CN116670867A - 无膜氧化还原液流电能储存电池 - Google Patents

无膜氧化还原液流电能储存电池 Download PDF

Info

Publication number
CN116670867A
CN116670867A CN202180071082.7A CN202180071082A CN116670867A CN 116670867 A CN116670867 A CN 116670867A CN 202180071082 A CN202180071082 A CN 202180071082A CN 116670867 A CN116670867 A CN 116670867A
Authority
CN
China
Prior art keywords
redox flow
electrode
energy storage
substrate
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180071082.7A
Other languages
English (en)
Inventor
赖安·雷德福德
诺曼·P·索罗威
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuo ManPSuoluowei
Lai AnLeidefude
Original Assignee
Nuo ManPSuoluowei
Lai AnLeidefude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuo ManPSuoluowei, Lai AnLeidefude filed Critical Nuo ManPSuoluowei
Publication of CN116670867A publication Critical patent/CN116670867A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/02Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof using combined reduction-oxidation reactions, e.g. redox arrangement or solion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • H01G11/18Arrangements or processes for adjusting or protecting hybrid or EDL capacitors against thermal overloads, e.g. heating, cooling or ventilating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • H01M12/085Zinc-halogen cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0221Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

一种无膜氧化还原液流电能储存电池,包括:阴极电极和阳极电极,其中阴极电极或阳极电极包括固体金属或碳电极,其至少部分地被基板元件覆盖,所述基板元件具有形成在基板元件上或基板元件中的毛细流通道;以及电解液。

Description

无膜氧化还原液流电能储存电池
技术领域
本发明涉及氧化还原液流电能储存电池,并且更具体地涉及对氧化还原液流电能电池的改进。
背景技术
氧化还原液流电能储存电池与其他类型的电能存储系统相比,呈现出高的能量转换效率、灵活设计、高的储能容量、灵活的位置、深度放电、高的安全性、环境友好、低维护成本,其正被用于各种用途,包括用于风能、太阳能和潮汐能装置的可再生电能存储、应急能量供应系统、备用电源系统以及针对传统电力供应系统的负载均衡。
图1示出了根据现有技术制造的传统双电极氧化还原液流电能存储电池系统10的局部剖视的侧视图,图2是沿II-II线的剖视图。传统的氧化还原液流电能存储电池包括由多孔膜16隔开的一对半电池12、14。阳极电解液18流过半电池12,阴极电解液20流过半电池14。阳极电极22位于半电池12中,阴极电极24位于半电池14中。电极22和24依次分别与阳极电解液18和阴极电解液20接触。阳极电极22和阴极电极24连接到源或负载26。阳极电解液18和阴极电解液20分别经由导管28和30引入并流过半电池12和14,并分别通过导管32和34从半电池12和14中离开,从而在电极22和24的表面发生氧化还原反应。为了便于说明,省略了电解液循环泵、电解液储罐和阀门。
传统的氧化还原液流电能存储电池中的常见问题包括:当半电池上的流体压力下降时,在电池内部和电池之间存在分流电流。此外,随着电解液流过半电池而耗尽电解液,电解液浓度变化会导致效率降低。现有技术采用的一种控制分流电流变化的方法涉及提供长而小的横截面的流动通道。然而,长而小的横截面的流动通道从通道的一端到另一端产生高电阻,从而减少分流电流。长而小的横截面流动通道还导致压力增加,从而增加泵送要求和系统流动压力。
此外,传统的双电极氧化还原液流电能储存电池通常采用“活化”钛电极,其具有金属涂层以增强电镀循环的启动,这限制了电池的运行并需要电极补偿。
此外,在传统的双电极氧化还原液流电能储能电池中,电解液中电场的均匀性受到与固体金属电极集成和设计、其独立运行的控制以及电极形状相关的技术挑战的限制。将传统双电极氧化还原液流电能储存电池的运行和运行有效性进一步复杂化的事实是:电镀均匀性受随着流动场内的相互作用而变化的化学计量的影响。因此,由于导致跨电极的层流效应变化的变化的化学分布,因此电覆速率和二次化学成分的产生相对于输入和输出流体端口是不均匀的。
此外,对多孔膜的要求增加了电池系统的成本。此外,多孔膜增加了体积并增加了电极之间的间距,这会降低电场(V/m)并增加离子漂移距离,从而进一步降低电池性能。
在我们之前的PCT申请序列号PCT/US2020/027940中,我们提出通过提供无膜氧化还原液流电池系统对传统双电极氧化还原液流电能储存电池系统进行改进。根据我们在先的上述PCT申请的无膜液流电池包括通过减成技术形成的高表面积多孔硅电极,通过对硅基板材料进行电化学蚀刻以形成互连的纳米结构或穿过硅基板材料的通孔或孔。然后处理多孔硅基板材料的表面以通过沉积金属(优选钛金属)以在硅基板材料的孔的表面上形成硅化钛来增强表面离子电导率。使用各种沉积技术将钛金属沉积在多孔硅基板材料上,各种沉积技术包括但不限于作为示例给出的化学气相沉积(CVD)、等离子体增强化学气相沉积(PECVD)、热CVD、电镀、化学镀和/或溶液沉积技术,并且通过加热将多孔硅基板材料上的金属涂层转化为相应的金属硅化物。钨金属也可以沉积在多孔硅基板材料上,以形成硅化钨涂层电极。
发明内容
根据我们上述的PCT申请,所得基板为多孔硅基板,其在多孔结构的壁上包括金属硅化物的冶金结合的表面层,其可用作无膜氧化还原液流储能电池中的电极。
本公开还提供了一种用于生产用于氧化还原液流电能储存电池的电极的低成本加成工艺。根据本公开的一个实施方式,一种用于液流电池的电极是使用喷墨打印机以在金属或金属箔基板的表面上形成毛细流通道而形成的。然后堆叠所得基板以形成液流电池电极。可替代地,可以通过模制在金属或金属箔基板上形成毛细流通道。在又一替代实施方式中,使用两步图案化/蚀刻技术在硅晶片上形成毛细流通道。然后堆叠所得图案化晶片以形成液流电池电极。
附图说明
从以下结合附图的详细描述中可以看出本公开的进一步的特征和优点,其中相同的数字表示相同的部分,并且其中:
图1是传统双电极氧化还原液流电能储存电池系统的部分剖视的侧视图;
图2为图1的现有技术双电极氧化还原液流电能储存电池系统;
图3为根据本公开的一个实施方式的用于生产用于无膜氧化还原液流储能电池的电极的工艺的示意框图;
图4A-图4B是根据本公开的在不同生产阶段的通过图3的工艺形成的电极的剖视图;
图5为根据本公开的另一实施方式的用于生产用于无膜氧化还原液流电能储存电池的电极的工艺的示意框图;
图6A-图6O是根据本公开的在不同生产阶段的通过图5的工艺形成的电极的剖视图;和图7-图10是根据本公开制造的液流电池的剖视图。
具体实施方式
参考图3和图4A,该工艺从金属箔或基板40开始,在金属箔或基板40中冲压或钻通孔42。然后,在印刷步骤50,通过喷墨印刷材料46的线条在基板40的一侧上形成图案化的毛细流通道44,材料46例如为环氧树脂,例如苯并环丁烯(BCB)、聚酰亚胺(PI)、双马来酰亚胺(BMI)或其他耐酸材料。通常,金属箔或基板大约1000微米厚,而材料46的线条被沉积到大约400微米的厚度。线条46可以隔开约1400微米。沉积材料46通常在烘烤步骤中永久固定到基板10。
然后在堆叠步骤54中堆叠多个图案化基板,以形成具有直的(见图4A)或交错的(图4B)毛细流通道的液流电池电极18,然后可以将其并入如下所述的氧化还原液流电池中。
参考图5和图6A-图6O,示出了根据本公开的用于形成电极的替代工艺。
整个工艺如下:从涂覆有氮化物层的硅基板开始,在图案化步骤中在氮化物层上形成掩模图案102。然后在第一蚀刻步骤中对图案化的硅基板进行湿法蚀刻以去除氮化硅层的未保护区域。然后在第一剥离步骤中剥离掩模层,并对暴露的硅区域进行第一蚀刻以形成浅通道。
然后在覆盖通道壁和氮化物层的选定区域的掩蔽步骤,用抗蚀剂图案化所得硅基板,并在去除氮化物层的暴露区域的蚀刻步骤对硅基板进行浅蚀刻。然后在第二剥离步骤中剥离抗蚀剂,所得硅基板在进一步的蚀刻步骤中经受更深的湿法蚀刻混合沟槽。
然后在剥离步骤中剥离剩余的氮化物层,之后在射流场涂覆步骤中在于蚀刻的盲沟槽的暴露侧表面(除了底部表面)上沉积电介质层之前,清洁所得轮廓基板。然后用银纳米颗粒油墨印刷蚀刻盲沟槽的底部,为电解或传统的镍或锌电镀提供晶粒。然后在电镀步骤中对所得结构进行电镀,之后使用喷墨打印机以选择性地施加粘合的粘合剂线条,使得所得轮廓晶片然后可以重叠地粘合,从而产生毛细流通道。
图7示出了根据本公开的无膜氧化还原液流电能储存电池160。电池160包括外壳162、如上参考图3和图4描述形成的金属板电极形式的阳极电极164和例如由石墨形成的阴极电极166。阳极164和阴极166连接到负载170。含锌/卤化物的电解液174(例如锌/溴化物)从贮液器176流过电池160。电解液174也可包含锌/碘化物。
参考图8和图9,在充电期间,溴化锌解离,正锌离子移动到阳极电极,而负溴离子移动到正锌离子。放电期间时,正锌离子从阳极电极移出,溴离子从阴极电极移出,重整溴化锌,同时电子沿同一方向流过外部电路。当电池充电时,相反的情况发生,溴化锌解离,锌离子和电子移回阳极电极,溴离子以更高的净能量状态移回阴极。
本公开的一个特征和优点是阳极可以制造成在物理上更大,即比阴极更厚。阳极的厚度增加的多孔结构允许质子有更多时间移动到电极矩阵中。此外,类似的能量储存需要更少的电解液。而且,由于质子更缓慢移动进入阳极,因此允许更快的充电和放电速率,而没有电极断裂或粉碎的危险。
参考图10,示出了一种无膜氧化还原液流电能储存电池200的替代形式。电池200类似于图7所示的电池160,包括外壳202、阳极电极204和阴极电极206。然而,在图10的实施方式中,阴极206包括面向电解液212的覆盖有如上所述参考图5和图6形成的硅晶片电极210的固体金属或碳基板208。可替代地,阳极可以包括如上所述的图5和图6的硅晶片电极。如前所述,例如锌/溴化物的电解液214从贮液器216流过电池200。电池200与上述电池160类似地运行,其中正锌离子移入和移出阳极电极204,溴化物离子移入和移出阴极电极206。
权利要求书(按照条约第19条的修改)
1.一种无膜氧化还原液流电能储存电池,包括:
阴极电极和阳极电极,
其中阳极在物理上大于阴极,并且其中阴极电极或阳极电极包括固体金属或碳电极,所述金属或碳电极至少部分地被基板元件覆盖,所述基板元件具有形成在基板上或基板中的毛细流通道;和
电解液。
2.根据权利要求1所述的氧化还原液流电池,其中所述毛细流通道建立在所述基板元件的表面上。
3.根据权利要求1所述的氧化还原液流电池,其中所述毛细流通道形成在所述基板元件的表面下方。
4.根据权利要求1所述的氧化还原液流电池,包括堆叠的多个金属电极。
5.根据权利要求4所述的氧化还原液流电池,其中多个所述金属电极在所述堆叠中彼此粘合。
6.根据权利要求1所述的氧化还原液流电池,其中固体金属电极包括金属基板,并且通过印刷或模制用于所述毛细流通道的建立边界,在所述金属基板的表面上形成所述毛细流通道。
7.根据权利要求1所述的氧化还原液流电池,其中所述基板元件包括硅基板,所述硅基板利用形成在一个表面中的毛细流通道而图案化。
8.根据权利要求1所述的氧化还原液流电池,其中阳极比阴极更厚。

Claims (7)

1.一种无膜氧化还原液流电能储存电池,包括:
阴极电极和阳极电极,
其中阴极电极或阳极电极包括固体金属或碳电极,所述金属或碳电极至少部分地被基板元件覆盖,所述基板元件具有形成在基板上或基板中的毛细流通道;和
电解液。
2.根据权利要求1所述的氧化还原液流电池,其中所述毛细流通道建立在所述基板元件的表面上。
3.根据权利要求1所述的氧化还原液流电池,其中所述毛细流通道形成在所述基板元件的表面下方。
4.根据权利要求1所述的氧化还原液流电池,包括堆叠的多个金属电极。
5.根据权利要求4所述的氧化还原液流电池,其中多个所述金属电极在所述堆叠中彼此粘合。
6.根据权利要求1所述的氧化还原液流电池,其中固体金属电极包括金属基板,并且通过印刷或模制用于所述毛细流通道的建立边界,在所述金属基板的表面上形成所述毛细流通道。
7.根据权利要求1所述的氧化还原液流电池,其中所述基板元件包括硅基板,所述硅基板利用形成在一个表面中的毛细流通道而图案化。
CN202180071082.7A 2020-10-15 2021-10-15 无膜氧化还原液流电能储存电池 Pending CN116670867A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US202063092385P 2020-10-15 2020-10-15
US63/092,385 2020-10-15
PCT/US2021/055240 WO2022082015A1 (en) 2020-10-15 2021-10-15 Membrane-less redox flow electrical energy storage batteries

Publications (1)

Publication Number Publication Date
CN116670867A true CN116670867A (zh) 2023-08-29

Family

ID=81208670

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180071082.7A Pending CN116670867A (zh) 2020-10-15 2021-10-15 无膜氧化还原液流电能储存电池

Country Status (2)

Country Link
CN (1) CN116670867A (zh)
WO (1) WO2022082015A1 (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008116248A1 (en) * 2007-03-28 2008-10-02 Redflow Pty Ltd Cell stack for a flowing electrolyte battery
US9025313B2 (en) * 2012-08-13 2015-05-05 Intel Corporation Energy storage devices with at least one porous polycrystalline substrate
CN107534177B (zh) * 2015-05-11 2021-04-06 溴化合物有限公司 用于液流电池的添加剂
EP3427324B1 (en) * 2016-03-10 2020-03-25 3M Innovative Properties Company Electrode solutions and electrochemical cells and batteries therefrom
WO2018111958A1 (en) * 2016-12-13 2018-06-21 3M Innovative Properties Company Bipolar plate-electrode assemblies and electrochemical cell stacks and liquid flow batteries therefrom

Also Published As

Publication number Publication date
WO2022082015A1 (en) 2022-04-21

Similar Documents

Publication Publication Date Title
US3905832A (en) Novel fuel cell structure
CN101443938B (zh) 燃料电池中导电元件上的导电聚合物涂层
CN101584065B (zh) 三维电池及其制造方法
USRE41577E1 (en) High power density fuel cell stack using micro structured components
US20060115706A1 (en) Polymer electrolye fuel cell and separator for polymer electrolyte fuel cell
JP4165655B2 (ja) 電解装置、電気化学反応型膜装置及び多孔質導電体
US8246808B2 (en) Selective electrochemical deposition of conductive coatings on fuel cell bipolar plates
CN105088267A (zh) 用于电解制备臭氧水的分隔阴阳极室的电解池装置
CN109119652B (zh) 燃料电池用隔板的制造方法
CN101997121A (zh) 用于燃料电池的连续型多孔流体分配器
CN101485019A (zh) 具有经过构图的固体质子传导电解质的燃料电池
US7632590B2 (en) System and a method for manufacturing an electrolyte using electrodeposition
US10151042B2 (en) Coating forming device and coating forming method for forming metal coating
CN116670867A (zh) 无膜氧化还原液流电能储存电池
KR20130124071A (ko) 연료 전지용 바이폴라 플레이트 및 그 제조방법과 이를 포함하는 연료 전지
CN115917046A (zh) 基于质子交换膜的电解器装置及用于制造这种装置的方法
EP2865034A1 (en) Platinum monolayer for fuel cell
US20100040933A1 (en) Fuel cell separator, method for manufacturing the fuel cell separator, and fuel cell
CN110140246A (zh) 用于燃料电池的气体分配器板和燃料电池
US20220399549A1 (en) Porous silicon membrane material, manufacture thereof and electronic devices incorporating same
KR20070093734A (ko) 연료전지용 분리판 및 이를 포함하는 연료전지
JP2016160462A (ja) 水電解装置
US8921005B2 (en) Fuel cell separator manufacturing method and fuel cell separator
CN220952091U (zh) 一种pem电解槽双极板及pem电解槽
US20230411642A1 (en) Porous silicon membrane material, manufacture thereof and electronic devices incorporating the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40101734

Country of ref document: HK