CN101997121A - 用于燃料电池的连续型多孔流体分配器 - Google Patents

用于燃料电池的连续型多孔流体分配器 Download PDF

Info

Publication number
CN101997121A
CN101997121A CN2010102559587A CN201010255958A CN101997121A CN 101997121 A CN101997121 A CN 101997121A CN 2010102559587 A CN2010102559587 A CN 2010102559587A CN 201010255958 A CN201010255958 A CN 201010255958A CN 101997121 A CN101997121 A CN 101997121A
Authority
CN
China
Prior art keywords
flow field
fluid distributor
plate
fuel cell
described flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010102559587A
Other languages
English (en)
Inventor
J·P·奥维简
J·J·加格利亚多
T·A·特拉博尔德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GM Global Technology Operations LLC
Original Assignee
GM Global Technology Operations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GM Global Technology Operations LLC filed Critical GM Global Technology Operations LLC
Publication of CN101997121A publication Critical patent/CN101997121A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04291Arrangements for managing water in solid electrolyte fuel cell systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

本发明提供一种用于燃料电池组件的燃料电池板,该燃料电池板包括一对单极板,所述单极板包括流场、入口流体分配器和出口流体分配器,其中所述流体分配器由多孔材料制成,以便在整个反应物流动路径上控制液态水。

Description

用于燃料电池的连续型多孔流体分配器
技术领域
本发明涉及燃料电池系统,更具体地涉及一种包括具有至少一个多孔流体分配器的燃料电池板的燃料电池系统。
背景技术
燃料电池电源系统将燃料和氧化剂转化成电能。一种类型的燃料电池电源系统采用质子交换膜(下文中称为PEM)来催化性地促进燃料(诸如氢气)和氧化剂(诸如空气或氧气)的反应,从而产生电能。水是所述电化学反应的副产品。所述PEM是固体聚合物形式的电解质,在通常设置在燃料电池电源系统中的燃料电池堆的各燃料电池中,该电解质有利于质子从阳极电极传输至阴极电极。
在典型的燃料电池组件中,各燃料电池具有带通道的燃料电池板,各种反应物和冷却流体流经所述通道。燃料电池板例如可以是单极板。可以通过组合单极板而形成双极板。水从所述通道至出口头部(outlet header)的运动以及经过密封区域(所述密封区域由彼此结合的燃料电池板形成)下方的槽道区域(tunnel region)的运动,是由反应物流经燃料电池组件的流动而导致的。边界层剪切力和反应物压力帮助实现水穿过所述通道和槽道区域的运动,直到水通过出口头部离开所述燃料电池。
在接续的板之间设置膜-电解质-组件(MEA),以利于所述电化学反应。所述MEA包括阳极电极、阴极电极、和设置在其间的电解质隔膜。在所述MEA的两侧定位有多孔扩散介质(DM),以利于反应物(通常为氢气和来自空气的氧气)的传输,用于所述电化学燃料电池反应。
在所述燃料电池的所述槽道区域内积累的水导致燃料电池的性能下降。特别地,积累的水导致反应物流在各燃料电池板中以及在所述燃料电池组件中的错误分配。另外,在工作后保持在燃料电池中的水将在冻结温度(sub-freezing temperature)下固化,对燃料电池的再启动造成困难。用于将水从燃料电池有效去除的现有技术方案已经导致制造成本增加以及导致使用附加的零部件。
已经采用多种技术来将水从燃料电池的槽道区域去除。这些技术包括加压清扫、重力流动和蒸发。在停机时进行加压空气清扫可以用来将水从燃料电池的槽道区域有效地去除。与之相反,该清扫增加了所需的电池堆停机时间,并且浪费燃料。适当地定位电池堆可以允许重力将水从槽道区域去除。水的重力去除将限于至少具有一定大小直径的槽道。管道的毛细管力和由公知的Concus-Finn条件导致的角部润湿(corner wetting)使得重力去除水的方法的有效性被最小化。通过蒸发来去除水也是不足以胜任的技术。蒸发会需要成本高昂的加热器,并且可能导致质子传导材料的不合乎需要的干燥。干的燃料电池组件会导致降低的质子传导和延长的燃料电池启动时间。
水传送结构和表面涂覆的使用是也允许燃料电池板的槽道区域将水传送至燃料电池组件的头部区域内的两种方法。
水传送结构可以集成在双极板内。水传送结构可以设置在燃料电池的活性区域和出口头部之间。水传送结构通过毛细作用改善液态水从燃料电池的去除。尽管有利于燃料电池的运行和再启动时间,但是对燃料电池组件增加水传送结构增加了形成双极板所需元件的数量。因此当元件被增加时,燃料电池组件的制造和装配成本也随之增加。
表面涂覆也可以用于促进从燃料电池去除水。疏水或亲水表面涂层可以用于增大或减小双极板的表面接触角,提高反应物剪切力和压力将水从燃料电池内去除的能力,或者防止水膜的形成。覆层前体可以通过喷射、浸渍或涂刷而施加至所述双极板,并且通过后续的操作形成为疏水或亲水表面覆层。替代地,可以直接施加覆层。尽管比水传送结构简单且便宜,表面涂覆还是增加了双极板的制造成本。
对于节省成本的燃料电池板具有持续的需求,该燃料电池板有利于水通过其中传送,成本低廉,并且使得所需零部件的数量最小化,并且使得板的制造被简化。
发明内容
根据本发明,已经开发出了一种有利于水在其内传送且节省成本的燃料电池板,该燃料电池板使得所需零部件数量最少化,并且使得板的制造简单化。
在一个实施例中,一种用于燃料电池的单极板包括:适于分配反应气体的流场;入口流体分配器,其临近所述流场设置,以允许所述反应气体进入所述流场;出口流体分配器,其临近所述流场设置,以允许所述反应气体离开所述流场,其中所述入口流体分配器和所述出口流体分配器中的至少一个由多孔材料制成。
在另一个实施例中,一种用于燃料电池的双极板包括第一板和第二板,所述第一板包括:适于将反应气体分配至膜电极组件的阴极电极的流场;入口流体分配器,其临近所述流场设置,以允许所述反应气体进入所述流场;以及出口流体分配器,其临近所述流场设置,以允许所述反应气体离开所述流场,其中所述入口流体分配器和所述出口流体分配器中的至少一个由多孔材料制成;所述第二板包括:适于将反应气体分配至膜电极组件的阳极的流场;入口流体分配器,其临近所述流场设置,以允许所述反应气体进入所述流场;以及出口流体分配器,其临近所述流场设置,以允许所述反应气体离开所述流场,其中所述入口流体分配器和所述出口流体分配器中的至少一个由多孔材料制成。
在又一个实施例中,一种用于燃料电池的双极板包括第一板和第二板,所述第一板包括:流场,其具有非活性区域和活性区域,所述活性区域适于将反应气体分配至膜电极组件的阴极电极;入口流体分配器,其临近所述流场设置,以允许所述反应气体进入所述流场;以及出口流体分配器,其临近所述流场设置,以允许所述反应气体离开所述流场,其中所述入口流体分配器和所述出口流体分配器中的至少一个由多孔材料制成,并且其中临近所述流场和所述流体分配器中的至少一种设置第一隔离器板;所述第二板包括:流场,其具有非活性区域和活性区域,所述活性区域适于将反应气体分配至膜电极组件的阳极电极;入口流体分配器,其临近所述流场设置,以允许所述反应气体进入所述流场;以及出口流体分配器,其临近所述流场设置,以允许所述反应气体离开所述流场,其中所述入口流体分配器和所述出口流体分配器中的至少一个由多孔材料制成,并且其中临近所述流场和所述流体分配器中的至少一种设置第二隔离器板,所述第二隔离器板抵靠所述第一隔离器板从而在其间形成至少一个通道。
方案1、一种用于燃料电池的单极板,包括:
适于分配反应气体的流场;
入口流体分配器,其临近所述流场设置,以允许所述反应气体进入所述流场;以及
出口流体分配器,其临近所述流场设置,以允许所述反应气体离开所述流场,其中所述入口流体分配器和所述出口流体分配器中的至少一个由多孔材料制成。
方案2、如方案1所述的单极板,其中,所述入口流体分配器和所述出口流体分配器中的至少一个的所述多孔材料是金属网、金属泡沫、碳基泡沫和微束材料中的至少一种。
方案3、如方案1所述的单极板,其中,所述流场是由金属网、金属泡沫、碳基泡沫和微束材料中的至少一种制成的多孔材料。
方案4、如方案1所述的单极板,其中,所述流场、所述入口流体分配器和所述出口流体分配器中的至少一个是由导电多孔材料和包括导电表面处理的多孔材料中的至少一种制成的。
方案5、如方案1所述的单极板,进一步包括临近所述流场、所述入口流体分配器和所述出口流体分配器中的至少一个设置的隔离器板。
方案6、如方案1所述的单极板,其中,所述流场与所述入口流体分配器和所述出口流体分配器中的至少一个一体形成。
方案7、如方案1所述的单极板,其中,所述流场、所述入口流体分配器和所述出口流体分配器中的至少一个包括疏水表面处理和亲水表面处理中的至少一种。
方案8、一种用于燃料电池的双极板,包括:
第一板,所述第一板包括:适于将反应气体分配至膜电极组件的阴极电极的流场;入口流体分配器,其临近所述流场设置,以允许所述反应气体进入所述流场;以及出口流体分配器,其临近所述流场设置,以允许所述反应气体离开所述流场,其中所述入口流体分配器和所述出口流体分配器中的至少一个由多孔材料制成;以及
第二板,所述第二板包括:适于将反应气体分配至膜电极组件的阳极电极的流场;入口流体分配器,其临近所述流场设置,以允许所述反应气体进入所述流场;以及出口流体分配器,其临近所述流场设置,以允许所述反应气体离开所述流场,其中所述入口流体分配器和所述出口流体分配器中的至少一个由多孔材料制成。
方案9、如方案8所述的双极板,其中,所述第一板的所述流场、所述入口流体分配器和所述出口流体分配器中的至少一个是由导电多孔材料和包括导电表面处理的多孔材料中的至少一种制成的。
方案10、如方案8所述的双极板,其中,所述第二板的所述流场、所述入口流体分配器和所述出口流体分配器中的至少一个是由导电多孔材料和包括导电表面处理的多孔材料中的至少一种制成的。
方案11、如方案8所述的双极板,进一步包括临近所述第一板的所述流场、所述入口流体分配器和所述出口流体分配器中的至少一个设置的第一隔离器板。
方案12、如方案8所述的双极板,进一步包括临近所述第二板的所述流场、所述入口流体分配器和所述出口流体分配器中的至少一个设置的第二隔离器板。
方案13、如方案8所述的双极板,其中,所述第一板的所述流场与所述第一板的所述入口流体分配器和所述第一板的所述出口流体分配器中的至少一个一体形成。
方案14、如方案8所述的双极板,其中,所述第二板的所述流场与所述第二板的所述入口流体分配器和所述第二板的所述出口流体分配器中的至少一个一体形成。
方案15、如方案8所述的双极板,其中,所述第一板和所述第二板中的至少一个的所述流场、所述入口流体分配器和所述出口流体分配器中的至少一个包括疏水表面处理和亲水表面处理中的至少一种。
方案16、一种用于燃料电池的双极板,包括:
第一板,所述第一板包括:流场,其具有非活性区域和活性区域,所述活性区域适于将反应气体分配至膜电极组件的阴极电极;入口流体分配器,其临近所述流场设置,以允许所述反应气体进入所述流场;以及出口流体分配器,其临近所述流场设置,以允许所述反应气体离开所述流场,其中所述入口流体分配器和所述出口流体分配器中的至少一个由多孔材料制成,并且其中第一隔离器板临近所述流场和所述流体分配器中的至少一种设置;以及
第二板,所述第二板包括:流场,其具有非活性区域和活性区域,所述活性区域适于将反应气体分配至膜电极组件的阳极电极;入口流体分配器,其临近所述流场设置,以允许所述反应气体进入所述流场;以及出口流体分配器,其临近所述流场设置,以允许所述反应气体离开所述流场,其中所述入口流体分配器和所述出口流体分配器中的至少一个由多孔材料制成,并且其中第二隔离器板临近所述流场和所述流体分配器中的至少一种设置,所述第二隔离器板抵靠所述第一隔离器板从而在其间形成至少一个通道。
方案17、如方案16所述的双极板,其中,所述第一板的所述流场、所述入口流体分配器和所述出口流体分配器中的至少一个是由导电多孔材料和包括导电表面处理的多孔材料中的至少一种制成的。
方案18、如方案16所述的双极板,其中,所述第二板的所述流场、所述入口流体分配器和所述出口流体分配器中的至少一个是由导电多孔材料和包括导电表面处理的多孔材料中的至少一种制成的。
方案19、如方案16所述的双极板,其中,所述第一板的所述流场与所述第一板的所述入口流体分配器和所述第一板的所述出口流体分配器一体形成,而所述第二板的所述流场与所述第二板的所述入口流体分配器和所述第二板的所述出口流体分配器一体形成。
方案20、如方案16所述的双极板,其中,所述第一板和所述第二板中的至少一个的所述流场的非活性区域、所述入口流体分配器和所述出口流体分配器中的至少一个包括疏水表面处理和亲水表面处理中的至少一种。
附图说明
通过下面的详细说明,特别是在结合下面所述的附图进行考虑时,本领域技术人员将更清楚本发明的上述优点以及其它优点。
图1是根据本发明的一个实施例的燃料电池堆的示意性横截面视图;
图2是图1所示的燃料电池堆的燃料电池的俯视图;
图3是图2所示的燃料电池沿着3-3线剖切的放大剖视图;
图4是图2所示的燃料电池沿着4-4线剖切的放大剖视图。
具体实施方式
下面的说明本质上仅仅是示例性的,而非意在限制本发明、本发明的应用和使用。还应该理解的是,在所有附图中,对应的标号指代相似或对应的部件和特征。
图1示出根据本发明的一个实施例的燃料电池组件10。燃料电池组件10包括多个叠置的燃料电池12。每个燃料电池12包括入口端口14和出口端口16。燃料电池12叠置成使得各燃料电池12的入口端口14和出口端口16基本上对准相邻板或相邻燃料电池12的相应的入口端口14和出口端口16。集合地,各燃料电池12的入口端口14形成入口头部18,而各燃料电池12的出口端口16形成出口头部20。可以理解的是,入口头部18的直径、数量和长度将取决于燃料电池12中的入口端口14的尺寸和数量,以及取决于叠置在燃料电池组件10中的燃料电池12的数目。还可以理解的是,出口头部20的直径、数量和长度将取决于燃料电池12中的出口端口16的尺寸和数量,以及取决于叠置在燃料电池组件10中的燃料电池12的数目。入口22与入口头部18流体连通,而出口24与出口头部20流体连通。图1中示出的燃料电池组件10示例性地包括阳极入口头部和阳极出口头部、阴极入口头部和阴极出口头部、以及冷却剂入口头部和冷却剂出口头部。
图2至图4示出燃料电池组件10的一个燃料电池12。燃料电池12包括一对单极板26和一对单极板28。单极板26和28中的每一个包括活性区域30和非活性区域32。通常,单极板26中的每一个与临近的单极板28结合在一起,以形成双极板33。结合例如可以通过焊接、扩散结合、激光焊接、或用传导性粘合剂实现的胶接来实现,就如同本领域中公知的那样。适当的结合剂是本领域技术人员公知的,并且能够根据需要来选择。可以理解的是,燃料电池12中的单极板26、28的尺寸、形状、数量和类型,以及燃料电池12内的单极板26、28的构造,例如可以基于诸如所生成的电量、由燃料电池组件10供电的机器的尺寸、经过燃料电池组件10的气体的期望体积流量(volumetric flow rate)以及其它因素的设计参数而变化。在燃料电池12中还包括膜电极组件(MEA)34。MEA 34设置在两个接续的双极板33之间。MEA 34包括夹在阳极电极36和阴极电极38之间的质子交换膜(PEM)35。
现在参见图3和图4,单极板26包括实质上多孔的流场40,实质上多孔的流场40与实质上多孔的入口流体分配器42和实质上多孔的出口流体分配器44一体地形成。隔离器板46支撑单极板26的流场40以及流体分配器42、44。单极板28包括实质上多孔的流场48,实质上多孔的流场48与实质上多孔的入口流体分配器50和实质上多孔的出口流体分配器52一体地形成。隔离器板54支撑单极板28的流场48以及流体分配器50、52。因此,单极板26、28包括从入口头部18至出口头部20的连续的实质上多孔的层。可以理解的是,如果需要,各单极板26、28的流场40、48能够与各流体分配器42、44、50、52分开形成。还可以理解的是,每个流场40、48能够是带有在其内形成的多个流动通道的典型流场构造。可以理解的是,流场40、48和流体分配器42、44、50、52能够根据需要由任何多孔材料制成,例如由诸如金属网、金属泡沫(例如镍泡沫和不锈钢泡沫)、碳基泡沫(例如石墨泡沫)和微束材料(microtruss)的材料制成。此种泡沫的供应商例如是Ultramet,Platingtech,Mitsubishi Materials Corporation,Siping AKS Metal Material Technology Corporation,Sumitomo Electric Industries,Ltd,以及Porvair plc。还可以理解的是,流场40、48和流体分配器42、44、50、52能够由导电性材料制成,并且例如包括导电表面处理等。在非限制性的实施例中,单极板26、28的流场40、48和流体分配器42、44、50、52具有大约70%至大约85%的孔隙率,且孔的尺寸为大约50微米至大约200微米。在进一步的例子中,所述孔的尺寸为大约120微米。在图示实施例中,流场40、48和流体分配器42、44、50、52的厚度为大约0.2mm至大约1.0mm。在进一步的非限制性实施例中,流体分配器42、44的厚度为大约0.6mm,而流体分配器50、52的厚度为大约0.4mm。然而,应该认识到的是,能够根据需要将流场40、48和流体分配器42、44、50、52设置为适合于单极板26、28的任何孔隙率、孔尺寸、以及厚度。
如图所示,单极板26的入口流体分配器42基本上是平坦的,且从入口头部18延伸至流场40。所示出的单极板28的入口流体分配器50基本上是平坦的,且从入口头部18延伸至流场48。入口流体分配器42、50允许反应物(未示出)在入口头部18处进入燃料电池组件10,并且基本上不中断地流向流场40、48。所示出的单极板26的出口流体分配器44基本上是平坦的,且从流场40延伸至出口头部20。所示出的单极板28的出口流体分配器52基本上是平坦的,且从流场48延伸至出口头部20。出口流体分配器44、52允许反应物基本上不中断地从流场40、48流至出口头部20,并流出燃料电池组件10。流场40、48将所述反应物在单极板26、28的活性区域30上有效地分配。此外,流体分配器42、44、50、52和流场40、48引导并有利于在电化学反应期间生成的液态水穿过单极板26、28的活性区域30和非活性区域32朝出口头部20流动。在反应物拖曳和毛细管力的作用下,液态水移动经过流体分配器42、44、50、52和流场40、48。如图所示,单极板26的流场40允许反应物接触MEA 34的阴极电极38的相当大部分,这与典型的流动通道构造是不同的。单极板28的流场48允许反应物接触MEA 34的阳极电极36的相当大部分,这与典型的流动通道构造是不同的。流体分配器42、44、50、52和流场40、48的至少一个非活性区域32可以包括表面处理,以使得燃料电池组件10的液态水管理能力最大化,以及使得在其启动时冻结的可能性最小化。可以理解的是,所述表面处理根据需要能够是任何表面处理,例如,所述表面处理是诸如疏水表面处理(例如浸渍在疏水材料中的多孔泡沫)、亲水表面处理(例如浸渍在亲水材料中的多孔泡沫)等。
单极板26的流体分配器42、44和流场40的第一面56抵靠MEA 34的阴极电极38和环绕MEA 34的子衬垫58中的至少一个。单极板26的流体分配器42、44和流场40的第二面64抵靠隔离器板46的第一面62。如图4中所示,单极板28的流体分配器50、52和流场48的第一面64抵靠隔离器板54的第一面66。流体分配器50、52和流场48的第二面68抵靠MEA 34的阳极电极36和子衬垫58中的至少一个。
隔离器板46、54是实质上流体可渗透的、是导电且导热的,并且是耐腐蚀的片材。隔离器板46、54例如能够由金属材料和非金属材料中的至少一种(诸如不锈钢材料、铝材料、钛材料、石墨材料和复合材料)来制造。能够采用任何常规方法来形成隔离器板46、54,例如采用诸如冲压、滚轧成形、压力成形和电磁成形。应该认识到的是,形成隔离器板46、54的材料和方法能够影响隔离器板46、54的可成形性。作为一个非限制性的例子,每个隔离器板46、54的厚度为大约0.05mm至大约0.2mm。然而可以理解的是,根据需要隔离器板46、54可以具有任何厚度。隔离器板46、54是基本上平坦的,但是可以理解的是,隔离器板46、54能够具有孔口和突出平面的特征,例如,根据需要具有诸如缺口、通道、肋等。
隔离器板46、54的外周包括在其上形成的相应的平台70、72。隔离器板46的平台70抵靠隔离器板54的平台72以在其间形成至少一个通道74。所述至少一个通道74构造成接收诸如反应物的流体,并且辅助对所述反应物进行热调节,例如所述反应物在燃料电池组件10运行期间流经所述通道。应该理解的是,根据需要,所述至少一个通道74能够包括设置在其中的多孔泡沫。与典型的流动通道构造相比,所述至少一个通道74适于允许流体在单极板26、28的更大表面面积上流过,并且允许流体更靠近其活性区域30。因此,与典型的燃料电池组件相比,在燃料电池组件10中允许更高的流体温度和更低的流体体积。
在隔离器板54的平台72以及流体分配器50、52中的至少一个与子衬垫58之间可以设置支撑构件76。应该理解的是,支撑构件76和子衬垫58可以一体形成。子衬垫58由隔离器板46和流体分配器42、44中的至少一个基本上均匀地支撑,由此使得由连续微通道设计导致的复杂情况最小化,所述复杂情况诸如是子衬垫58侵入并限制在燃料电池组件10的非活性区域32中形成给送区域的通道。
应该理解的是,通过去除附加元件和制造过程(诸如在非活性区域32中形成的槽道区域、表面覆层、水传送结构等),本燃料电池12是节省成本的。令人惊奇地发现,燃料电池12在克服反应物错误分配和燃料电池组件10的活性区域30和非活性区域32中的水积聚方面是有效的。由此燃料电池12使得燃料电池组件10在冻结温度下的启动性能最大化。
通常,在燃料电池系统运行期间,氢气反应物被给送至燃料电池组件10的阳极电极36。同时,氧气反应物被给送至燃料电池组件10的阴极电极38。在阳极电极36处,氢气被催化分离成质子和电子。氧化半电池反应(oxidation half-cell reaction)以下式表示:H2←→2H++2e-。在聚合物电解质膜燃料电池组件中,质子穿过PEM 35到达阴极电极38。电子沿着外部负载电路行进到阴极电极38,从而产生燃料电池组件10的电流。在阴极电极38处,氧气与穿过PEM 35的质子和来自外部电路的电子反应,以形成水分子。该还原半电池反应以下式表示:4H++4e-+O2←→2H2O。
在燃料电池组件10运行期间,入口流体分配器42、50允许反应物通过入口头部18进入燃料电池12。出口流体分配器44、52允许反应物和在电化学反应期间产生的水通过出口头部20离开燃料电池12。特别地,液态水滴在临近MEA 34的阴极电极38的流场40中形成。一些水还可以被传送到临近MEA 34的阳极电极36的流场48处,或者可通过由消耗氢导致的冷凝在阳极电极36中形成。流经阴极电极38的空气流导致水滴和水蒸气流经流场40和流体分配器44,而流到出口头部20内。可以理解的是,文中对于阴极电极38所描述的运行与燃料电池组件10的阳极电极36的运行类似。
尽管为了说明本发明的目的已经示出了本发明的一些代表性实施例和细节,但是对于本领域技术人员来说显而易见的是,可以在不脱离由所附权利要求进一步说明的本发明的保护范围的情况下进行各种改变。

Claims (10)

1.一种用于燃料电池的单极板,包括:
适于分配反应气体的流场;
入口流体分配器,其临近所述流场设置,以允许所述反应气体进入所述流场;以及
出口流体分配器,其临近所述流场设置,以允许所述反应气体离开所述流场,其中所述入口流体分配器和所述出口流体分配器中的至少一个由多孔材料制成。
2.如权利要求1所述的单极板,其中,所述入口流体分配器和所述出口流体分配器中的至少一个的所述多孔材料是金属网、金属泡沫、碳基泡沫和微束材料中的至少一种。
3.如权利要求1所述的单极板,其中,所述流场是由金属网、金属泡沫、碳基泡沫和微束材料中的至少一种制成的多孔材料。
4.如权利要求1所述的单极板,其中,所述流场、所述入口流体分配器和所述出口流体分配器中的至少一个是由导电多孔材料和包括导电表面处理的多孔材料中的至少一种制成的。
5.如权利要求1所述的单极板,进一步包括临近所述流场、所述入口流体分配器和所述出口流体分配器中的至少一个设置的隔离器板。
6.如权利要求1所述的单极板,其中,所述流场与所述入口流体分配器和所述出口流体分配器中的至少一个一体形成。
7.如权利要求1所述的单极板,其中,所述流场、所述入口流体分配器和所述出口流体分配器中的至少一个包括疏水表面处理和亲水表面处理中的至少一种。
8.一种用于燃料电池的双极板,包括:
第一板,所述第一板包括:适于将反应气体分配至膜电极组件的阴极电极的流场;入口流体分配器,其临近所述流场设置,以允许所述反应气体进入所述流场;以及出口流体分配器,其临近所述流场设置,以允许所述反应气体离开所述流场,其中所述入口流体分配器和所述出口流体分配器中的至少一个由多孔材料制成;以及
第二板,所述第二板包括:适于将反应气体分配至膜电极组件的阳极电极的流场;入口流体分配器,其临近所述流场设置,以允许所述反应气体进入所述流场;以及出口流体分配器,其临近所述流场设置,以允许所述反应气体离开所述流场,其中所述入口流体分配器和所述出口流体分配器中的至少一个由多孔材料制成。
9.如权利要求8所述的双极板,其中,所述第一板的所述流场、所述入口流体分配器和所述出口流体分配器中的至少一个是由导电多孔材料和包括导电表面处理的多孔材料中的至少一种制成的。
10.一种用于燃料电池的双极板,包括:
第一板,所述第一板包括:流场,其具有非活性区域和活性区域,所述活性区域适于将反应气体分配至膜电极组件的阴极电极;入口流体分配器,其临近所述流场设置,以允许所述反应气体进入所述流场;以及出口流体分配器,其临近所述流场设置,以允许所述反应气体离开所述流场,其中所述入口流体分配器和所述出口流体分配器中的至少一个由多孔材料制成,并且其中第一隔离器板临近所述流场和所述流体分配器中的至少一种设置;以及
第二板,所述第二板包括:流场,其具有非活性区域和活性区域,所述活性区域适于将反应气体分配至膜电极组件的阳极电极;入口流体分配器,其临近所述流场设置,以允许所述反应气体进入所述流场;以及出口流体分配器,其临近所述流场设置,以允许所述反应气体离开所述流场,其中所述入口流体分配器和所述出口流体分配器中的至少一个由多孔材料制成,并且其中第二隔离器板临近所述流场和所述流体分配器中的至少一种设置,所述第二隔离器板抵靠所述第一隔离器板从而在其间形成至少一个通道。
CN2010102559587A 2009-08-11 2010-08-11 用于燃料电池的连续型多孔流体分配器 Pending CN101997121A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/539060 2009-08-11
US12/539,060 US20110039190A1 (en) 2009-08-11 2009-08-11 Continuous porous flow distributors for a fuel cell

Publications (1)

Publication Number Publication Date
CN101997121A true CN101997121A (zh) 2011-03-30

Family

ID=43571224

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102559587A Pending CN101997121A (zh) 2009-08-11 2010-08-11 用于燃料电池的连续型多孔流体分配器

Country Status (3)

Country Link
US (1) US20110039190A1 (zh)
CN (1) CN101997121A (zh)
DE (1) DE102010033525A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110571448A (zh) * 2019-08-26 2019-12-13 武汉中极氢能产业创新中心有限公司 双极板、燃料电池单电池及燃料电池堆
CN112436161A (zh) * 2020-11-23 2021-03-02 一汽解放汽车有限公司 一种双极板及其制作方法、燃料电池

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8329347B2 (en) * 2010-02-08 2012-12-11 GM Global Technology Operations LLC Fuel cell with microtruss water vapor transport device
DE102012011441A1 (de) 2011-07-02 2013-01-03 Volkswagen Aktiengesellschaft Membran-Elektroden-Einheit für eine Brennstoffzelle
EP2571085A1 (de) 2011-09-16 2013-03-20 Siemens Aktiengesellschaft Elektrochemische Zelle
DE102013210542A1 (de) 2013-06-06 2014-12-11 Volkswagen Ag Bipolarplatte, Brennstoffzelle mit einer solchen und Kraftfahrzeug mit einer solchen Brennstoffzelle
CN103626774B (zh) 2013-11-20 2015-11-04 苏州明锐医药科技有限公司 伊鲁替尼的制备方法
US10710326B1 (en) 2013-11-26 2020-07-14 Hrl Laboratories, Llc Open cellular sandwich structures having sealed edges and methods of manufacturing the same
US10249893B2 (en) 2017-04-26 2019-04-02 GM Global Technology Operations LLC Fuel cell architectures, monitoring systems, and control logic for characterizing fluid flow in fuel cell stacks
US11148375B1 (en) 2017-08-29 2021-10-19 Hrl Laboratories, Llc Method of repairing sandwich structure and repaired sandwich structure
US11211619B2 (en) 2019-10-11 2021-12-28 GM Global Technology Operations LLC Fuel cell architectures, aftertreatment systems, and control logic for exhaust water extraction
US20220140359A1 (en) * 2020-10-30 2022-05-05 Toyota Motor Engineering & Manufacturing North America, Inc Permeable support layer for fuel cell fluid flow networks
US11728496B2 (en) 2021-03-09 2023-08-15 GM Global Technology Operations LLC Propulsion battery packs with integrated fuel tank mounting systems
US11735751B1 (en) 2022-03-21 2023-08-22 GM Global Technology Operations LLC Intelligent fuel cell systems and control logic for smart use of anode header drain valves for FCS bleed and drainage
CN114864985A (zh) * 2022-04-22 2022-08-05 广东国鸿氢能科技股份有限公司 单极板及双极板

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1846324A (zh) * 2003-06-27 2006-10-11 超电池公司 高效微燃料电池系统和方法
CN101383424A (zh) * 2007-09-07 2009-03-11 通用汽车环球科技运作公司 用于改进流动分配和冷冻兼容性的燃料电池双极板出口

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1644997A4 (en) * 2003-06-27 2011-03-16 Ultracell Corp MICRO FUEL CELL ARCHITECTURE
US20050095494A1 (en) * 2003-11-03 2005-05-05 Fuss Robert L. Variable catalyst loading based on flow field geometry
US7803476B2 (en) * 2003-11-07 2010-09-28 Gm Global Technology Operations, Inc. Electrical contact element for a fuel cell having a conductive monoatomic layer coating
US7951507B2 (en) * 2004-08-26 2011-05-31 GM Global Technology Operations LLC Fluid flow path for stamped bipolar plate
US7749631B2 (en) * 2005-06-01 2010-07-06 Gm Global Technology Operations, Inc. Fuel cell separator plate coating
US20070042251A1 (en) * 2005-08-17 2007-02-22 Proton Energy Systems, Inc. Electrochemical cell with membrane-electrode-assembly support
US8470488B2 (en) * 2005-11-23 2013-06-25 GM Global Technology Operations LLC Metallic bipolar plates with high electrochemical stability and improved water management
US8105721B2 (en) * 2007-04-04 2012-01-31 GM Global Technology Operations LLC Microtextured fuel cell elements for improved water management

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1846324A (zh) * 2003-06-27 2006-10-11 超电池公司 高效微燃料电池系统和方法
CN101383424A (zh) * 2007-09-07 2009-03-11 通用汽车环球科技运作公司 用于改进流动分配和冷冻兼容性的燃料电池双极板出口

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110571448A (zh) * 2019-08-26 2019-12-13 武汉中极氢能产业创新中心有限公司 双极板、燃料电池单电池及燃料电池堆
CN110571448B (zh) * 2019-08-26 2022-02-11 武汉中极氢能产业创新中心有限公司 双极板、燃料电池单电池及燃料电池堆
CN112436161A (zh) * 2020-11-23 2021-03-02 一汽解放汽车有限公司 一种双极板及其制作方法、燃料电池

Also Published As

Publication number Publication date
US20110039190A1 (en) 2011-02-17
DE102010033525A1 (de) 2011-03-17

Similar Documents

Publication Publication Date Title
CN101997121A (zh) 用于燃料电池的连续型多孔流体分配器
US7718298B2 (en) Bifurcation of flow channels in bipolar plate flowfields
TW499779B (en) Fuel cell with cooling system based on direct injection of liquid water
JP4796585B2 (ja) 燃料電池における導電性要素の上の導電性ポリマーコーティング
US7862936B2 (en) Water removal channel for PEM fuel cell stack headers
US8889314B2 (en) Bipolar plate for a fuel cell stack
EP2573851B1 (en) Metal separator for fuel cell and fuel cell stack having the same
US7691511B2 (en) Fuel cell having coolant flow field wall
US8399151B2 (en) Fuel cell with buffer-defined flow fields
US9214682B2 (en) Fuel cell
US9601785B2 (en) Fuel cell
CN104157895B (zh) 聚合物电解质膜燃料电池轻型电堆及其制造方法
US9153826B2 (en) Bipolar plate with features for mitigation of exit water retention
WO2006121157A1 (ja) 燃料電池
CN101335357A (zh) 低电阻的双极板扩散介质组件
JP2009059513A (ja) 燃料電池
US20070259249A1 (en) Separator for fuel cell
US8268492B2 (en) Fuel cell stack features for improved water management
WO2022260972A1 (en) Four-fluid bipolar plate for fuel cell
US20240105967A1 (en) Bipolar plate for fuel cell stack
KR101075518B1 (ko) 나노 구조물 및 마이크로 구조물이 형성된 연료 전지용 바이폴라 플레이트
US20120174685A1 (en) Pressure sensor for use in fuel cell systems
CN102082281A (zh) 燃料电池
JPH0922717A (ja) 固体高分子電解質型燃料電池
JP5274908B2 (ja) 燃料電池スタック

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20110330