CN116716550A - 汽车用淬火配分钢及其梯度配分制备方法 - Google Patents

汽车用淬火配分钢及其梯度配分制备方法 Download PDF

Info

Publication number
CN116716550A
CN116716550A CN202310625791.6A CN202310625791A CN116716550A CN 116716550 A CN116716550 A CN 116716550A CN 202310625791 A CN202310625791 A CN 202310625791A CN 116716550 A CN116716550 A CN 116716550A
Authority
CN
China
Prior art keywords
steel
percent
temperature
cold
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310625791.6A
Other languages
English (en)
Inventor
胡智评
刘仁东
顾兴利
郭金宇
徐鑫
林春青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Angang Steel Co Ltd
Original Assignee
Angang Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Angang Steel Co Ltd filed Critical Angang Steel Co Ltd
Priority to CN202310625791.6A priority Critical patent/CN116716550A/zh
Publication of CN116716550A publication Critical patent/CN116716550A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

本发明属于冷轧汽车用高强钢技术领域,具体涉及一种汽车用淬火配分钢及其梯度配分制备方法。所述钢的化学成分以质量百分比计包括:C:0.17~0.24%,Mn:1.60~2.40%,Si:0.80~1.80%,Al:0.05~0.80%,Ti:0.015~0.025%,P:0.007~0.012%,S:0.001~0.004%,余量为Fe和不可避免的杂质。所述方法包括以下步骤:连铸、热轧、酸洗、冷轧、连退/连退镀锌。本发明通过合理的成分及工艺设计,突破了QP钢的作用机理,提出梯度配分工艺思路,制得的QP钢产品相比于同级别钢板超出国际领先水平,能够应用于更为复杂的汽车结构件。

Description

汽车用淬火配分钢及其梯度配分制备方法
技术领域
本发明属于冷轧汽车用高强钢技术领域,具体涉及一种汽车用淬火配分钢及其梯度配分制备方法。
背景技术
淬火配分工艺(Quenching and partitioning,Q&P)是Speer等人于2003年提出的一种用于制备马氏体残余奥氏体混合组织类型的高强高塑性钢的新工艺,具体工艺路线如下:首先,钢经奥氏体化或者部分奥氏体化后淬火至奥氏体的马氏体相变开始(Ms)和马氏体相变结束(Mf)温度之间的某一温度并进行短暂保温处理以得到一定含量的马氏体和未转变奥氏体,随后,在淬火温度或者高于淬火温度的一定温度下对实验钢进行等温配分处理,以实现碳从过饱和马氏体向未转变奥氏体中的扩散和富集的过程,进而实现奥氏体的稳定化,最后,实验钢被冷却至室温,所得到的最终组织为马氏体+残余奥氏体混合组织或者铁素体+马氏体+残余奥氏体混合组织。在第三代先进高强钢中,应用淬火配分工艺的高强钢产品被视为Q&P钢。随着全球节能减排的逐步推进,汽车轻量化进程不断发展,第三代先进高强钢在白车身的应用比例逐渐提升,如宝马、丰田与奔驰等品牌的先进高强钢比例由2017年前后的5%左右,已经上升至2022年的15%以上;中国以比亚迪、吉利为代表的车企新发布的新车型中高强钢比例更是升至30%左右。先进高强钢用量的逐渐提升主要源于先进高强钢生产制造技术的不断优化提升。第三代先进高强钢的代表钢种即为Q&P钢,Q&P钢也是目前全球应用最为广泛、认知最为深入、工业化最为成熟的先进高强钢产品。
中国标准GB/T20564.9公开Q&P 980性能为:屈服强度≥550MPa,抗拉强度≥980MPa,断后延伸率≥18%,可用于车身较为复杂的结构件或加强件上,如B柱内外板、保险杠等。但是,明显Q&P钢有限的塑性较难满足更为复杂的结构件应用,如代替DP780、420LA、甚至DP590。日本新材料所指出未来980MPa级别先进高强钢的塑性目标为35%,届时980MPa级别的产品从成形性的角度考虑可替代现有几乎全部车身结构件。当然,35%的塑性指标需要新的创新型设计机理、对应升级的装备工艺,因此就目前情况来看,实现25%以上至30%左右的塑性,是短期内可能达到的目标。
中国专利CN202010319605.2公开了一种具有优异塑性980MPa级冷轧Q&P钢制造方法,该钢板各组分重量百分比为:C:0.18~0.21%、Mn:1.8~2.1%、Si:1.4~1.6%、Al:0.02~0.06%、P≤0.02%、S≤0.01%,Nb:0.04~0.06%,余量为Fe和其他不可避免杂质。制备方法包括冶炼、热轧、罩退、酸洗、冷轧、连退,获得钢板性能抗拉强度982~1065MPa,延伸率为18.8~24.9%。
中国专利CN201810144307.7公开了980MPa级汽车用冷轧高强Q&P钢及其生产方法,该钢合金成分为C:0.18~0.24%,Si:0.6~1.3%,Mn:1.6~2.4%,Nb:0.04~0.07%,Als:0.5~1.0%、P0.02~0.04%%、S≤0.005%,余量为Fe和其他不可避免杂质。制备方法包括冶炼、热轧、罩退、酸洗、冷轧、连退,获得钢板性能屈服强度≥550MPa,抗拉强度≥980MPa,延伸率为≥18%,实施例中最大延伸率为23.5%。由此可见,基于现有的成分及工艺体系下Q&P钢难以实现25%以上的塑性指标。
发明内容
为了解决上述技术问题,本发明提供一种汽车用淬火配分钢及其梯度配分制备方法,基于现有的装备条件,实现更Q&P钢产品更高维度的塑性指标,以此大幅度提升Q&P钢产品的车身应用可能性。
为了实现上述目的,本发明的技术方案如下:
本发明一方面提供一种汽车用淬火配分钢,所述钢的化学成分以质量百分比计包括:C:0.17%~0.24%,Mn:1.60%~2.40%,Si:0.80%~1.80%,Al:0.05%~0.80%,Ti:0.015%~0.025%,P:0.007%~0.012%,S:0.001%~0.004%,余量为Fe和不可避免的杂质。
上述技术方案中,进一步地,所述钢的化学成分还可以包括Ni、Cr、Mo、Nb中一种或多种;其中,以质量百分比计,Ni:0.1%~0.30%,Cr:0.1%~0.30%,Mo:0.05%~0.30%,且Mn+Ni+Cr+Mo≤2.50%,Nb:0.01%~0.025%。
上述技术方案中,进一步地,所述钢的屈服强度600~700MPa,抗拉强度980~1100MPa,延伸率为25%~30%。
上述技术方案中,进一步地,按体积百分比计,所述钢的显微组织由40%~60%铁素体、20%~30%马氏体、10%~20%贝氏体和10%~20%残余奥氏体构成,其中铁素体为临界区铁素体及取向附生铁素体。
本发明钢的各化学成分的选用原理及含量设计理由如下:
C:C是钢中最为经济的强元素,提高钢板淬透性,进而提升钢板强度。在本发明Q&P钢中,C是最为关键因素,影响过冷奥氏体相变行为,冷却阶段过冷奥氏体中较为富集的C保证转变过程中转变的马氏体含量,的同时未转变的过冷奥氏体在等温配分阶段依靠周围马氏体的C扩散提高稳定性,进而保留为残余奥氏体。但是,过高C含量将加大工业生产热轧边裂与冷轧边部开裂等风险。此外过高C含量将导致点焊熔核处高比例的孪晶马氏体形成,恶化焊接性能。因此,本发明将C元素含量控制在0.17%~0.24%。
Mn:Mn是钢中常见的经济型强化元素,提升固溶强化效果及提高钢板淬透性,以提高钢板整体强度。在本发明Q&P钢中,Mn元素主要起到降低临界区冷速,提高快冷阶段马氏体比例;同时配合C添加提升奥氏体相稳定性。然而,Mn元素添加含量不宜超过本发明范围,考虑Mn含量过高导致的C/Mn偏析问题。因此,本发明将Mn元素含量控制在1.60%~2.40%。
Si:Si元素为常见经济型强化元素,保证铁素体的基体强度;同时,Si添加将提高钢板的AC3点,有效调节连退阶段的退火工艺窗口,保证工业化连退温度下临界区适当的铁素体及奥氏体比例;在本发明Q&P钢中,Si添加作用主要在于足够含量的Si添加可以抑制过时效阶段碳化物的形成,避免钢板因碳化物析出降低性能。值得注意的是,在生产镀锌产品情况下考虑Si过高导致镀锌表面出现“漏镀”等影响表面质量问题。因此,本发明将Si元素含量控制在0.80%~1.80%。
Al:Al在常规钢板中添加有限,一般作为冶炼过程的脱氧剂使用。本发明中在进行镀锌产品生产制造阶段添加较高含量Al代替Si,起到抑制碳化物析出作用;但是,Al替代Si的含量不宜过高,过高添加将导致连铸结晶阶段出钢困难,连退/连退镀锌均热窗口上移,提高生产难度等问题。本发明中将Al元素含量控制在0.05%~0.80%。
Ti:在常规钢板中Ti的作用为固氮,在本发明中适当添加Ti元素作为强度补充,部分计划成分不能满足强度需求,依靠Ti元素的析出起到细化原奥氏体晶粒细晶强化,以及析出强化作用补充强度。本发明中将Ti元素含量控制在0.015~0.025%。
P:P元素是钢中的杂质元素,极易偏聚在晶界,钢中P含量较高时,易形成Fe2P颗粒,降低钢的塑性及韧性,因此其含量越低越好。本发明中将P元素含量控制为0.070%~0.012%。
S:S元素是钢中的杂质元素,易与Mn结合形成MnS夹杂,恶化钢板塑性,因此其含量越低越好。本发明中将S元素含量控制在0.001%~0.004%。
还可添加元素中:
Ni:本身为固溶强化元素,同C、Mn一样,提高奥氏体稳定性;同时Ni一定程度上提高钢板的抗腐蚀性能。在本发明可选成分中可以适量添加,提高抗腐蚀性能。本发明中将Ni元素含量控制在0.10%~0.30%。
Cr和Mo:Cr及Mo本身为固溶强化元素,起到强化钢板的作用。在本发明中Cr、Mo可以提高钢板的淬透性,延缓冷却阶段珠光体及贝氏体的形成的,促进马氏体的形成;同时,Cr、Mo可以改变卷取过程中的氧化铁皮类型,限制钢板内氧化的进行,提高钢板表面质量。在本发明中Cr及Mo均为Mn添加后,平衡热轧边部裂纹、冷轧边部开裂问题。因此,本发明中将Cr元素含量控制在0.10%~0.30%,Mo元素含量控制在0.05%~0.30%。
前面已经提到,Ni、Cr、Mo等合金元素均为补充Mn的替代元素,其主要作用在本发明中均为作为提高奥氏体稳定化,补充奥氏体的稳定性。然而,综合考虑成本、浇钢难度、热轧难度、冷轧难度等多维度考虑,整体添加应满足:低成本、易生产、高成材率的一体化目的。因此,本发明Mn+Ni+Cr+Mo含量≤2.5%。
Nb:Nb是微合金强化元素,起到细化晶粒,提高强度作用;在本发明中Nb配合Ti添加,填补部分设计成分强度过低的情况,然而Nb含量不宜添加过高,过高将导致热轧细晶程度过高,热轧卷强度过高,冷轧难度加大。本发明中将Nb元素含量控制在0.01%~0.025%。
本发明另一方面提供一种上述汽车用淬火配分钢的梯度配分制备方法,所述方法包括以下步骤:连退或连退镀锌;
所述方法具体步骤如下:
连退:
将冷轧板加热至800~830℃,等温80~180s,以1.2~3.6℃/s的冷速缓冷至700~740℃,再以15~25℃/s速度快速冷却至250~280℃,随后以20℃/s以上升温至380~410℃进行一阶段过时效处理,等温时间120~280s;随板温进入二阶段过时效处理,时效温度为300~380℃,等温时间120~280s;
或连退镀锌:
将冷轧板加热至820~860℃,等温60~120s,以1.2~3.6℃/s的冷速缓冷至700~740℃,再以18~25℃/s速度快速冷却至250~280℃,随后20℃/s以上升温至480~510℃进行过时效处理,等温时间20~40s,过时效处理后进入锌锅,温度为450~470℃,在锌锅时间2~5s。
上述技术方案中,进一步地,冷轧板厚度为1.4/1.6/1.8mm,1.4mm板厚对应2.8mm热轧钢板,1.6m及1.8mm板厚对应3.0~3.5mm热轧钢板。
本发明制备步骤设计理由如下:
在连退/连退镀锌的均热阶段(连退温度800~830℃,等温80~180s或连退镀锌820~860℃,等温60~120s),以此得到35%-45%的临界区铁素体组织,平衡钢板的强度且保证奥氏体化程度下奥氏体中的C浓度;以1.2~3.6℃/s的速度缓冷至700~740℃,得到5%~10%取向附生铁素体,防止铁素体含量过高导致强度降低,同时防止铁素体含量过低强度过高;更重要的是保证缓冷后快冷前过冷奥氏体的C浓度梯度,进而决定后续工艺贝氏体及马氏体的转变量;随后以较高冷速冷却至250~280℃,获得25%~30%的马氏体组织及余下的未转变过冷奥氏体组织,过低的马氏体含量导致钢板强度降低,过高的马氏体含量导致残余奥氏体含量降低。
连退/连退镀锌的关键工艺在于:①快速升温速度(20℃/s以上),缓慢的升温将导致钢板中剩余过冷奥氏体向贝氏体转变收到抑制,原因在于缓慢的升温过程中贝氏体相变终止线T0所需的C浓度逐渐降低。②梯度配分:本发明采用二阶段配分处理,且一阶段温度高于二阶段,形成降温梯度,原因在于缓慢的降温过程(钢板在炉内自然冷却)将大幅度作用于贝氏体相变终止线T0右移,使得所需终止时C浓度提高,推迟贝氏体转变结束,大幅度提高钢板残余奥氏体含量至15%以上,且剩余二次马氏体含量理论上最低,大幅度提高钢板成形性能。由此,经过前工艺处理后25%~30%的过冷奥氏体形成12~15%的贝氏体及15%~18%的残余奥氏体,从而实现25%上的断后延伸率。
上述技术方案中,进一步地,所述冷轧板的制备方法包括以下步骤:连铸、热轧、酸洗、冷轧;
所述方法具体步骤如下:
(1)连铸:按照钢的化学成分进行连铸;
(2)热轧:加热温度为1230~1280℃,在炉时间为180~240min,粗轧轧制温度1150~1200℃,中间坯厚度为50~80mm,精轧轧制温度为1070~1130℃,终轧温度为920℃以上,卷取温度为450~520℃,热轧钢板厚度为2.8~3.5mm;
(3)酸洗和冷轧:酸洗后进行冷轧,冷轧轧制压下率为46.7%~48.6%。
上述技术方案中,进一步地,步骤(1)中,所述浇铸温度为1580~1620℃,铸坯厚度为220~280mm。
本发明冷轧板制备各步骤设计理由如下:
步骤(2),加热温度控制在1230~1280℃,在炉时间为180~240min,目的在于促进合金充分固溶,控制偏析导致的带状组织。精轧阶段分两阶段轧制的目的在于促进原始奥氏体晶粒再结晶行为,抑制未再结晶奥氏体晶粒粗化;卷取温度控制在450~520℃,目的在于防止由于添加Si含量后钢板表层形成富Si氧化物,进而导致内氧化层和晶界氧化层形成。
步骤(3)中,过低轧制压下率不能保证足够冷轧形变储能,导致连退阶段不充分的铁素体再结晶效果;过高轧制压下大幅度增加冷轧机的负荷,不能保证目标厚度的实现。
本发明的有益效果为:
(1)本发明通过合理的成分及工艺设计,突破了QP钢塑性限制机理提出梯度配分工艺思路,充分发挥贝氏体基组态优势,实现残余奥氏体含量最优化设计及最佳的组织协调变形能力,本发明制得的QP钢产品屈服强度为600~660MPa,抗拉强度980~1100MPa,延伸率为25~31%,相比于同级别钢板超出国际领先水平,能够应用于更为复杂的汽车结构件;
(2)本发明基于现有装备条件,具有生产成本低,生产工艺稳定的优势;
(3)本发明QP钢产品能够实现汽车轻量化,从应用端实现减重减少尾气排放,满足双碳战略。
附图说明
图1为本发明实施例1的扫描组织。
具体实施方式
通过实施例对本发明进行更详细的描述,这些实施例仅仅是对本发明最佳实施方式的描述,并不对本发明的范围有任何的限制。
实施例1-10
实施例1-10提供的汽车用淬火分配钢的化学成分如表1所示。
表1实施例1-10钢的化学成分,wt%
C Mn Si Al Ti Ni Cr Mo Mn+Ni+Cr+Mo Nb P S
0.185 2.32 1.72 0.015 0.018 - - - 2.32 0.012 0.009 0.001
0.193 2.15 1.65 0.015 0.015 - 0.15 0.1 2.4 0.018 0.01 0.002
0.226 1.98 1.58 0.015 0.017 0.1 0.1 - 2.18 0.023 0.009 0.003
0.208 2.04 1.71 0.015 0.022 - - - 2.04 0.015 0.01 0.004
0.236 1.75 1.53 0.015 0.023 0.2 - 0.15 2.1 0.021 0.007 0.003
0.178 2.37 0.85 0.62 0.024 0.1 - - 2.47 0.016 0.012 0.001
0.225 2.15 0.96 0.68 0.019 0.3 - - 2.45 0.015 0.01 0.004
0.214 2.06 1.05 0.64 0.018 - - 0.3 2.36 0.015 0.01 0.002
0.198 2.24 1.22 0.48 0.016 - - 0.1 2.34 0.018 0.009 0.003
0.201 2.18 0.95 0.71 0.022 - 0.3 0.05 2.48 0.015 0.007 0.002
上述汽车用淬火配分钢的梯度配分制备方法包括以下步骤:连铸、热轧、酸洗、冷轧、连退或连退镀锌;
具体步骤如下:
(1)连铸:按照钢的化学成分进行连铸,浇铸温度为1580~1620℃,铸坯厚度为220~280mm;
(2)热轧:加热温度为1230~1280℃,在炉时间为180~240min,粗轧轧制温度1150~1200℃,中间坯厚度为50~80mm,精轧轧制温度为1070~1130℃,终轧温度为920℃以上,卷取温度为450~520℃,热轧钢板厚度为2.8~3.5mm;
(3)酸洗和冷轧:酸洗后进行冷轧,冷轧板厚度为1.4/1.6/1.8mm,1.4mm板厚对应2.8mm热轧钢板,1.6及1.8mm板厚对应3.0~3.5mm热轧钢板,冷轧轧制压下率为46.7~48.6%;
(4)连退:
将冷轧板加热至800~830℃,等温80~180s,以1.2~3.6℃/s的冷速缓冷至700~740℃,再以15~25℃/s速度快速冷却至250~280℃,随后以20℃/s以上升温至380~410℃进行一阶段过时效处理,等温时间120~280s;随板温进入二阶段过时效处理,时效温度控制在300~380℃,等温时间120~280s;
或连退镀锌:
将冷轧板加热至820~860℃,等温60~120s,以1.2~3.6℃/s的冷速缓冷至700~740℃,再以18~25℃/s速度快速冷却至250~280℃,随后20℃/s以上升温至480~510℃进行过时效处理,等温时间20~40s,过时效处理后进入锌锅,温度为450~470℃,在锌锅时间2~5s。
表2列出了实施例1-10钢的连铸和热轧工艺参数,表3列出了实施例钢冷轧和连退/连退镀锌的工艺参数。
表2实施例1-10钢的连铸和热轧工艺参数
表3实施例1-10钢的冷轧和连退/连退镀锌工艺参数
表4列出了实施例1-10钢的力学性能。
表4实施例1-10钢的力学性能
以上实施例仅仅是本发明的优选施例,并非对于实施方式的限定。本发明的保护范围应当以权利要求所限定的范围为准。在上述说明的基础上还可以做出其它不同形式的变化或变动。由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (8)

1.一种汽车用淬火配分钢,其特征在于,所述钢的化学成分以质量百分比计包括:C:0.17%~0.24%,Mn:1.60%~2.40%,Si:0.80%~1.80%,Al:0.05%~0.80%,Ti:0.015%~0.025%,P:0.007%~0.012%,S:0.001%~0.004%,余量为Fe和不可避免的杂质。
2.根据权利要求1所述的汽车用淬火配分钢,其特征在于,所述钢的化学成分还可以包括Ni、Cr、Mo、Nb中一种或多种;其中,以质量百分比计,Ni:0.10%~0.30%,Cr:0.10%~0.30%,Mo:0.05%~0.30%,且Mn+Ni+Cr+Mo≤2.50%,Nb:0.01%~0.025%。
3.根据权利要求1所述的汽车用淬火配分钢,其特征在于,所述钢的屈服强度600~700MPa,抗拉强度980~1100MPa,延伸率为25%~30%。
4.根据权利要求1所述的汽车用淬火配分钢,其特征在于,按体积百分比计,所述钢的显微组织由40%~60%铁素体、20%~30%马氏体、10%~20%贝氏体和10%~20%残余奥氏体构成,其中铁素体为临界区铁素体及取向附生铁素体。
5.一种权利要求1-4任一项所述汽车用淬火配分钢的梯度配分制备方法,其特征在于,所述方法包括以下步骤:连退或连退镀锌;
所述方法具体步骤如下:
连退:
将冷轧板加热至800~830℃,等温80~180s,以1.2~3.6℃/s的冷速缓冷至700~740℃,再以15~25℃/s速度快速冷却至250~280℃,随后以20℃/s以上升温至380~410℃进行一阶段过时效处理,等温时间120~280s;随板温进入二阶段过时效处理,时效温度为300~380℃,等温时间120~280s;
或连退镀锌:
将冷轧板加热至820~860℃,等温60~120s,以1.2~3.6℃/s的冷速缓冷至700~740℃,再以18~25℃/s速度快速冷却至250~280℃,随后20℃/s以上升温至480~510℃进行过时效处理,等温时间20~40s,过时效处理后进入锌锅,温度为450~470℃,在锌锅时间2~5s。
6.根据权利要求5所述的制备方法,其特征在于,所述冷轧板厚度为1.4/1.6/1.8mm,1.4mm板厚对应2.8mm热轧钢板,1.6mm及1.8mm板厚对应3.0~3.5mm热轧钢板。
7.根据权利要求5所述的制备方法,其特征在于,所述冷轧板的制备方法包括以下步骤:连铸、热轧、酸洗、冷轧;
所述方法具体步骤如下:
(1)连铸:按照钢的化学成分进行连铸;
(2)热轧:加热温度为1230~1280℃,在炉时间为180~240min,粗轧轧制温度1150~1200℃,中间坯厚度为50~80mm,精轧轧制温度为1070~1130℃,终轧温度为920℃以上,卷取温度为450~520℃,热轧钢板厚度为2.8~3.5mm;
(3)酸洗和冷轧:酸洗后进行冷轧,冷轧轧制压下率为46.7%~48.6%。
8.根据权利要求7所述的制备方法,其特征在于,步骤(1)中,所述浇铸温度为1580~1620℃,铸坯厚度为220~280mm。
CN202310625791.6A 2023-05-30 2023-05-30 汽车用淬火配分钢及其梯度配分制备方法 Pending CN116716550A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310625791.6A CN116716550A (zh) 2023-05-30 2023-05-30 汽车用淬火配分钢及其梯度配分制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310625791.6A CN116716550A (zh) 2023-05-30 2023-05-30 汽车用淬火配分钢及其梯度配分制备方法

Publications (1)

Publication Number Publication Date
CN116716550A true CN116716550A (zh) 2023-09-08

Family

ID=87867116

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310625791.6A Pending CN116716550A (zh) 2023-05-30 2023-05-30 汽车用淬火配分钢及其梯度配分制备方法

Country Status (1)

Country Link
CN (1) CN116716550A (zh)

Similar Documents

Publication Publication Date Title
CN109097705B (zh) 一种800MPa级冷轧热镀锌双相钢及其生产方法
CN111979489B (zh) 一种780MPa级高塑性冷轧DH钢及其制备方法
CN111996467B (zh) 一种980MPa级镀锌高强钢及其制备方法
KR102153197B1 (ko) 가공성이 우수한 냉연강판, 용융아연도금강판 및 이들의 제조방법
CN111172466B (zh) 一种塑性增强的抗拉强度590MPa级冷轧双相钢及其生产方法
CN113403529A (zh) 冷冲压用1470MPa级合金化镀锌钢板及其制备方法
KR102200227B1 (ko) 가공성이 우수한 냉연강판, 용융아연 도금강판 및 그 제조방법
CN114921726A (zh) 低成本高屈强比冷轧热镀锌超高强钢及其生产方法
KR20210061531A (ko) 고강도 및 고성형성을 가지는 강판 및 그 제조방법
KR102496311B1 (ko) 고강도 및 고성형성 강판 및 그 제조방법
KR20110027496A (ko) 고강도 고성형성 냉연강판 및 용융아연도금강판의 제조방법
JP2000265244A (ja) 強度と延性に優れる溶融亜鉛めっき鋼板およびその製造方法
JP2023547102A (ja) 延性に優れた超高強度鋼板及びその製造方法
CN113046644A (zh) 一种980MPa级轻质高强钢及其制备方法
CN115537645A (zh) 一种trip钢及其制备方法、冷轧钢板和热镀锌钢板
CN113061806A (zh) 一种1180MPa级轻质高强钢及其制备方法
KR20100047001A (ko) 초고강도 열연강판 및 그 제조방법
CN116716550A (zh) 汽车用淬火配分钢及其梯度配分制备方法
KR101076082B1 (ko) 초고강도 열연강판 및 그 제조방법
CN112048670A (zh) 表面质量优良的冷轧热镀锌dh590钢及其生产方法
KR101024800B1 (ko) 도금성과 가공성이 우수한 초고강도 용융아연도금강판 및 그 제조방법
KR102245228B1 (ko) 균일연신율 및 가공경화율이 우수한 강판 및 이의 제조방법
CN113061807B (zh) 一种780MPa级轻质高强钢及其制备方法
KR20130106626A (ko) 용접성 및 굽힘가공성이 우수한 고항복비형 초고강도 냉연강판 및 그 제조방법
KR102468040B1 (ko) 연성 및 가공성이 우수한 고강도 용융아연도금판 및 그 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination