CN116709718A - 散热模块和散热器 - Google Patents

散热模块和散热器 Download PDF

Info

Publication number
CN116709718A
CN116709718A CN202210180381.0A CN202210180381A CN116709718A CN 116709718 A CN116709718 A CN 116709718A CN 202210180381 A CN202210180381 A CN 202210180381A CN 116709718 A CN116709718 A CN 116709718A
Authority
CN
China
Prior art keywords
heat dissipating
heat
heat dissipation
loop
tooth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210180381.0A
Other languages
English (en)
Inventor
段凯文
聂志东
陈晓雪
刘欣
褚雯霄
谈周妥
李帅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zte Intelligent Technology Nanjing Co ltd
Original Assignee
Zte Intelligent Technology Nanjing Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Intelligent Technology Nanjing Co ltd filed Critical Zte Intelligent Technology Nanjing Co ltd
Priority to CN202210180381.0A priority Critical patent/CN116709718A/zh
Priority to PCT/CN2022/123884 priority patent/WO2023159966A1/zh
Publication of CN116709718A publication Critical patent/CN116709718A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20327Accessories for moving fluid, for connecting fluid conduits, for distributing fluid or for preventing leakage, e.g. pumps, tanks or manifolds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本发明公开了一种散热模块和散热器。其中,散热模块包括散热齿片体和设置在散热齿片体上的至少两个回路通道,在至少两个回路通道之间设置有至少一个连接通路,连接通路用于连通两个回路通道中的冷媒工质。在本实施例技术方案中,通过一体式回路通道设计,由于第一通路的连通性,液态冷媒相互连通,在受到重力的影响下,液态冷媒能够在一体式回路通道内部动态分配直至动态平衡,最终各回路通道内的液态冷媒液位高度达到统一,减少出现由于气相的不连通导致气塞、气压差而造成冷媒工质在各回路通道内的分配不均匀的问题,工质在各分区分配均匀后进行压封可实现多个独立分区,循环回路缩短,从而解决顶部补液不足产生的干烧问题。

Description

散热模块和散热器
技术领域
本发明涉及通信技术领域,尤其是一种散热模块和散热器。
背景技术
随着电力电子技术的高速发展,电子设备向大容量、大功率、高集成、轻量化方向发展,因此会导致电子设备的热耗密度越来越大,此时对于电子设备环境适应性需求越来越高,电子设备的高可靠性散热问题已经逐渐成为遏制各相关行业发展的瓶颈。在工业应用中,散热齿主要分为无管路的普通散热齿和带管路的两相散热齿两种形态。针对两相散热齿,在工业运用过程中主要存在以下问题:两相管路内部气液流动通道混杂,两相循环效率较低,在逆重力工作状态下,两相循环驱动力较低,经常无法形成自循环,而且管路沿重力方向尺寸较大,液态工质受重力易聚积于底部,容易导致近热源侧顶部管路因缺液出现干烧的问题。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供了一种散热模块和散热器,能够解决干烧的问题。
第一方面,本发明实施例提供了一种散热模块,包括:
散热齿片体;
至少两个回路通道,所述回路通道设置在所述散热齿片体上,在至少两个所述回路通道之间设置有至少一个连接通路,所述连接通路用于连通所述两个回路通道中的冷媒工质。
在一实施例中,至少一个所述连接通路设置有封口区,所述封口区用于生成散热分区,所述散热分区包括至少一个所述回路通道。
在一实施例中,相邻的两个所述回路通道之间设置有至少一个连接通路。
在一实施例中,所述散热区域沿齿长方向设置在所述散热齿片体上。
在一实施例中,所述回路通道设置有吸液芯。
在一实施例中,相邻的两个所述散热区域至少部分分离,而且相邻的两个所述散热区域所分离的部分交错设置。
第二方面,本发明实施例还提供了一种散热器,包括第一方面所述的散热模块。
在一实施例中,还包括散热基板,所述散热模块以分区的方式设置在所述散热基板上。
在一实施例中,所述散热模块中的所述散热齿片体倾斜设置在所述散热基板上。
在一实施例中,同一个分区的所有所述散热模块的所述散热齿片体以相同的倾斜方式和倾斜角度设置在所述散热基板上。
在一实施例中,至少两个分区的所述散热齿片体与所述散热基板的齿长方向虚拟线形成倾斜夹角,所述散热齿片体垂直于所述散热基板设置而且在同一个所述齿长方向虚拟线上相邻的两个所述散热齿片体的倾斜方向相反。
在一实施例中,至少两个分区的所述散热齿片体倾斜于所述散热基板设置,相邻的两个所述散热齿片体相对于基板垂直面的倾斜方向相反,所述基板垂直面为基于所述齿长方向虚拟线并垂直于所述散热基板的面。
在一实施例中,至少两个相邻分区的所述散热模块在所述散热基板的齿长方向虚拟线的两边交错设置。
在一实施例中,相邻两个分区分别为第一分区和第二分区;
所述第一分区中的所述散热模块中至少部分散热齿片体伸入设置在所述第二分区中所述散热模块的流道区域;
或者,所述第一分区中的所述散热模块和所述第二分区中所述散热模块以无流道的方式设置。
本发明实施例的一种散热模块和散热器,该散热模块包括散热齿片体和设置在散热齿片体上的至少两个回路通道,在两个回路通道之间设置有至少一个连接通路,连接通路用于连通两个回路通道中的冷媒工质。在本实施例技术方案中,通过一体式回路通道设计,由于第一通路的连通性,液态冷媒相互连通,在受到重力的影响下,液态冷媒能够在一体式回路通道内部动态分配直至动态平衡,最终各回路通道内的液态冷媒液位高度达到统一,减少出现由于气相的不连通导致气塞、气压差而造成冷媒工质在各回路通道内的分配不均匀的问题,工质在各分区分配均匀后进行压封可实现多个独立分区,循环回路缩短,从而解决顶部补液不足产生的干烧问题。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本发明技术方案的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明的技术方案,并不构成对本发明技术方案的限制。
图1是本发明一个实施例提供的散热模块的示意图;
图2是本发明另一个实施例提供的散热模块的示意图;
图3是本发明一个实施例提供的其回路通道为蜂窝管路的散热模块的示意图;
图4是本发明一个实施例提供的其回路通道为拟环路热管回路的散热模块的示意图;
图5是本发明一个实施例提供的其回路通道为拟脉动热管回路的散热模块的示意图;
图6是本发明一个实施例提供的设置有连续完整第一通路的散热模块的示意图;
图7是本发明一个实施例提供的设置有多个不同位置、不连续的第一通路的散热模块的示意图;
图8是本发明一个实施例提供的设置有两个连接通路的散热模块的示意图;
图9是本发明另一个实施例提供的设置有两个连接通路的散热模块的示意图;
图10是本发明一个实施例提供的设置有分区齿片的散热模块的示意图;
图11是本发明一个实施例提供的设置有圆角分区齿片的散热模块的示意图;
图12是本发明一个实施例提供的其散热模块以倾斜方式设置的散热器的示意图;
图13是本发明另一个实施例提供的其散热模块以倾斜方式设置的散热器的示意图;
图14是本发明一个实施例提供的其散热模块以垂直方式设置的散热器的示意图;
图15是本发明另一个实施例提供的其散热模块以垂直方式设置的散热器的示意图;
图16是本发明一个实施例提供的其散热模块以倾斜和垂直混合方式设置的散热器的示意图;
图17是本发明一个实施例提供的散热模块中的通过“平面压封+平面激光焊”工艺形成的封口区的示意图;
图18是本发明一个实施例提供的散热模块中的通过“平面压封+开孔+切面激光焊”工艺形成的封口区的示意图;
图19是本发明一个实施例提供的散热模块中的通过“凹凸压封”工艺形成的封口区的示意图;
图20是本发明一个实施例提供的散热模块中的通过倾斜管道形状形成的连接通路和封口区的示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
需要说明的是,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于流程图中的顺序执行所示出或描述的步骤。说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本发明提供了一种散热模块和散热器,其中,散热模块包括散热齿片体和设置在散热齿片体上的至少两个回路通道,在两个回路通道之间设置有至少一个连接通路,连接通路用于连通两个回路通道中的冷媒工质。在本实施例技术方案中,通过一体式回路通道设计,由于第一通路的连通性,液态冷媒相互连通,在受到重力的影响下,液态冷媒能够在一体式回路通道内部动态分配直至动态平衡,最终各回路通道内的液态冷媒液位高度达到统一,减少出现由于气相的不连通导致气塞、气压差而造成冷媒工质在各回路通道内的分配不均匀的问题,工质在各分区分配均匀后进行压封可实现多个独立分区,循环回路缩短,从而解决顶部补液不足产生的干烧问题。
下面结合附图,对本发明实施例作进一步阐述。
如图1所示,图1是本发明一个实施例提供的散热模块的示意图。
在一实施例中,散热模块100可以包括散热齿片体110和设置在所述散热齿片体110上的至少两个回路通道121,在至少两个所述回路通道121之间设置有连接通路122,所述连接通路122用于连通所述两个回路通道121中的冷媒工质,即图1中上半部分的结构,散热模块100的两个散热区域120之间没有通过连接通路122连接。
如图2所示,图2是本发明另一个实施例提供的散热模块的示意图,散热模块100可以设置有两个散热区域120,通过在两个散热区域120之间的连接通路122上设置封口区123,通过封口区123形成两个散热区域120包括第一散热区域120和第二散热区域120;两个散热区域120之间的连接通路122用于连通两个散热区域120中的回路通道121内的冷媒工质,使两个散热区域120中的回路通道121形成一体;而封口区123的设置则是为了在后续工艺中,使原先一体式的回路通道121相互分隔独立,以形成对应的散热区域120。可以理解的是,散热模块100还可以设置三个散热区域120,或者还可以设置四个散热区域120,本实施例对于散热模块100的上的散热区域120的设置的数量不作具体限定,可以根据实际情况设置。
需要说明的是,封口区123可以根据实际设计需要,设置在两个散热区域120之间的连接通路122上,也可以设置在同一个散热区域120中的两个回路通道121之间的连接通路122,本实施例对其不作具体限定。
需要说明的是,一个散热区域120可以设置有一个或者多个回路通道121,本实施例回路通道121的数量不作具体限定。
需要说明的是,对于同一个散热区域120中的两个回路通道121之间可以通过一个连接通路122进行连接,或者可以通过多个连接通路122进行连接,本实施例对两个回路通道121之间连接的连接通路122的数量不作限定。
在本发明实施例的技术方案中,通过一体式分区回路通道121设计,实现散热模块100的管路分区(即设置有散热区域),由于连接通路122的连通性,冷媒工质相互连通,受重力影响下,冷媒工质可在一体式管路内部动态分配直至动态平衡,最终同一分区中的各回路通道121内的液态冷媒液位高度达到统一,减少出现由于气相的不连通导致气塞、气压差而造成冷媒工质在各回路通道121内的分配不均匀的问题,从而解决干烧的问题。
需要说明的是,本实施例中的散热模块100为两相管路的两相散热齿,散热模块100也可以是散热片,可以是散热平板,可以是散热齿片,本实施对其不作具体限定。
需要说明的是,散热齿片体110是两相回路通道121的基本载体,通常采用矩形平板式结构,也可以是梯形平板式结构,本实施例对其不作具体限定,散热齿片体110所使用的材料通常为金属,例如铝、铜等,本实施例对其也不作具体限定。
需要说明的是,散热齿片体110内部沿齿长方向设置的多个分区的回路通道121,各个回路通道121之间相互独立、间隔布置,其中,每两个回路通道121之间的间隔距离可以是相同,也可以是不同,本实施例对其不作具体限定。
需要说明的是,回路通道121的管路形式包括且不限于如下形式:蜂窝管路(如图3)、最速降线管路、倾斜线管路(如图20)、拟环路热管回路(如图4)、拟脉动热管回路(如图5)。
需要说明的是,当回路通道121采用如图5的拟脉动热管式回路结构时,得益于脉动热管的自身特性,在管路自身毛细力及加热侧热驱动力作用下,管路中可形成气液交错间隔且定向循环的多段脉冲流,将热量自两相齿片的齿根近热源侧带到齿顶远热源侧进行高效散热。
在一实施例中,连接通路122为沿齿长方向布置的纵向管路,其形式可以为蜂窝管路(如图3),或者可以为竖向直管(如图6),或者可以为竖向直管曲线管路,又或者可以为竖向单元阵列管路,本实施例对其不作具体限定。需要说明的是,本实施例对于连接通路122所布置的位置、数量及范围是不做限制的:连接通路122的主要目的是将相互间隔独立的回路通道121进行连通;可以如图6所示由一条连续完整的连接通路122将所有分区中回路通道121同时连通;也可以如图7所示由多个不同位置、不连续的连接通路122将各分区回路通道121依次连通;也可以如图7所示其中一个连接通路122所连通的回路通道121的数目可为至少三个(属于长连通),另一个连接通路122所连通的回路通道121的数目可为两个(属于短连通),即连接通路122的布置范围不做限制。
可以理解的是,连接通路122可以为不设置有封口区123的通路,设置在同一个散热区域中,用于连通同一个散热区域中的回路通道121中的液态冷媒410,连接通路122也可以为设置有封口区123的通路,设置在两个不同的散热区域之间,用于连通不同散热区域中的回路通道121中的液态冷媒410。
进一步地,如图8所示相邻的分区的回路通道121之间用于连通的连接通路122的数量可以是两个,以使管路具有连通器特性。需要说明的是,连接通路122为沿齿长方向布置的纵向管路,其形式可以为蜂窝管路,或者可以为竖向直管,或者可以为竖向曲线管路,又或者可以为竖向单元阵列管路,本实施例对其不作具体限定。需要说明的是,本实施例对于连接通路122所布置的位置、数量及范围是不做限制的。所述第一散热区域和所述第二散热区域之间还设置有两个连接通路122,其中一个连接通路122用于连通所述第一散热区域的所述回路通道121和所述第二散热区域的所述回路通道121中的气态冷媒工质,另一个连接通路122用于连通所述第一散热区域的所述回路通道121和所述第二散热区域的所述回路通道121中的液态冷媒工质。
在一实施例中,可以设置至少一个连接通路122,在散热模块100水平放置时高于冷媒液位,且可以设置至少另一个连接通路122,在散热模块100水平放置时浸没于冷媒液位以下时,可使两相散热模块100处于横向静置时,回路通道121中的冷媒工质能够在各分区的回路通道121中均匀分配,以使各分区的回路通道121均有较好的两相散热循环,且不会因为工质过少而发生干烧或工质过多而发生冷凝空间不足。
在一实施例中,在一体式管路结构基础上,可在散热齿片体上设置用于对所有所述回路通道121填充所述液态冷媒410的充液部件124,通过充液部件124对连通的所有回路通道121进行一次性冷媒充注。通过充液部件124对所有回路通道121进行冷媒充注后,可以采取压封或者激光焊等方式对充液部件124的充液口进行压合密封,以使回路通道121与连接通路122形成一体式管路构成封闭两相散热空间,冷媒工质储存于该封闭两相散热空间内进行散热循环。
对连接通路122封口区进行分区隔离时,可采用平面激光焊、切面激光焊、平面压封或弯曲凹凸型压封的方式。如图17所示,在封口处将连接通路122先进行压封,再通过平面激光焊进行焊封。或如图18所示,吹胀、充注、平面压封完成后进行裁切,在已压封的封口区123处切矩形口,再从切口面进行激光焊。或如图19所示,在封口处先进行平面压封,再通过垂直板面方向分别从双面压至超过板厚距离形成双面弯曲,从而使分界段形成凹凸式封口。
如图9所示,散热模块100设置有连接通路122和第二通路810,该散热模块100整体沿重力方向竖直放置,同时散热模块100的齿长边沿水平方向放置。
对散热模块100的静置冷却方式可以包括但不限于喷淋或者水浴的冷却方式,将散热平板处于低温环境静置一段时间,使其回路通道121内的绝大部分两相工质在低温下以液相存在,并受重力影响聚积于回路通道121底部;或不采用降温手段,将散热模块100在操作环境室温下直接静置,回路通道121内部工质呈气液混合形态,受重力及管路连通影响,液态冷媒410在各分区的回路通道121中平均分配。
当下部的连接通路122浸没于冷媒液位以下时,由于连接通路122的连通性,可使各个回路通道121内的液态冷媒410相互连通;当上部的第二通路810高于冷媒液位进行设置时,由于第二通路810的连通性,可使各个回路通道121内的气态冷媒工质相互连通;基于连通器原理,气液相工质相互连通,受重力影响下,冷媒工质可在一体式管路内部动态分配直至动态平衡,最终各个回路通道121内的冷媒液位高度达到统一,不会出现由于气相的不连通导致气塞、气压差而造成冷媒工质在各回路通道121内的分配不均匀的问题。
相邻分区的回路通道121之间的第二通路810处设置有封口区123,在冷媒充注后,通过压封或者激光焊等方式对第二通路810的各封口区123处的管路进行压合密封,从而截断第二通路810的连通效应,使各个分区的回路通道121形成相互独立的封闭两相散热空间。
进一步地,可选择性地仅对部分封口区123进行压合密封,以使未压合密封的封口区123对应的相邻分区回路通道121依然保持连通,从而灵活进行管路设计、分区设计、热耗分布设计。
通过上述针对两相散热齿形态的散热平板的结构特征及工艺方式,可以达到一次性充注、多分区回路的目的。多分区回路通道121由相互独立的多个间隔布置的回路通道121组成,各回路通道121的工作状态类似重力热管结构,近热源一侧液态工质沸腾汽化,远热源一侧气态工质放热冷凝,由此形成独立的高效循环,有利于提升齿片整体的两相循环效率及均温性,尤其有助于改善直齿架构下两相齿片顶部近热源侧缺液干烧的问题,而且一次性充注提升两相齿片批量生产过程中的工艺效率,从而降低批量生产成本。
需要说明的是,各回路通道121布置范围及封口设计可选择性地匹配散热器热耗分布,以使散热器在分区两相循环散热下具有更好的散热性能。比如,通过合理的分区及管路设计,将分区回路通道121中下部位置与散热瓶颈器件相匹配,将分区回路通道121中上部位置与散热余量较大器件相匹配,从而利用两相工质的热量迁移达到瓶颈解热、散热余量高效利用的高效散热状态。
而在冷媒充注前,可通过充液口(充液部件124)注入化学药剂对一体式管路(连接在一起的回路通道121)内腔进行腐蚀,即亲水处理;经低温烘烤,除去管路内部的液态化学药剂,并同时在管路内腔形成粗糙多孔内表面,利用该亲水表面的多气化核心可强化沸腾换热,更高效地带走近热源侧热量。
进一步地,基于各回路通道121内的独立循环,为保证沸腾产生的气泡不会由下侧通道进入冷凝端,可在回路通道121设置吸液芯420,例如在图4中回路通道121的下侧通道内增加吸液芯420,类似环路热管的方案设计。吸液芯420为毛细多孔介质结构,形成方式包括且不限于毛细烧结、塞柱状毛细芯体等。吸液芯420一方面能够增强各回路通道121内的下侧通道对于气体流动的阻力,使沸腾产生的气泡不会由下侧通道进入冷凝端,而从上侧通道逃逸;另一方面,毛细芯产生的毛细力可同步提升液体回流速率,使冷凝液更快地向下侧通道补充。通过在回路通道121中设置毛细芯,使回路通道121内形成了气液分离的定向循环,气态工质从上侧管路输运至冷凝端,液态工质从冷凝端向下侧管路回液补充,进而为热源侧提供循环往复的冷源。由于回路通道121内形成了气液分离的定向循环,管路内部的工质输运效率及两相循环效率显著提升,两相齿片整体的散热效率持续增强。
需要说明的是,压合密封后,以封口区123及散热区域120边界为齿形分区边界,从齿顶沿齿根方向将散热平板剪切以形成多段分区齿片。
需要说明的是,当散热模块100中的散热区域120的数量为多个,相邻的两个所述散热区域120至少部分分离,而且相邻的两个所述散热区域120所分离的部分交错设置。可以理解的是,对于同一散热平板的分区齿片自齿根至齿顶形成水平方向的张开角度,上下相邻的分区齿片间采用左右交错张开的布置方式,即匹配如图10所示的分区齿片与基板平面形成倾斜夹角设置方式。
通过如图10所示的分区齿片(相邻的两个所述散热区域120至少部分分离)与基板平面形成倾斜夹角的设置方式,可有效提升齿片底部气流的引入量,同时破坏上升气流的温度边界层,提升上方分区齿片的表面对流换热效率,进而使散热平板整体的散热性能得到提升;同时,在一定程度上,相邻分区齿片左右交错张开的布置方式,可提升并排排布状态下,齿片组整体相对外环境的辐射角,提升辐射换热量。经过实验分析,此散热器结构相比于普通散热器结构,可降温0.5-1.7℃。
需要说明的是,对分区齿片的齿顶侧尖端区域进行圆角处理,如图11所示,一般尖端位置因其距离热源较远,散热性能有限,通过圆角处理可增加气流引入量,提升气流在翅片间的运动速度,从而达到提升性能目的。
如图12所示,图12是本发明一个实施例提供的散热器的示意图。该散热器包括散热基板200和上述实施例中的散热模块100,所述散热模块100以分区的方式设置在所述散热基板200上。需要说明的是,散热模块100可以以垂直于散热基板200设置,也可以倾斜散热基板200设置,本实施例对其不作具体限定。
需要说明的是,对于同一分区的所有所述散热模块100的所述散热齿片体以相同的倾斜方式和倾斜角度设置在所述散热基板200上,也可以是不相同的倾斜方式和不相同的倾斜角度设置在所述散热基板200上,本实施对其不作具体限定。
在一实施例中,散热模块100倾斜设置在散热基板200的方式可以是多样的,本实施例对其不作具体限定,例如:参照图12,可以是至少两个分区的所述散热齿片体与所述散热基板200的齿长方向虚拟线形成倾斜夹角,所述散热齿片体垂直于所述散热基板200设置而且在同一个所述齿长方向虚拟线上相邻的两个所述散热齿片体的倾斜方向相反,即散热模块100即垂直散热基板200平面,且与齿长方向形成倾斜夹角;又例如:参照图13,至少两个分区的所述散热齿片体倾斜于所述散热基板200设置,相邻的两个所述散热齿片体相对于基板垂直面的倾斜方向相反,所述基板垂直面为基于所述齿长方向虚拟线并垂直于所述散热基板的面,即散热模块100平行齿长方向,且与散热基板200平面形成倾斜夹角。
需要说明的是,同一个所述齿长方向虚拟线的散热模块100中的相邻散热模块100的倾斜方向相反,以形成方向交错;同一组的散热模块100的相对应的分区齿片的倾斜方向相同,以形成等距平行流道调控散热器流阻;倾斜角度范围可以是:0°≤θ≤90°。
在一实施例中,散热模块100垂直设置在散热基板200的方式可以是多样的,本实施例对其不作具体限定,例如:至少一个所述分区的所述散热模块100垂直于所述散热基板200设置,并且所述散热模块100平行于所述散热基板200的齿长方向虚拟线设置;又例如:参照图14,至少两个相邻分区的所述散热模块100在所述散热基板200的齿长方向虚拟线的两边交错设置。
需要说明的是,如图15所示,相邻两个分区分别为第一分区和第二分区,所述第一分区中的所述散热模块100中至少部分散热齿片体伸入设置在所述第二分区中所述散热模块100的流道区域,即部分散热模块100齿长延长,并通过交错方式伸入相邻散热模块100流道区域,从而形成局部加密齿状态,有利于增加局部散热面积,从而加强局部散热能力;或者,所述第一分区中的所述散热模块100和所述第二分区中所述散热模块100以无流道的方式设置,即部分散热模块100的齿长缩短,从而形成局部无流道状态,因而对散热基板200散热进行了散热区域划分。
需要说明的是,如图16所示,在同一个散热器中,可以包括垂直设置在散热基板200的散热模块100和倾斜设置在散热基板200的散热模块100,在本实施例中,对于垂直设置在散热基板200的散热模块100和倾斜设置在散热基板200的散热模块100的数量、排列方式不作具体限定,可以根据实际需要设置。
需要说明的是,散热器上的散热模块的排列结构除了上述实施例的结构以外,还可以是V齿架构,本实例对其不作具体限定。
在一实施例中,如图20所示,可通过管路本身的形状形成连接通路122,在连接两个散热区域120的连接通路122的封口区120,设置分管路从而避开封口区123位置所需的压封预留空间,同时管路设计及覆盖区域不受影响。
以上是对本发明的较佳实施进行了具体说明,但本发明并不局限于上述实施方式,熟悉本领域的技术人员在不违背本发明精神的前提下还可作出种种的等同变形或替换,这些等同的变形或替换均包含在本发明权利要求所限定的范围内。

Claims (15)

1.一种散热模块,其特征在于,包括:
散热齿片体;
至少两个回路通道,所述回路通道设置在所述散热齿片体上,在至少两个所述回路通道之间设置有至少一个连接通路,所述连接通路用于连通所述两个回路通道中的冷媒工质。
2.根据权利要求1所述的散热模块,其特征在于,相邻的两个所述回路通道之间设置有至少一个连接通路。
3.根据权利要求1所述的散热模块,其特征在于,所述散热齿片体上设置有至少两个散热区域,所述散热区域设置有至少一个所述回路通道。
4.根据权利要求3所述的散热模块,其特征在于,至少一个所述连接通路设置有封口区,所述封口区用于生成所述散热区域,所述散热区域包括至少一个所述回路通道。
5.根据权利要求3所述的散热模块,其特征在于,所述散热区域沿齿长方向设置在所述散热齿片体上。
6.根据权利要求3所述的散热模块,其特征在于,相邻的两个所述散热区域至少部分分离,而且相邻的两个所述散热区域所分离的部分交错设置。
7.根据权利要求1所述的散热模块,其特征在于,所述回路通道设置有吸液芯。
8.一种散热器,其特征在于,包括所述权利要求1至7任意一项所述的散热模块。
9.根据权利要求8所述的散热器,其特征在于,还包括散热基板,所述散热模块以分区的方式设置在所述散热基板上。
10.根据权利要求9所述的散热器,其特征在于,所述散热模块中的所述散热齿片体倾斜设置在所述散热基板上。
11.根据权利要求10所述的散热器,其特征在于,同一个分区的所有所述散热模块的所述散热齿片体以相同的倾斜方式和倾斜角度设置在所述散热基板上。
12.根据权利要求10所述的散热器,其特征在于,至少两个分区的所述散热齿片体与所述散热基板的齿长方向虚拟线形成倾斜夹角,所述散热齿片体垂直于所述散热基板设置而且在同一个所述齿长方向虚拟线上相邻的两个所述散热齿片体的倾斜方向相反。
13.根据权利要求10所述的散热器,其特征在于,至少两个分区的所述散热齿片体倾斜于所述散热基板设置,相邻的两个所述散热齿片体相对于基板垂直面的倾斜方向相反,所述基板垂直面为基于所述齿长方向虚拟线并垂直于所述散热基板的面。
14.根据权利要求9所述的散热器,其特征在于,至少两个相邻分区的所述散热模块在所述散热基板的齿长方向虚拟线的两边交错设置。
15.根据权利要求14所述的散热器,其特征在于,相邻两个分区分别为第一分区和第二分区;
所述第一分区中的所述散热模块中至少部分散热齿片体伸入设置在所述第二分区中所述散热模块的流道区域;
或者,所述第一分区中的所述散热模块和所述第二分区中所述散热模块以无流道的方式设置。
CN202210180381.0A 2022-02-25 2022-02-25 散热模块和散热器 Pending CN116709718A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210180381.0A CN116709718A (zh) 2022-02-25 2022-02-25 散热模块和散热器
PCT/CN2022/123884 WO2023159966A1 (zh) 2022-02-25 2022-10-08 散热模块和散热器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210180381.0A CN116709718A (zh) 2022-02-25 2022-02-25 散热模块和散热器

Publications (1)

Publication Number Publication Date
CN116709718A true CN116709718A (zh) 2023-09-05

Family

ID=87764571

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210180381.0A Pending CN116709718A (zh) 2022-02-25 2022-02-25 散热模块和散热器

Country Status (2)

Country Link
CN (1) CN116709718A (zh)
WO (1) WO2023159966A1 (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI579519B (zh) * 2013-09-02 2017-04-21 財團法人工業技術研究院 脈衝型多管式熱管
WO2015198642A1 (ja) * 2014-06-23 2015-12-30 日本電気株式会社 ヒートシンク及びヒートシンクを用いた放熱方法
CN204404869U (zh) * 2015-01-20 2015-06-17 华北电力大学 集成并行多通道回路热管的散热装置
CN110868838A (zh) * 2019-10-12 2020-03-06 太仓市华盈电子材料有限公司 一种均温板散热器
CN111031754A (zh) * 2019-12-13 2020-04-17 北京比特大陆科技有限公司 Pcb散热组件和具有其的服务器
CN113865393B (zh) * 2021-09-22 2023-02-03 上海精智实业股份有限公司 一种用于通讯设置的散热器

Also Published As

Publication number Publication date
WO2023159966A1 (zh) 2023-08-31

Similar Documents

Publication Publication Date Title
CN110164835B (zh) 一种歧管式复杂结构微通道微型散热器
CN109152294B (zh) 液冷式热超导散热器
US7992625B1 (en) Fluid-operated heat transfer device
WO2023010836A1 (zh) 散热模组和电子设备
CN102121802A (zh) 双面槽道板式脉动热管
CN209766407U (zh) 空气冷却的大功率高热流散热装置
CN202032930U (zh) 一种双面槽道板式脉动热管
CN116483178A (zh) 一种计算设备及其冷板
CN114190054A (zh) 散热翅片和热虹吸散热器
CN212458057U (zh) 热超导散热板、散热器及5g基站设备
CN112584671A (zh) 用于冷却电子构件的均温板
CN109699164B (zh) 板式热管散热壳体
CN116709718A (zh) 散热模块和散热器
CN201039655Y (zh) 散热器结构
CN216873651U (zh) 散热翅片和热虹吸散热器
CN116193813A (zh) 一种三维相变散热器
CN110351993B (zh) 一种相变液冷散热系统
CN115881665A (zh) 一种通道壁面对流换热系数可调节的散热装置
CN202076256U (zh) 回路式热管散热器
CN215680120U (zh) 一种用于电子系统中存储器模块的冷却模组
CN114664768A (zh) 一种针鳍与肋板组合式微通道散热器
CN210537201U (zh) 一种基于相变液冷的液冷板及应用其的相变液冷散热系统
CN220206466U (zh) 一种带三维相变换热结构的散热器
CN111609743A (zh) 热超导散热板、散热器及5g基站设备
CN214155153U (zh) 立体散热器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination