 端串联补偿电容、接收线圈的串联补偿电容和接收端并联补偿电容;电流以及的有效值分别为以及为输出滤波电容;逆变器等效交流输出 电压以及半有源整流器等效交流输入电压的有效值分别为是开关 控制电容器(SCC)的等效容值;MOSFET开关以及二极管构成接收端的半有 源整流器。在接收端采用半有源整流器用于实现三段式恒流(CC)-恒功率(CP)-恒压(CV)充 电模式,SCC用于补偿半有源整流桥引入的额外电抗,保证无线电池充电系统能够处于完全 谐振状态。
为使得系统工作在完全谐振状态,双边LCC补偿网络的参数设计需满足:
(1)
图2为系统的交流等效电路。根据交流等效电路可计算双边LCC补偿网络的总输入 阻抗,使逆变器的总输入阻抗为纯电阻,设计合适的补偿电容即可实现零相角相位;半有源 整流桥负责改变恒流(CC)-恒功率(CP)-恒压(CV)充电模式,这将反过来将动态地改变输入 阻抗的值,于是通过使用基于在线阻抗测量的动态调谐策略结合开关控制电容器等效容值实时调节,使系统处于完全谐振状态。
开关控制电容器的等效容值与开关控制电容器控制角之间通过一阶线性函 数拟合,其相应表达式为:
(2)
其中,和/>为拟合系数。
无线供电系统总输入等效电阻为:
(3)
其中,是反射阻抗。
为了实现零相角相位(Zero Phase Angle,ZPA),应保证总输入等效电阻的虚部为零,此时逆变器的输入阻抗为纯阻性,系统可实现ZPA工作,其相应理论表达式为:
,/>(4)
其中,为接收端补偿电感,/>为接收端补偿电感支路的等效电抗。
所述充电系统接收器侧半有源整流器包括二极管和MOSFET开关, 其中分别是的反并联体二极管,MOSFET 在其反并联二极管的导 通时间内开通以保证软开关工作。根据上述分析可以看出,当公式(3)满足时,双边LCC补偿 网络能够实现电流型输出和ZPA工作。然而,为保证三段式恒流(CC)-恒功率(CP)-恒压(CV) 电池充电特性,半有源整流器会引入额外电抗,即等效电抗的值随负载变化。因此,需要 实时调节等效电容的值保证公式(4)恒成立,故等效电容采用开关控制电容技术方 案。
半控整流桥(Semi-Active Rectifier, SAR)和负载阻抗可以由等效阻抗表示,其中
(5)
其中,为半有源整流桥导通控制信号,/>为半有源整流桥的等效电阻。
所述充电系统接收端开关控制电容器包括一个开关管 与一个电容器并 联,使用作为分压电容降低开关管的电压应力,其典型电路及工作波形如图3(a)和 图3(b)所示。其中,为开关控制电容器的开关管,为开关控制电容器的驱动信号,为流经电容的交流电流,为电容两端的交流电压,为流经开关管的交 流电流。开关控制电容器的等效电容可以通过相应的控制角(0<<π)进行调制确定:
(6)
其中,为开关控制电容器中的并联电容,/>为开关控制电容器中的串联电容。
为探究等效容值与开关控制电容器控制角之间的变化趋势,可求的 偏导数进行分析,其结果如公式(7)所示。可以看出,总是大于零,因此,等效电容值随着开关控制电容器控制角的增加而逐渐增加。当控制角=0时,等效电容达 到最小值;当控制角=π时,等效电容达到最大值。
(7)
输出电流与输入电压和线圈耦合系数k都相关。输入电压越小或k越 小,输出电流越小,最大输出电流可以表示为:
(8)
其中,为设计裕量系数,通常选择1.05~1.1,为负载电池的充电电流, 为无线供电系统最大输出电流。
进而可推导出满足系统零相角相位条件下等效电抗的函数表达式:
(9)
其中,为发射线圈与接收线圈之间的耦合互感,为接收线圈的串联补偿电 容,为逆变器等效交流输出电压的有效值。
在充电过程中,负载阻抗和半有源整流桥导通控制信号应沿特定轨迹变化, 其相应的变化轨迹可表示为:
(10)
其中,为最大功率,/>为最大电池电压。
根据公式(2)、公式(5)和公式(9),可推导出半有源整流桥导通控制信号与开关 控制电容器控制角之间的多项式拟合函数表达式为:
(11)
此外,电动汽车无线供电系统采用基于多项式拟合的动态调谐方法,通过采样输 出电压和输出电阻计算出负载阻抗,比例-积分控制器对半有源整流桥导通控制信号 和相应参考信号之间的差值进行校正,形成SCC的半有源整流桥导通控制信号,与此 同时,通过多项式拟合函数计算出开关控制电容器控制角,如图4所示。其中,分别为充电电压和充电电流的采样值,为电流经过霍尔传感器的采 样值。经过零比较后产生同步脉冲信号为PWM模块提供同步功能。所述多项式 拟合的动态调谐方法具体包括:
在电池充电回路中,充电电压和充电电流被采样为,使用 乘法器获得实时充电功率。通过检测采样的NPVI)和相应的参考NPVI)之间的误差,获得三个PI输出,其中一个形成控制 SAR的半有源整流桥导通控制信号。充电模式的选择标准如下:
(12)
其中,输出,以及的最小值。
根据公式(9)和公式(10),等效容值的范围可以推导为:
(13)
进而开关控制电容器中的电容可以解为:
(14)
其中,下标 和下标分别代表相应变量的最小值和最大值,A=sin min cos min min ,B= sin max cos max max为SCC控制角,0<<π。
为了验证所提的具有动态调谐能力的电动汽车无线充电装置,搭建了一个900W实 验样机,系统参数如表1所示。用两个由150mm气隙间距的方形线圈对初级侧和次级侧进行 磁耦合。图5(a)~图5(c)分别给出系统在不同工作模式下()、CP模式() 和CV模式()的稳态波形。可以看出,初级逆变器的等效交流输出电压和电流总是同相的,这意味着系统总是能够实现ZPA。
表1 系统关键电路参数
本发明提出了一种面向电动汽车无线供电系统的多项式拟合动态调谐方法,以同时实现恒流(CC)-恒功率(CP)-恒压(CV)充电模式和ZPA工作。SCC用于补偿半有源整流桥引起的电抗,使接收机侧处于全谐振状态。系统采用固定的开关频率和二次侧调节,不需要无线通信链路,从而提高了系统的可靠性。最后,通过实验样机验证所提方案的可行性。

Claims (5)

1.面向电动汽车无线供电系统的多项式拟合动态调谐方法,其特征在于,所述无线供电系统采用双边LCC补偿网络,磁性耦合器具有初级自感Lp、次级自感Ls和发射线圈与接收线圈之间的耦合互感M,电能发射端采用全桥逆变器,电能接收端采用半有源整流器,用于实现三段式恒流-恒功率-恒压充电模式;
在半有源整流器输入端口串联一个开关控制电容器,用于补偿半有源整流桥在调节过程中引入的额外电抗,通过使用基于在线阻抗测量的动态调谐策略结合开关控制电容器实时调节开关控制电容器的等效容值,使无线供电系统处于完全谐振状态;
通过采样半有源整流桥输出电压和输出电阻计算出负载阻抗,通过比例-积分控制器对半有源整流桥导通控制信号/>和相应参考信号/>之间的差值进行校正,形成开关控制电容器的控制信号,与此同时,通过多项式拟合函数计算出开关控制电容器控制角/>
2.根据权利要求1所述的面向电动汽车无线供电系统的多项式拟合动态调谐方法,其特征在于,所述双边LCC补偿网络的参数设计需满足:
(1)
其中,为无线供电系统开关角频率;/>为发射端补偿电感,/>为发射端并联补偿电容;/>为次级自感,/>为接收线圈的串联补偿电容,/>为接收端并联补偿电容;/>为初级自感,/>为发射端串联补偿电容。
3.根据权利要求2所述的面向电动汽车无线供电系统的多项式拟合动态调谐方法,其 特征在于,所述开关控制电容器的等效容值C t与开关控制电容器控制角之间通过一阶线 性函数拟合,其相应表达式为:
(2)
其中,和/>为拟合系数。
4.根据权利要求3所述的面向电动汽车无线供电系统的多项式拟合动态调谐方法,其特征在于,所述计算出负载阻抗具体为:
无线供电系统总输入等效电阻为:
(3)
其中,为反射阻抗;/>表示虚数;
为实现零相角相位,则使总输入等效电阻的虚部为零,此时逆变器的输入阻抗为纯阻性,系统可实现零相角相位工作,其相应理论表达式为:
,/>(4)
其中,为接收端补偿电感,/>为接收端补偿电感支路的等效电抗;
半有源整流桥和负载阻抗由等效阻抗/>表示,且
(5)
其中,为半有源整流桥导通控制信号,/>为半有源整流桥的等效电阻。
5.根据权利要求4所述的面向电动汽车无线供电系统的多项式拟合动态调谐方法,其特征在于,所述通过多项式拟合函数计算出开关控制电容器控制角具体为:
开关控制电容器的等效容值通过相应的开关控制电容器控制角/>进行调制确定:
(6)
其中,为开关控制电容器控制角,/>为开关控制电容器中的并联电容,/>为开关控制电容器中的串联电容;
最大输出电流表示为:
(7)
其中,为负载电池的充电电流,/>为设计裕量系数,/>为无线供电系统最大输出电流;
推导出满足系统零相角相位条件下等效电抗的函数表达式:
(8)
其中,为发射线圈与接收线圈之间的耦合互感,/>为接收线圈的串联补偿电容,为逆变器等效交流输出电压的有效值;
在充电过程中,负载阻抗和半有源整流桥导通控制信号/>沿特定轨迹变化,其相应的变化轨迹表示为:
(9)
其中,为最大功率,/>为最大电池电压;
根据公式(2)、公式(5)和公式(8),推导出半有源整流桥导通控制信号与开关控制电容器控制角/>之间的多项式拟合函数表达式为:
(10)
其中,为接收端并联补偿电容/>的容抗,/>为负载阻抗。
CN202311004038.1A 2023-08-10 2023-08-10 面向电动汽车无线供电系统的多项式拟合动态调谐方法 Pending CN116742820A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311004038.1A CN116742820A (zh) 2023-08-10 2023-08-10 面向电动汽车无线供电系统的多项式拟合动态调谐方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311004038.1A CN116742820A (zh) 2023-08-10 2023-08-10 面向电动汽车无线供电系统的多项式拟合动态调谐方法

Publications (1)

Publication Number Publication Date
CN116742820A true CN116742820A (zh) 2023-09-12

Family

ID=87918956

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311004038.1A Pending CN116742820A (zh) 2023-08-10 2023-08-10 面向电动汽车无线供电系统的多项式拟合动态调谐方法

Country Status (1)

Country Link
CN (1) CN116742820A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113659684A (zh) * 2021-08-27 2021-11-16 华南理工大学 副边cl/s恒流恒压ipt充电系统及其参数设计方法
WO2022021950A1 (zh) * 2020-07-27 2022-02-03 北京理工大学 一种无线充电系统的双边lcc补偿网络调节方法及系统
CN115276257A (zh) * 2022-07-07 2022-11-01 三峡大学 一种用于电动汽车无线充电实现恒流恒压的集成式补偿结构
CN115714542A (zh) * 2022-10-30 2023-02-24 郑州轻工业大学 一种用于无线充电系统的双边lcc补偿网络参数调谐方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022021950A1 (zh) * 2020-07-27 2022-02-03 北京理工大学 一种无线充电系统的双边lcc补偿网络调节方法及系统
CN113659684A (zh) * 2021-08-27 2021-11-16 华南理工大学 副边cl/s恒流恒压ipt充电系统及其参数设计方法
CN115276257A (zh) * 2022-07-07 2022-11-01 三峡大学 一种用于电动汽车无线充电实现恒流恒压的集成式补偿结构
CN115714542A (zh) * 2022-10-30 2023-02-24 郑州轻工业大学 一种用于无线充电系统的双边lcc补偿网络参数调谐方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIAOQIANG WANG ET AL.: "Semi-Active Rectifier Based Single-Stage Wireless Battery Charging System with Dynamic Tuning Capability for Electric Vehicles", 《2022 4TH INTERNATIONAL CONFERENCE ON SMART POWER & INTERNET ENERGY SYSTEMS (SPIES)》, pages 1906 - 1910 *
黄智聪等: "基于开关可控电容和半控整流桥的功率源型感应式耦合电能传输系统", 《电工技术学报》, vol. 37, no. 24, pages 6272 - 6283 *

Similar Documents

Publication Publication Date Title
CN109617190B (zh) 基于恒流-恒压复合拓扑的可抗偏移电池无线充电系统
KR101851995B1 (ko) 무선 충전기용 공진 컨버터 및 그 구현방법
CN109130903B (zh) 一种双侧lccl-t拓扑的低压大功率无线充电系统
Liu et al. Maximum efficiency tracking control method for WPT system based on dynamic coupling coefficient identification and impedance matching network
CN110350673A (zh) 一种无线电能传输系统在最大效率跟踪下的阻抗匹配网络优化方法
KR20200018244A (ko) 충전 회로의 위상 시프트 제어 방법
Zhao et al. The load estimation and power tracking integrated control strategy for dual-sides controlled LCC compensated wireless charging system
CN109301904A (zh) 一种高阶复合式补偿网络的电池无线充电系统
CN112994269B (zh) 一种提升系统互操作性的无线电能传输装置及控制方法
CN113659684A (zh) 副边cl/s恒流恒压ipt充电系统及其参数设计方法
CN110957796B (zh) 无线充电电路和系统
Nam et al. Novel unity-gain frequency tracking control of series–series resonant converter to improve efficiency and receiver positioning flexibility in wireless charging of portable electronics
Jiang et al. A cascaded topology and control method for two-phase receivers of dynamic wireless power transfer systems
Zhang et al. A hybrid compensation topology with single switch for battery charging of inductive power transfer systems
CN116780788A (zh) 基于lcc-s补偿拓扑结的无线充电系统及其控制方法
Wang et al. Widening the operating range of a wireless charging system using tapped transmitter winding and bifrequency pulse train control
Zhang et al. A hybrid compensation topology with constant current and constant voltage outputs for wireless charging system
Xu et al. A Novel Phase-Shift Pulsewidth Modulation Method for Light-Load Bidirectional Resonant Converter
CN110138097B (zh) 一种采用特殊拓扑结构实现恒流恒压磁感应式充电系统
Li et al. Low-cost single-switch bidirectional wireless power transceiver for peer-to-peer charging
CN114243951B (zh) 一种无需参数辨识的磁耦合式无线电能传输系统
CN116742820A (zh) 面向电动汽车无线供电系统的多项式拟合动态调谐方法
CN115593250A (zh) 恒功率无线充电系统
Ponnuswamy et al. Indirect Load Estimation of Double-Sided LCL Compensated Wireless Power Transfer System for Electric Vehicles Battery Charging
Ponnuswamy et al. Transmitter-side controlled series-series compensated wireless charging system without wireless communication for electric vehicles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination