CN116742082A - 一种磁性纳米颗粒负载磷钨酸-磺化聚醚醚酮复合质子交换膜的制备方法 - Google Patents

一种磁性纳米颗粒负载磷钨酸-磺化聚醚醚酮复合质子交换膜的制备方法 Download PDF

Info

Publication number
CN116742082A
CN116742082A CN202310903203.0A CN202310903203A CN116742082A CN 116742082 A CN116742082 A CN 116742082A CN 202310903203 A CN202310903203 A CN 202310903203A CN 116742082 A CN116742082 A CN 116742082A
Authority
CN
China
Prior art keywords
ether
ketone
phosphotungstic acid
magnetic
sulfonated polyether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310903203.0A
Other languages
English (en)
Inventor
刘勇
韩丁波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN202310903203.0A priority Critical patent/CN116742082A/zh
Publication of CN116742082A publication Critical patent/CN116742082A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1048Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Fuel Cell (AREA)

Abstract

本发明公开了一种磁性纳米颗粒负载磷钨酸‑磺化聚醚醚酮复合质子交换膜的制备方法。该膜是由负载有磷钨酸的磁性纳米颗粒与磺化聚醚醚酮共混液在磁场下成膜;其制备方法包括:由聚醚醚酮制备磺化聚醚醚酮;用三氯化铁和硫酸亚铁共沉淀合成磁性纳米颗粒;用聚多巴胺包覆磁性纳米颗粒,在颗粒表面引入胺基;将聚多巴胺包覆的磁性纳米颗粒浸泡于磷钨酸溶液中得到负载磷钨酸的磁性纳米颗粒;将负载磷钨酸的磁性纳米颗粒与磺化聚醚醚酮共混,在施加磁场的条件下加热成膜,得到磁性纳米颗粒有序排布的复合质子交换膜。本发明原料易得,操作简单,较易构建出垂直膜面方向质子传输通道,制备的复合质子交换膜用于燃料电池,具有较好的质子传导性能。

Description

一种磁性纳米颗粒负载磷钨酸-磺化聚醚醚酮复合质子交换 膜的制备方法
技术领域
本发明涉及一种磁性纳米颗粒负载磷钨酸-磺化聚醚醚酮复合质子交换膜的制备方法,属于质子交换膜燃料电池领域。
背景技术
质子交换膜燃料电池作为一种电化学装置,将氢和氧转化为水并在此过程中产生电能,具有高效、环保的优点。质子交换膜作为燃料电池膜电极的核心部件之一,要求具有高质子传导率、良好的热和化学稳定性、较低的气体透过率。常见的质子交换膜材料主要包括全氟磺酸膜(如 )、磺化芳香烃聚合物膜(如磺化聚醚醚酮、磺化聚芳醚砜、磺化聚酰亚胺)等。目前采用的全氟磺酸膜成本较高,且须加工为超薄膜以降低质子传输阻力,会导致膜的机械强度下降,燃料透过率升高。磷钨酸(化学式为H3PW12O40)作为杂多酸中的强酸,其哈米特酸度函数H0=-13.16,达到超强酸的标准,即使在低pH值下,磷钨酸的三个质子也是完全解离。将磷钨酸掺入到聚合物膜材料中制备复合质子交换膜,可以为质子交换膜提供额外的质子传输位点,提高质子传导率。同时,磷钨酸具有强吸水性能,在低湿度下可使复合质子交换膜保持一定的质子传导率。但是,磷钨酸易溶于水,质子交换膜工作在水环境条件下磷钨酸容易流失,导致膜的质子传导性能下降。为防止磷钨酸流失,研究人员进行了诸多有益的尝试。比如将磷钨酸填充在碳纳米管内,再与Nafion共混制备复合质子交换膜,碳纳米管既起到物理固载磷钨酸的作用,又构成长程的离子传输通道(Nano Energy 2016,23,114–121)。又如通过酸碱对作用,将磷钨酸负载于表面富含有胺基的纳米管或纳米片上,再将其与磺化聚合物共混制膜,有效提高了膜的质子传导率(Polymer Testing 2019,73:242–249;International Journal of Hydrogen Energy2020,45(35):17782–17794)。上述所制备的磷钨酸构成的复合质子交换膜,其质子传输通道是随机排布的,即质子传导率在膜的水平方向和垂直方向基本一致。若沿垂直膜面方向构建垂直通道,则可以缩短质子传输路径,有利于燃料电池性能的提高。因此,本研究合成了表面富含胺基的磁性纳米颗粒并负载磷钨酸,将其与磺化聚醚醚酮共混并施加垂直方向磁场制膜,磁性纳米颗粒在磁场作用下有序排布,构成垂直膜面方向质子传输通道,缩短质子传输路径,提高质子传导性能。
发明内容
本发明的目的在于提供一种磁性纳米颗粒负载磷钨酸-磺化聚醚醚酮复合质子交换膜的制备方法。该制备方法过程简单,所制备的复合质子交换膜在垂直膜面方向质子传输阻力小,用于质子交换膜燃料电池具有较好的质子传导性能。
本发明是通过以下技术方案实现的,一种磁性纳米颗粒负载磷钨酸-磺化聚醚醚酮复合质子交换膜,该膜是由负载磷钨酸的磁性纳米颗粒与磺化度为50~60%的磺化聚醚醚酮,按质量比0.05~5:100,在磁场作用下形成厚度为30~60μm的复合质子交换膜,其中四氧化三铁磁性纳米颗粒直径在20~50nm,聚多巴胺包覆层厚度在10~30nm,磷钨酸在磁性纳米颗粒上的负载量10~30wt%,施加磁场的磁感应强度为0.05~0.5T。
上述负载磷钨酸磁性纳米颗粒-磺化聚醚醚酮复合质子交换膜的制备方法,包括以下过程:
(1)磺化聚醚醚酮的制备:
将充分干燥的聚醚醚酮粉末加入到质量分数为98%的浓硫酸中,聚醚醚酮与浓硫酸质量比为5~15:100,室温下搅拌使其完全溶解,再升温至50~60℃进行磺化反应1~3h,冷却后倒入冰水中沉淀析出,用去离子水多次洗涤至中性,60℃真空干燥24h,得到磺化度50~60%的磺化聚醚醚酮。
(2)负载磷钨酸的磁性纳米颗粒的制备:
a.制备Fe3O4纳米颗粒。采用共沉淀法制备Fe3O4纳米颗粒,将FeCl3与FeSO4按摩尔比2:1溶解到除氧的去离子水中得到铁盐溶液,总铁盐与水的质量比为5~10:100,机械搅拌并在氮气气氛下加热至80℃。将浓氨水快速加入到铁盐溶液中并反应5分钟,浓氨水与铁盐溶液体积比为10~20:100,然后加入1mol/L柠檬酸钠溶液以防止颗粒团聚,柠檬酸钠溶液与铁盐溶液体积比为2~5:100。连续搅拌2~5h后,用永磁铁收集沉淀物,并用去离子水多次洗涤至中性,最后将黑色沉淀用乙醇洗涤两次,并在60℃真空干燥,得到Fe3O4磁性纳米颗粒。
b.聚多巴胺包覆磁性纳米颗粒。将Fe3O4磁性纳米颗粒超声分散于水中,得到质量分数为1~3%分散液,再取分散液10mL加入到90mL的10mmol/L的Tris缓冲溶液中,用0.1mol/L的稀盐酸调节pH值至8.5,超声使纳米颗粒分散均匀。加入盐酸多巴胺0.1~0.3g,30℃在空气气氛下剧烈搅拌反应6h,使聚多巴胺充分包覆于磁性纳米颗粒表面。用去离子水、乙醇交替洗涤多次,在60℃真空干燥,得到聚多巴胺包覆磁性纳米颗粒。
c.负载磷钨酸。将聚多巴胺包覆磁性纳米颗粒分散到质量浓度为5~10%的磷钨酸N,N-二甲基甲酰胺溶液中,待磷钨酸与磁性纳米颗粒表面胺基充分反应后,用强磁铁分离出磁性纳米颗粒,并用N,N-二甲基甲酰胺洗涤去除多余的磷钨酸,最后用乙醇洗涤2次,60℃真空干燥得到负载磷钨酸的磁性纳米颗粒。
(3)复合质子交换膜的制备:
将步骤(1)制备的磺化聚醚醚酮溶解于N-甲基吡咯烷酮中,制得质量分数为8~10%磺化聚醚醚酮溶液。将步骤(2)制备的负载磷钨酸的磁性纳米颗粒超声分散在N-甲基吡咯烷酮中,制得质量分数为0.5~2%的分散液。将负载磷钨酸磁性纳米颗粒分散液与磺化聚醚醚酮溶液混合,磁性纳米颗粒与磺化聚醚醚酮的质量比为0.05~5:100,机械搅拌并超声分散使其混合均匀,静置2h脱泡得到铸膜液。将铸膜液倒入培养皿中,置于垂直液面方向的磁场下,于60℃干燥成膜,磁场使用磁场发生器控制,磁感应强度控制在0.05~0.5T。将所制备的膜在2mol/L的盐酸溶液中酸化处理24h,再水洗至中性,干燥后得到厚度为30~60μm的磁性纳米颗粒负载磷钨酸-磺化聚醚醚酮复合质子交换膜。
本发明制得的磁性纳米颗粒负载磷钨酸-磺化聚醚醚酮复合质子交换膜能用作燃料电池质子交换膜。
本发明的优点在于:所用原料易得,操作简单,磁感应强度大小可控且容易实现。将负载了磷钨酸的磁性纳米颗粒与磺化聚醚醚酮在磁场下成膜,构建出了垂直膜面方向质子传输通道,缩短质子传输路径,制备的复合质子交换膜用于燃料电池,具有较好的质子传导性能。
附图说明
图1为实施例1在施加磁场的条件下制备的磁性纳米颗粒负载磷钨酸-磺化聚醚醚酮复合质子交换膜的断面场发射扫描电子显微镜(FESEM)照片。
图2为对比例1在不施加磁场的条件下制备的磁性纳米颗粒负载磷钨酸-磺化聚醚醚酮复合质子交换膜的断面场发射扫描电子显微镜(FESEM)照片。
图3为实施例2制备的纯磺化聚醚醚酮膜的断面场发射扫描电子显微镜(FESEM)照片。
图4所示为实施例1,实施例2所制得的膜1,膜2,以及对比例1,对比例2制得的膜3,膜4的质子传导率测试结果。
具体实施方式
实施例1
将聚醚醚酮粉末于80℃下真空干燥24h,取10g粉末加入到100mL 98%浓硫酸中,在20℃下机械搅拌溶解12h,再升温至50℃反应1.5h,立刻用冷水降温终止反应,将反应溶液缓慢倒入大量冰水中沉析,得到纤维状产物,使用去离子水多次洗涤产物,直至洗涤水接近中性,最后将产物放入60℃真空烘箱中干燥24h,得到磺化度为50%的磺化聚醚醚酮。
在三口烧瓶中加入100mL除氧去离子水,再加入FeCl3·6H2O(5.4g,20mmol)和FeSO4·7H2O(2.8g,10.07mmol),机械搅拌并在氮气气氛下加热至80℃,将16mL浓氨水快速加入到混合溶液中并反应5分钟,然后加入2mL的1mol/L的柠檬酸钠溶液以防止颗粒团聚。连续搅拌2h后,用永磁铁收集沉淀物,并用去离子水多次洗涤至中性,最后将黑色沉淀用乙醇洗涤两次,并在60℃真空干燥得到Fe3O4磁性纳米颗粒。取0.2g Fe3O4磁性纳米颗粒超声分散于10mL去离子水中,再加入到90mL的10mmol/L的Tris缓冲溶液中,用0.1mol/L的稀盐酸调节pH值至8.5,超声使Fe3O4磁性纳米颗粒分散均匀。加入盐酸多巴胺0.2g,30℃在空气气氛下剧烈搅拌反应6h,用磁铁分离产物,去离子水、乙醇交替洗涤多次,在60℃真空干燥得到聚多巴胺包覆的磁性纳米颗粒。取0.05g聚多巴胺包覆的磁性纳米颗粒分散到10mL含磷钨酸5%的N,N-二甲基甲酰胺溶液中,搅拌12h使磷钨酸与磁性纳米颗粒表面胺基充分反应后,用强磁铁分离出磁性纳米颗粒,并用N,N-二甲基甲酰胺洗涤去除多余的磷钨酸,最后用乙醇洗涤2次,60℃真空干燥得到负载磷钨酸的磁性纳米颗粒,磷钨酸负载量为20wt%。
取0.05g负载磷钨酸的磁性纳米颗粒分散到N-甲基吡咯烷酮中,得到质量分数为1%的分散液。取0.3g磺化度为50%的磺化聚醚醚酮溶解于2.5g N-甲基吡咯烷酮中,得到磺化聚醚醚酮溶液,另取分散液0.6g(含固体0.006g)与磺化聚醚醚酮溶液混合,机械搅拌并超声分散使其混合均匀,静置2h脱泡得到铸膜液。将铸膜液倒入直径为8cm的培养皿中,置于磁感应强度为0.3T的垂直磁场中,于60℃干燥24h成膜。将所制备的膜在2mol/L的盐酸溶液中酸化处理24h,再水洗至中性,干燥后得到厚度约为52μm磁性纳米颗粒负载磷钨酸-磺化聚醚醚酮的复合质子交换膜(膜1.M-SP/PWA-MNPs-2)。
实施例2
将聚醚醚酮粉末于80℃下真空干燥24h,取15g粉末加入到100mL 98%浓硫酸中,在20℃下机械搅拌溶解12h,再升温至50℃反应2h,立刻用冷水降温终止反应,将反应溶液缓慢倒入大量冰水中沉析,得到纤维状产物,使用去离子水多次洗涤产物,直至洗涤水接近中性,最后将产物放入60℃真空烘箱中干燥24h,得到磺化度为55%的磺化聚醚醚酮。
在三口烧瓶中加入100mL除氧去离子水,再加入FeCl3·6H2O(5.4g,20mmol)和FeSO4·7H2O(2.8g,10.07mmol),机械搅拌并在氮气气氛下加热至80℃,将16mL浓氨水快速加入到混合溶液中并反应5分钟,然后加入2mL的1mol/L的柠檬酸钠溶液以防止颗粒团聚。连续搅拌2h后,用永磁铁收集沉淀物,并用去离子水多次洗涤至中性,最后将黑色沉淀用乙醇洗涤两次,并在60℃真空干燥得到Fe3O4磁性纳米颗粒。取0.3g Fe3O4磁性纳米颗粒超声分散于100mL去离子水中,再取分散液10mL加入到90mL的10mmol/L的Tris缓冲溶液中,用0.1mol/L的稀盐酸调节pH值至8.5,超声使Fe3O4磁性纳米颗粒分散均匀。加入盐酸多巴胺0.3g,30℃在空气气氛下剧烈搅拌反应6h,用磁铁分离产物,去离子水、乙醇交替洗涤产物多次,在60℃真空干燥得到聚多巴胺包覆的磁性纳米颗粒。取0.1g聚多巴胺包覆的磁性纳米颗粒分散到15mL含磷钨酸5%的N,N-二甲基甲酰胺溶液中,搅拌10h,使磷钨酸与磁性纳米颗粒表面胺基充分反应后,用强磁铁分离出磁性纳米颗粒,并用N,N-二甲基甲酰胺洗涤去除多余的磷钨酸,最后用乙醇洗涤2次,60℃真空干燥,得到负载磷钨酸的磁性纳米颗粒,磷钨酸负载量为18wt%。
取0.1g负载磷钨酸的磁性纳米颗粒分散到N-甲基吡咯烷酮中得到质量分数为1%的分散液。取0.3g磺化度为55%的磺化聚醚醚酮溶解于2.5g N-甲基吡咯烷酮中,得到磺化聚醚醚酮溶液,另取分散液1.2g(含固体0.012g)与磺化聚醚醚酮溶液混合,机械搅拌并超声分散使其混合均匀,静置2h脱泡得到铸膜液。将铸膜液倒入直径为8cm的培养皿中,置于磁感应强度为0.2T的垂直磁场中于60℃干燥24h成膜。将所制备的膜在2mol/L的盐酸溶液中酸化处理24h,再水洗至中性,干燥后得到厚度约为55μm磁性纳米颗粒负载磷钨酸-磺化聚醚醚酮的复合质子交换膜(膜2.M-SP/PWA-MNPs-4)。
对比例1
将聚醚醚酮粉末于80℃下真空干燥24h,取10g粉末加入到100mL 98%浓硫酸中,在20℃下机械搅拌溶解12h,再升温至50℃反应1.5h,立刻用冷水降温终止反应,将反应溶液缓慢倒入大量冰水中沉析,得到纤维状产物,使用去离子水多次洗涤产物,直至洗涤水接近中性,最后将产物放入60℃真空烘箱中干燥24h,得到磺化度为50%的磺化聚醚醚酮。
在三口烧瓶中加入100mL除氧去离子水,再加入FeCl3·6H2O(5.4g,20mmol)和FeSO4·7H2O(2.8g,10.07mmol),机械搅拌并在氮气气氛下加热至80℃,将16mL浓氨水快速加入到混合溶液中并反应5分钟,然后加入2mL的1mol/L的柠檬酸钠溶液以防止颗粒团聚。连续搅拌2h后,用永磁铁收集沉淀物,并用去离子水多次洗涤至中性,最后将黑色沉淀用乙醇洗涤两次,并在60℃真空干燥得到Fe3O4磁性纳米颗粒。取0.2g Fe3O4磁性纳米颗粒超声分散于100mL去离子水中,再取分散液10mL加入到90mL的10mmol/L的Tris缓冲溶液中,用0.1mol/L的稀盐酸调节pH值至8.5,超声使Fe3O4磁性纳米颗粒分散均匀。加入盐酸多巴胺0.2g,30℃在空气气氛下剧烈搅拌反应6h,用磁铁分离产物,用去离子水、乙醇交替洗涤产物多次,然后在60℃真空干燥,得到聚多巴胺包覆的磁性纳米颗粒。取0.05g聚多巴胺包覆的磁性纳米颗粒分散到10ml含磷钨酸5%的N,N-二甲基甲酰胺溶液中,搅拌12h使磷钨酸与磁性纳米颗粒表面胺基充分反应后,用强磁铁分离出磁性纳米颗粒,并用N,N-二甲基甲酰胺洗涤去除多余的磷钨酸,最后用乙醇洗涤2次,60℃真空干燥得到负载磷钨酸的磁性纳米颗粒,磷钨酸负载量为20wt%。
取0.05g负载磷钨酸的磁性纳米颗粒分散到N-甲基吡咯烷酮中得到质量分数为1%的分散液。取0.3g磺化度为50%的磺化聚醚醚酮溶解于2.5g N-甲基吡咯烷酮中,得到磺化聚醚醚酮溶液,另取分散液0.6g(含固体0.006g)与磺化聚醚醚酮溶液混合,机械搅拌并超声分散使其混合均匀,静置2h脱泡得到铸膜液。将铸膜液倒入直径为8cm的培养皿中,不施加磁场,直接于60℃干燥24h成膜。将所制备的膜在2mol/L的盐酸溶液中酸化处理24h,再水洗至中性,干燥后得到厚度约为54μm磁性纳米颗粒负载磷钨酸-磺化聚醚醚酮复合质子交换膜(膜3.SP/PWA-MNPs-2)。
对比例2
将聚醚醚酮粉末于80℃下真空干燥24h,取10g粉末加入到100mL 98%浓硫酸中,在20℃下机械搅拌溶解12h,再升温至50℃反应1.5h,立刻用冷水降温终止反应,将反应溶液缓慢倒入大量冰水中沉析,得到纤维状产物,使用去离子水多次洗涤产物,直至洗涤水接近中性,最后将产物放入60℃真空烘箱中干燥24h,得到磺化度为50%的磺化聚醚醚酮。
取0.3g磺化度为50%的磺化聚醚醚酮溶解于3g N-甲基吡咯烷酮中,静置2h脱泡得到铸膜液。将铸膜液倒入直径为8cm的培养皿中,置于磁感应强度为0.3T的垂直磁场中于60℃干燥24h成膜。将所制备的膜在2mol/L的盐酸溶液中酸化处理24h,再水洗至中性,干燥后得到厚度约为55μm的纯磺化聚醚醚酮膜(膜4.SPEEK)。
本发明未尽事宜为公知技术。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (1)

1.一种磁性纳米颗粒负载磷钨酸-磺化聚醚醚酮复合质子交换膜的制备方法,其特征在于,该膜是由负载磷钨酸的磁性纳米颗粒与磺化度为50~60%的磺化聚醚醚酮按质量比0.05~5:100在磁场下形成的厚度为30~60μm的复合质子交换膜,其中四氧化三铁磁性纳米颗粒直径为20~50nm,聚多巴胺包覆层厚度为10~30nm,磷钨酸在磁性纳米颗粒上的负载量为10~30wt%,施加磁场的磁感应强度为0.05~0.5T;
该膜制备方法包括以下过程:
磺化聚醚醚酮的制备:
将充分干燥的聚醚醚酮粉末加入到质量分数为98%的浓硫酸中,聚醚醚酮与浓硫酸质量比为5~15:100,室温下搅拌使其完全溶解,再升温至50~60℃进行磺化反应1~3h,冷却后倒入冰水中沉淀析出,用去离子水多次洗涤至中性,60℃真空干燥24h,得到磺化度50~60%的磺化聚醚醚酮;
负载磷钨酸的磁性纳米颗粒的制备:
(1)将FeCl3与FeSO4按摩尔比2:1溶解到除氧的去离子水中得到铁盐溶液,总铁盐与水的质量比为5~10:100,机械搅拌并在氮气气氛下加热至80℃;将浓氨水快速加入到铁盐溶液中并反应5分钟,浓氨水与铁盐溶液体积比为10~20:100,加入1mol/L柠檬酸钠溶液以防止颗粒团聚,柠檬酸钠溶液与铁盐溶液体积比为2~5:100;连续搅拌2~5h后,用永磁铁收集沉淀物,得到Fe3O4磁性纳米颗粒;
(2)将步骤(1)制备的Fe3O4磁性纳米颗粒超声分散于水中,得到质量分数为1~3%的分散液,再取分散液10mL加入到90mL pH值为8.5的Tris缓冲溶液中,加入盐酸多巴胺0.1~0.3g,30℃在空气气氛下剧烈搅拌反应6h,使聚多巴胺充分包覆于磁性纳米颗粒表面,得到聚多巴胺包覆的磁性纳米颗粒;
(3)将步骤(2)制备的聚多巴胺包覆的磁性纳米颗粒分散到含磷钨酸5~10wt%的N,N-二甲基甲酰胺溶液中,待磷钨酸与磁性纳米颗粒表面胺基充分反应后,用强磁铁分离出磁性纳米颗粒,并用N,N-二甲基甲酰胺洗涤去除多余的磷钨酸,用乙醇洗涤2次,干燥得到负载磷钨酸的磁性纳米颗粒;
复合质子交换膜的制备:
将制备的磺化聚醚醚酮溶解于N-甲基吡咯烷酮中,制得质量分数为8~10%的磺化聚醚醚酮溶液;将负载磷钨酸的磁性纳米颗粒超声分散在N-甲基吡咯烷酮中,制得质量分数为0.5~2%的分散液;将分散液与磺化聚醚醚酮溶液混合,磁性纳米颗粒与磺化聚醚醚酮的质量比为0.05~5:100,机械搅拌并超声分散使其混合均匀,静置2h脱泡得到铸膜液;将铸膜液倒入培养皿中,置于垂直方向的磁场下于60℃干燥成膜,磁场使用磁场发生器控制,磁感应强度控制在0.05~0.5T;将所制备的膜在2mol/L的盐酸溶液中酸化处理24h,再水洗至中性,干燥后得到厚度为30~60μm的磁性纳米颗粒负载磷钨酸-磺化聚醚醚酮复合质子交换膜,用于燃料电池。
CN202310903203.0A 2023-07-21 2023-07-21 一种磁性纳米颗粒负载磷钨酸-磺化聚醚醚酮复合质子交换膜的制备方法 Pending CN116742082A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310903203.0A CN116742082A (zh) 2023-07-21 2023-07-21 一种磁性纳米颗粒负载磷钨酸-磺化聚醚醚酮复合质子交换膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310903203.0A CN116742082A (zh) 2023-07-21 2023-07-21 一种磁性纳米颗粒负载磷钨酸-磺化聚醚醚酮复合质子交换膜的制备方法

Publications (1)

Publication Number Publication Date
CN116742082A true CN116742082A (zh) 2023-09-12

Family

ID=87917014

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310903203.0A Pending CN116742082A (zh) 2023-07-21 2023-07-21 一种磁性纳米颗粒负载磷钨酸-磺化聚醚醚酮复合质子交换膜的制备方法

Country Status (1)

Country Link
CN (1) CN116742082A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117199466A (zh) * 2023-11-07 2023-12-08 杭州德海艾科能源科技有限公司 一种钒液流电池用高电导率复合膜及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117199466A (zh) * 2023-11-07 2023-12-08 杭州德海艾科能源科技有限公司 一种钒液流电池用高电导率复合膜及其制备方法
CN117199466B (zh) * 2023-11-07 2024-03-12 杭州德海艾科能源科技有限公司 一种钒液流电池用高电导率复合膜及其制备方法

Similar Documents

Publication Publication Date Title
Gong et al. A new strategy for designing high-performance sulfonated poly (ether ether ketone) polymer electrolyte membranes using inorganic proton conductor-functionalized carbon nanotubes
Liu et al. Oriented proton-conductive nano-sponge-facilitated polymer electrolyte membranes
Salarizadeh et al. Enhancing the performance of SPEEK polymer electrolyte membranes using functionalized TiO 2 nanoparticles with proton hopping sites
CN110256913B (zh) 一种抗氧化剂、保水剂、混合物、改性燃料电池膜电极的制备方法
Ketpang et al. Porous zirconium oxide nanotube modified Nafion composite membrane for polymer electrolyte membrane fuel cells operated under dry conditions
Salarizadeh et al. Fabrication and physico-chemical properties of iron titanate nanoparticles based sulfonated poly (ether ether ketone) membrane for proton exchange membrane fuel cell application
Hasanabadi et al. Magnetic field aligned nanocomposite proton exchange membranes based on sulfonated poly (ether sulfone) and Fe2O3 nanoparticles for direct methanol fuel cell application
Li et al. Self-assembled Nafion®/metal oxide nanoparticles hybrid proton exchange membranes
Zhao et al. MnO2/SiO2–SO3H nanocomposite as hydrogen peroxide scavenger for durability improvement in proton exchange membranes
Wang et al. Anatase titania coated CNTs and sodium lignin sulfonate doped chitosan proton exchange membrane for DMFC application
Liu et al. High-performance fuel cells using Nafion composite membranes with alignment of sulfonated graphene oxides induced by a strong magnetic field
Zhang et al. Construction of new alternative transmission sites by incorporating structure-defect metal-organic framework into sulfonated poly (arylene ether ketone sulfone) s
CN112086672B (zh) 一种燃料电池用复合型高温质子交换膜及其制备方法和应用
CN116742082A (zh) 一种磁性纳米颗粒负载磷钨酸-磺化聚醚醚酮复合质子交换膜的制备方法
Hooshyari et al. Advanced nanocomposite membranes based on sulfonated polyethersulfone: influence of nanoparticles on PEMFC performance
KR102566940B1 (ko) 연료전지의 전해질막용 산화방지제 및 그의 제조방법
Sarirchi et al. Simultaneous improvement of ionic conductivity and oxidative stability of sulfonated poly (ether ether ketone) nanocomposite proton exchange membrane for fuel cell application
Zhang et al. Investigation of self-humidifying membranes based on sulfonated poly (ether ether ketone) hybrid with sulfated zirconia supported Pt catalyst for fuel cell applications
Pourzare et al. Improving the efficiency of Nafion-based proton exchange membranes embedded with magnetically aligned silica-coated Co3O4 nanoparticles
CN105390721A (zh) 一种磷酸硼包覆碳纳米管复合质子交换膜的制备方法
Hooshyari et al. New nanocomposite membranes based on sulfonated poly (phthalazinone ether ketone) and Fe3O4@ SiO2@ resorcinol–aldehyde–SO3H for PEMFCs
Liu et al. Enhanced proton conductivities of chitosan-based membranes by inorganic solid superacid SO42−–TiO2 coated carbon nanotubes
CN113506904B (zh) 一种质子交换膜及其制备方法和应用
Liu et al. Inorganic-organic composite membranes containing amino-functionalized mesoporous silica loaded phosphotungstic acid with enhanced fuel cell performance and stability
Fu et al. Sulfonated poly (ether ether ketone)/aminopropyltriethoxysilane/phosphotungstic acid hybrid membranes with non-covalent bond: Characterization, thermal stability, and proton conductivity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination