CN116705910A - 背面p/n型掺杂区隔离的ibc电池制造方法 - Google Patents

背面p/n型掺杂区隔离的ibc电池制造方法 Download PDF

Info

Publication number
CN116705910A
CN116705910A CN202310729540.2A CN202310729540A CN116705910A CN 116705910 A CN116705910 A CN 116705910A CN 202310729540 A CN202310729540 A CN 202310729540A CN 116705910 A CN116705910 A CN 116705910A
Authority
CN
China
Prior art keywords
layer
silicon wafer
silicon
doped region
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310729540.2A
Other languages
English (en)
Inventor
赵桂香
张中建
高荣刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CECEP Solar Energy Technology Zhenjiang Co Ltd
Original Assignee
CECEP Solar Energy Technology Zhenjiang Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CECEP Solar Energy Technology Zhenjiang Co Ltd filed Critical CECEP Solar Energy Technology Zhenjiang Co Ltd
Priority to CN202310729540.2A priority Critical patent/CN116705910A/zh
Publication of CN116705910A publication Critical patent/CN116705910A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种背面P/N型掺杂区隔离的IBC电池制造方法,P型单晶硅片经碱刻蚀抛光,背面沉积遂穿氧化层和掺杂薄多晶硅层、制作掩膜、沉积导电层、剥离掩膜,再经碱刻蚀抛光,背面沉积Al2O3层、氮化硅层,然后清洗制绒,正面沉积氮化硅层、背面掩膜处激光刻蚀露出硅基体,背面对N型电极位置以外的区域印刷铝浆作为负电极,铝和硅接触形成合金得到P+区域,对N型电极位置激光刻蚀去除氮化硅层露出正电极。本发明对IBC电池背面掺杂薄多晶硅层上整面沉积导电层,不使用银浆可大幅度降低多晶硅层厚度;通过设置相互嵌套的P型掺杂区和N型掺杂区,缩小重复单元尺寸,降低载流子从产生到被吸收的扩散距离,提高电池转换效率。

Description

背面P/N型掺杂区隔离的IBC电池制造方法
技术领域
本发明涉及一种IBC电池,特别是一种背面P/N型掺杂区隔离的IBC电池制造方法。
背景技术
POLO-IBC(Polycrystalline silicon(poly-Si)on Oxide(POLO)junctions-Interdigitated Back Contacted氧化结上多晶硅-叉指式背面接触)电池是一种转换效率相对较高的太阳能电池,其实验室转换效率可达26.1%。其最大的特点在于载流子选择性的钝化,金属接触面上没有复合损失;而且该电池的正面完全不存在电极遮挡,光的利用率得到了提高。
由于IBC电池的P型掺杂区和N型掺杂区均位于电池的背面,在制造过程中遇到的比较大的挑战在于如何将P型掺杂区和N型掺杂区完全隔离开。因为如果P型掺杂区和N型掺杂区没有完全隔离,那么严重的载流子复合将会出现在P/N的接触界面上,这将使电池的转换效率大打折扣。
在一些现有工艺中,为了实现隔离,引入了繁复的对准工艺,并且需要用到一些昂贵的设备,这无疑又提高了电池的制作成本。
发明内容
发明目的:本发明的目的是提供一种使IBC电池背面P/N型掺杂区有效隔离的制造方法,降低载流子复合,提高电池转换效率。
技术方案:一种背面P/N型掺杂区隔离的IBC电池制造方法,包括如下步骤:
步骤S10:P型单晶硅片经碱刻蚀抛光后,在硅片背面依次沉积遂穿氧化层、掺杂薄多晶硅层;
步骤S20:制作掩膜,包括:
步骤S201:在硅片背面涂覆一层感光胶,然后烘烤硅片进行烘膜;
步骤S202:采用曝光设备对感光胶层曝光,形成图形化的掩膜,然后烘烤硅片进行烘膜;
掩膜图形为:以半径R1的第一圆形的圆心为中心,在半径R2的圆周上均匀排布若干个第一圆形,以此为单元图案,形成连续图案,R2>2R1
步骤S203:使用显影液清洗感光胶层,曝光区域处腐蚀速率小于未曝光处腐蚀速率,使掩膜图形转移到感光胶层,形成掩膜,然后烘烤硅片进行坚膜;
步骤S30:对硅片背面沉积导电层;
步骤S40:剥离掩膜及在其上的导电层,露出掩膜图形处的掺杂薄多晶硅层;
步骤S50:将硅片经碱刻蚀抛光,掩膜图形处去除掺杂薄多晶硅层和遂穿氧化层,露出硅基体;
步骤S60:对硅片背面依次沉积Al2O3层、氮化硅层;
步骤S70:将硅片浸入制绒液进行清洗制绒,仅在硅片正面形成均匀绒面;
步骤S80:对硅片正面沉积氮化硅层;
步骤S90:激光刻蚀:以第一圆形的圆心为中心,以半径R3的第二圆形为刻蚀图形,R1>R3,在硅片背面,刻蚀图形处通过激光刻蚀去除氮化硅层和Al2O3层,露出硅基体;
步骤S100:在硅片背面:对N型电极位置以外的区域印刷铝浆作为负电极,然后进行烧结,在第二圆形处,铝和硅接触形成合金,得到P+区域;对N型电极位置使用激光刻蚀去除氮化硅层和Al2O3层,露出正电极。
进一步的,步骤S10中:碱刻蚀抛光采用60~85℃、5~25wt%的氢氧化钾溶液,刻蚀深度大于5μm;遂穿氧化层厚度1~2nm,掺杂薄多晶硅层厚度10~150nm。
进一步的,步骤S201中:感光胶采用负性光刻胶,涂覆厚度5~15μm,烘膜温度80~120℃,烘膜时间10~20min;步骤S202中:曝光时间20~300s,曝光功率5~50mw/cm2,烘膜温度80~120℃,烘膜时间10~20min;步骤S203中:采用RD6显影液,对感光胶层的清洗时间50~70s,坚膜温度80~150℃,坚膜时间10~20min。
进一步的,硅片电阻率0.1Ω·cm~10Ω·cm时,R2/R1为不大于20,R3为7.5~15μm。
进一步的,步骤S20中:在半径R2的圆周上均匀排布的第一圆形数量为4~6个。
进一步的,步骤S30中,导电层包括依次沉积的扩散阻挡分层、导电分层、防氧化分层,底部的扩散阻挡分层厚度5~20nm,中间的导电分层厚度100~1000nm,顶部的防氧化分层厚度5~20nm。
进一步的,步骤S50中:碱刻蚀抛光采用60~85℃、5~25wt%的氢氧化钾溶液;步骤S70中:采用60~85℃、5~25wt%的氢氧化钾溶液和制绒添加剂形成的混合液作为制绒液。
进一步的,步骤S60中:Al2O3层厚度50~200nm,氮化硅层厚度50~200nm;步骤S80中:氮化硅层厚度70~100nm。
进一步的,步骤S80中:使用的激光参数为:波长532~1024nm,绿光激光,功率50~100W。
一种由上述的制造方法制得的IBC电池。
有益效果:本发明的优点是:对IBC电池背面掺杂薄多晶硅层上整面沉积导电层,不使用银浆可大幅度降低多晶硅层的厚度;通过设置相互嵌套的P型掺杂区和N型掺杂区,缩小了重复单元的尺寸,降低了载流子从产生到被吸收的扩散距离,提高了电池转换效率。
附图说明
图1为步骤S10中采用的P型单晶硅片示意图;
图2为步骤S10中硅片背面沉积遂穿氧化层、掺杂薄多晶硅层示意图;
图3为步骤S20中硅片背面制作掩膜的掩膜图形示意图;
图4为掩膜图形的单元图案;
图5为步骤S20中硅片背面制作掩膜立体示意图;
图6为步骤S20中硅片背面制作掩膜示意图;
图7为步骤S30中硅片背面沉积导电层示意图;
图8为步骤S40中剥离掩膜示意图;
图9为步骤S50中硅片碱刻蚀抛光示意图;
图10为步骤S60中硅片背面沉积钝化层示意图;
图11为步骤S70中硅片制绒示意图;
图12为步骤S80中硅片正面沉积氮化硅层示意图;
图13为步骤S90中硅片背面激光刻蚀示意图;
图14为步骤S100中硅片背面正、负电极示意图;
图15为得到的背面P/N型掺杂区隔离的IBC电池示意图。
具体实施方式
下面结合附图和具体实施例,进一步阐明本发明。
一种背面P/N型掺杂区隔离的IBC电池制造方法,具体包括以下的步骤S10~步骤S100。
步骤S10:如附图1所示的P型单晶硅片1,先采用60~85℃、5~25wt%的氢氧化钾溶液进行碱刻蚀抛光,刻蚀深度大于5μm以去除切割损伤;如附图2所示,然后在硅片背面依次沉积厚度为1~2nm的遂穿氧化层(Tunnel oxide)2、厚度为10~150nm的掺杂薄多晶硅层(poly-Si(n+))3。
步骤S20:制作掩膜,具体包括以下的步骤S201~步骤S203。
步骤S201:在硅片背面涂覆一层感光胶,感光胶采用负性光刻胶,例如ma-N 400、NR9-6000PY,N5735-L0(N244),涂覆厚度5~15μm。
然后烘烤硅片进行烘膜,烘膜温度80~120℃,烘膜时间10~20min。
步骤S202:采用曝光设备对感光胶层曝光,形成图形化的掩膜。
如附图3所示,掩膜图形为:以半径R1的第一圆形的圆心为中心,在半径R2的圆周上均匀排布4~6个(图中所示为6个)第一圆形,以此为单元图案,形成连续图案,R2>2R1。附图4所示为单元图案。曝光后,掩膜图形区域(即第一圆形区域)为透光区,其他区域为不透光区。曝光时间20~300s,曝光功率5~50mw/cm2
然后烘烤硅片进行烘膜,烘膜温度80~120℃,烘膜时间10~20min。
步骤S203:使用RD6显影液清洗感光胶层,清洗时间50~70s,由于曝光区域处腐蚀速率小于未曝光处腐蚀速率,如附图5、6所示,使掩膜图形转移到感光胶层,形成掩膜4。
然后烘烤硅片进行坚膜,坚膜温度80~150℃,坚膜时间10~20min。
步骤S30:如附图7所示,在PVD设备中,对硅片背面依次沉积扩散阻挡分层、导电分层、防氧化分层,这三层构成导电层5。底部的扩散阻挡分层的厚度5~20nm,可采用的材料有ITO、AZO、GZO等;中间的导电分层的厚度100~1000nm,可采用的材料有铜、铝、铜铝合金等,根据所采用的材料的导电性能差异来设置该层厚度;顶部的防氧化分层的厚度5~20nm,可采用的材料有SiO2、SiXNY、ITO、AZO、GZO等。
沉积时需要使用准直器,以避免在掩膜的侧壁沉积薄膜,方便下一步剥离掩膜。
步骤S40:如附图8所示,剥离掩膜,露出掩膜图形处的掺杂薄多晶硅层。
可采用湿法刻蚀,刻蚀液根据感光胶的材质不同来选择,也可采用干法刻蚀,刻蚀气体为CF4、CHF3、C4F6的其中一种。
剥离掩膜的过程中,随着掩膜被刻蚀去除,上一步沉积在掩膜上的导电层也随之与硅片分离。
步骤S50:如附图9所示,采用60~85℃、5~25wt%的氢氧化钾溶液对硅片进行碱刻蚀抛光,掩膜图形处去除掺杂薄多晶硅层和遂穿氧化层,露出硅基体,即在硅片背面形成了若干半径R1的圆孔。
步骤S60:如附图10所示,在PECVD设备中,对硅片背面依次沉积Al2O3层、氮化硅层,这两层构成钝化层6。底部的Al2O3层厚度为50~200nm,氮化硅层厚度为50~200nm。
步骤S70:采用60~85℃、5~25wt%的氢氧化钾溶液和制绒添加剂形成的混合液作为制绒液,将硅片浸入制绒液进行清洗制绒,由于硅片背面的钝化层薄膜是不与制绒液反应的,如附图11所示,仅在硅片正面形成均匀金字塔形状的绒面7。
步骤S80:如附图12所示,在PECVD设备中,通入硅烷和氨气两者反应,在硅片正面沉积厚度为70~100nm的氮化硅层8,起到减反射和表面钝化的效果。
步骤S90:激光刻蚀:
以第一圆形的圆心为中心,以半径R3的第二圆形为刻蚀图形,R1>R3
如附图13所示,在硅片背面,刻蚀图形处通过激光刻蚀去除氮化硅层和Al2O3层(即钝化层),即在硅片背面形成了若干半径R3的圆孔,露出硅基体。使用的激光参数为:波长532~1024nm,绿光激光,功率50~100W。
步骤S100:如附图14所示,在硅片背面,对N型电极位置以外的区域整面印刷铝浆形成负电极9,然后进行烧结。
如附图15所示,经烧结后,在硅片背面,铝浆在第二圆形处的开孔位置中,铝和裸露的硅基底接触形成合金,得到P+区域,在第二圆形处外的未开孔位置,由于氮化硅层和Al2O3层(即钝化层)的阻挡作用,避免了铝和硅基底或导电层接触。
铝浆的主要成分为铝。
在硅片背面,对N型电极位置使用激光刻蚀去除氮化硅层和Al2O3层(即钝化层),露出导电层作为正电极10。
硅片电阻率0.1Ω·cm~10Ω·cm时,R2>2R1,2<R2/R1≤20,R1>R3,R3为7.5~15μm。第一圆形的半径R1理论上没有最小限制,越小越好,但受生产设备的限制。R2/R1的比值,是相邻两个第一圆形圆周上的最小间距,当硅片电阻率大的时候,R2/R1的比值就要小一点,相邻两个第一圆形近一点避免造成太多的电阻损失。R1>R3,一方面是考虑加工精度,另一方面是第二圆形要嵌套在第一圆形中,第二圆形与第一圆形接触的面积过多也会增加载流子复合,所以需要控制第二圆形的半径R3
例如,硅片电阻率7Ω·cm,R1为20μm,R2为200μm,R3为9μm。
本发明背面P/N型掺杂区隔离的IBC电池制造方法,具有以下优点:
1、背面掺杂薄多晶硅层上整面沉积导电层,不使用银浆可大幅度降低多晶硅层的厚度。
在常规TOPcon电池结构(二氧化硅层+多晶硅层),为了避免银浆烧结过程中烧穿多晶硅层后直接与硅基体接触导致器件失效,一般需要将多晶硅层做厚,而多晶硅会吸收较多长波光,导致电池效率下降。本发明中在掺杂薄多晶硅层上整面沉积导电层代替银浆,可以大幅度将多晶硅层减薄,减少了寄生吸收。同时导电层有较高的反射率可以将透过电池的太阳光再次反射回电池中,提高了太阳光的利用率从而提高了电池转换效率。
2、通过设置相互嵌套的P型掺杂区和N型掺杂区,缩小了重复单元的尺寸,降低了载流子从产生到被吸收的扩散距离,提高了电池转换效率。
传统的BC电池是指状的交叉结构,每个重复单元的尺寸(单个P型掺杂区、N型掺杂区和隔离区的总宽度)在1000~2000μm。而本发明制造方法制得的相互嵌套的电池结构中,每个重复单元的尺寸在50~200μm,所以载流子从产生到被吸收的扩散距离最多可降低至原来的1/20左右。

Claims (10)

1.一种背面P/N型掺杂区隔离的IBC电池制造方法,其特征在于包括如下步骤:
步骤S10:P型单晶硅片经碱刻蚀抛光后,在硅片背面依次沉积遂穿氧化层、掺杂薄多晶硅层;
步骤S20:制作掩膜,包括:
步骤S201:在硅片背面涂覆一层感光胶,然后烘烤硅片进行烘膜;
步骤S202:采用曝光设备对感光胶层曝光,形成图形化的掩膜,然后烘烤硅片进行烘膜;
掩膜图形为:以半径R1的第一圆形的圆心为中心,在半径R2的圆周上均匀排布若干个第一圆形,以此为单元图案,形成连续图案,R2>2R1
步骤S203:使用显影液清洗感光胶层,曝光区域处腐蚀速率小于未曝光处腐蚀速率,使掩膜图形转移到感光胶层,形成掩膜,然后烘烤硅片进行坚膜;
步骤S30:对硅片背面沉积导电层;
步骤S40:剥离掩膜及在其上的导电层,露出掩膜图形处的掺杂薄多晶硅层;
步骤S50:将硅片经碱刻蚀抛光,掩膜图形处去除掺杂薄多晶硅层和遂穿氧化层,露出硅基体;
步骤S60:对硅片背面依次沉积Al2O3层、氮化硅层;
步骤S70:将硅片浸入制绒液进行清洗制绒,仅在硅片正面形成均匀绒面;
步骤S80:对硅片正面沉积氮化硅层;
步骤S90:激光刻蚀:以第一圆形的圆心为中心,以半径R3的第二圆形为刻蚀图形,R1>R3,在硅片背面,刻蚀图形处通过激光刻蚀去除氮化硅层和Al2O3层,露出硅基体;
步骤S100:在硅片背面:对N型电极位置以外的区域印刷铝浆作为负电极,然后进行烧结,在第二圆形处,铝和硅接触形成合金,得到P+区域;对N型电极位置使用激光刻蚀去除氮化硅层和Al2O3层,露出正电极。
2.根据权利要求1所述的背面P/N型掺杂区隔离的IBC电池制造方法,其特征在于:步骤S10中:碱刻蚀抛光采用60~85℃、5~25wt%的氢氧化钾溶液,刻蚀深度大于5μm;遂穿氧化层厚度1~2nm,掺杂薄多晶硅层厚度10~150nm。
3.根据权利要求1所述的背面P/N型掺杂区隔离的IBC电池制造方法,其特征在于:步骤S201中:感光胶采用负性光刻胶,涂覆厚度5~15μm,烘膜温度80~120℃,烘膜时间10~20min;步骤S202中:曝光时间20~300s,曝光功率5~50mw/cm2,烘膜温度80~120℃,烘膜时间10~20min;步骤S203中:采用RD6显影液,对感光胶层的清洗时间50~70s,坚膜温度80~150℃,坚膜时间10~20min。
4.根据权利要求1所述的背面P/N型掺杂区隔离的IBC电池制造方法,其特征在于:硅片电阻率0.1Ω·cm~10Ω·cm时,R2/R1为不大于20,R3为7.5~15μm。
5.根据权利要求1所述的背面P/N型掺杂区隔离的IBC电池制造方法,其特征在于:步骤S20中:在半径R2的圆周上均匀排布的第一圆形数量为4~6个。
6.根据权利要求1所述的背面P/N型掺杂区隔离的IBC电池制造方法,其特征在于:步骤S30中,导电层包括依次沉积的扩散阻挡分层、导电分层、防氧化分层,底部的扩散阻挡分层厚度5~20nm,中间的导电分层厚度100~1000nm,顶部的防氧化分层厚度5~20nm。
7.根据权利要求1所述的背面P/N型掺杂区隔离的IBC电池制造方法,其特征在于:步骤S50中:碱刻蚀抛光采用60~85℃、5~25wt%的氢氧化钾溶液;步骤S70中:采用60~85℃、5~25wt%的氢氧化钾溶液和制绒添加剂形成的混合液作为制绒液。
8.根据权利要求1所述的背面P/N型掺杂区隔离的IBC电池制造方法,其特征在于:步骤S60中:Al2O3层厚度50~200nm,氮化硅层厚度50~200nm;步骤S80中:氮化硅层厚度70~100nm。
9.根据权利要求1所述的背面P/N型掺杂区隔离的IBC电池制造方法,其特征在于:步骤S80中:使用的激光参数为:波长532~1024nm,绿光激光,功率50~100W。
10.一种由权利要求1~9任一所述的制造方法制得的IBC电池。
CN202310729540.2A 2023-06-19 2023-06-19 背面p/n型掺杂区隔离的ibc电池制造方法 Pending CN116705910A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310729540.2A CN116705910A (zh) 2023-06-19 2023-06-19 背面p/n型掺杂区隔离的ibc电池制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310729540.2A CN116705910A (zh) 2023-06-19 2023-06-19 背面p/n型掺杂区隔离的ibc电池制造方法

Publications (1)

Publication Number Publication Date
CN116705910A true CN116705910A (zh) 2023-09-05

Family

ID=87828917

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310729540.2A Pending CN116705910A (zh) 2023-06-19 2023-06-19 背面p/n型掺杂区隔离的ibc电池制造方法

Country Status (1)

Country Link
CN (1) CN116705910A (zh)

Similar Documents

Publication Publication Date Title
US7339110B1 (en) Solar cell and method of manufacture
US20120135558A1 (en) Method of etching asymmetric wafer, solar cell including the asymmetrically etched wafer, and method of manufacturing the same
KR20130007580A (ko) 후면 접촉형 광전지의 제조 방법, 및 그 방법에 의해 제조된 후면 접촉형 광전지
US6313397B1 (en) Solar battery cell
JP2004006565A (ja) 太陽電池とその製造方法
JP2005510885A (ja) 背面接点を有する太陽電池の製造
JP5777795B2 (ja) 光起電力素子
CN114843368A (zh) 太阳电池及其制备方法和应用
CN112420880A (zh) 一种n型单晶硅hbc太阳能电池的制备方法
JP5408022B2 (ja) 太陽電池セル及びその製造方法
CN116613247A (zh) 背面p/n型掺杂区隔离的异质结电池制造方法
JP2006156646A (ja) 太陽電池の製造方法
JP2004221188A (ja) 裏面接合型太陽電池およびその製造方法
KR101023144B1 (ko) 전사법을 이용한 태양전지 및 그 제조방법
CN116705910A (zh) 背面p/n型掺杂区隔离的ibc电池制造方法
WO2019227804A1 (zh) 一种太阳能电池及其制备方法
CN110634999A (zh) 太阳能电池及其制作方法
CN116895712A (zh) 背面p/n型掺杂区隔离的p型bc电池制造方法
JPH07106612A (ja) 光電変換装置の製造方法
CN116960203A (zh) 背面p/n型掺杂区隔离的ibc电池制造方法
JP2003101053A (ja) 太陽電池装置及びその製造方法
JP2007266649A (ja) 太陽電池素子の製造方法
CN116914017A (zh) 背面p/n型掺杂区隔离的异质结电池制造方法
JP7506593B2 (ja) 太陽電池の製造方法
WO2022210611A1 (ja) 太陽電池および太陽電池の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination