CN116666099A - 一种磁场作用下自组装磁纳米线的制备方法 - Google Patents

一种磁场作用下自组装磁纳米线的制备方法 Download PDF

Info

Publication number
CN116666099A
CN116666099A CN202310732694.7A CN202310732694A CN116666099A CN 116666099 A CN116666099 A CN 116666099A CN 202310732694 A CN202310732694 A CN 202310732694A CN 116666099 A CN116666099 A CN 116666099A
Authority
CN
China
Prior art keywords
magnetic
magnetic field
self
assembled
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310732694.7A
Other languages
English (en)
Inventor
祁娟
张雷
徐云慧
吴羡
井曦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xuzhou College of Industrial Technology
Original Assignee
Xuzhou College of Industrial Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xuzhou College of Industrial Technology filed Critical Xuzhou College of Industrial Technology
Priority to CN202310732694.7A priority Critical patent/CN116666099A/zh
Publication of CN116666099A publication Critical patent/CN116666099A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/02Single bars, rods, wires, or strips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/0302Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity characterised by unspecified or heterogeneous hardness or specially adapted for magnetic hardness transitions
    • H01F1/0311Compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/0302Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity characterised by unspecified or heterogeneous hardness or specially adapted for magnetic hardness transitions
    • H01F1/0311Compounds
    • H01F1/0313Oxidic compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种磁场作用下自组装磁纳米线的制备方法,属于纳米复合材料制备技术领域。所述制备方法包括以下步骤:将粘结剂和α”‑Fe16N2/Al2O3悬浮于溶剂中,调节pH为碱性,之后将所得悬浮液置于磁场中,待溶剂蒸发后,得到自组装磁纳米线。本发明制备得到的磁纳米线直径45nm、长度10mm,呈高度线性排列,可检测的磁场强度达0.2T,可实现大块磁性体的制备,该方法过程简单,在非高温高压条件下,通过纳米技术在高强度外部场下制造大块磁性阵列磁体,为电子器件、传感器、数据存储等领域提供了一种环境友好可行的磁性导线制备方法。

Description

一种磁场作用下自组装磁纳米线的制备方法
技术领域
本发明属于纳米复合材料制备技术领域,具体涉及一种磁场作用下自组装磁纳米线的制备方法。
背景技术
高长径比的磁性线状结构是连接纳米级物质和宏观世界之间的纽带,在现代材料的基础研究和发展中发挥着重要作用。在新一代自旋电子器件、传感器、数据存储技术等领域引起了广泛关注。为了提升它们的整体性能和拓展在各种功能器件中的应用,已经开发了许多生产线状材料的方法。
制备高长径比磁线的方法通常可分为两大类,即直接合成和组装方法。直接合成方法包括固相、气相和基于液体/溶液的技术。固相和气相技术通常成本高并且需要复杂的设备。基于液体/溶液的合成技术,也被称为湿法化学工艺,是一种有前景的方法,具有低成本、设备简单和高产率的特点。然而,为确保颗粒的形态(包括长径比),总是需要合适的模板,或者通过调整合成条件,如温度、反应时间和反应介质,以及比例和试剂浓度。这种基于模板的方法由于其高成本和耗时的特性,仍然不能用于大规模生产。而化学工艺方法虽然相对低成本且简单,但必须严格控制一些反应参数,包括温度和pH,以及外磁场,且合成步骤很繁琐。
自组装是通过各种类型的相互作用力,磁性纳米粒子自发的组织成有序排列方式的方法。包括非共价键相互作用,比如氢键、静电引力或范德华力。另外,组装的结构和长度还受到纳米粒子沉积的实验条件如溶剂挥发速度和表面保护剂等的影响。磁性纳米材料的自组装较为复杂,因此要获得大量的磁性有序纳米结构非常困难。对自组装纳米线来说最大的挑战就是如何用简单的方法,更为便捷、低成本、环保的将各磁性纳米颗粒物精确地排列成长的阵列和/或线状结构。且去除外磁场时,组装的阵列和/或线状结构仍可以保持稳定。并可以实现大规模的生产。
发明内容
为解决现有技术中的上述问题,本发明提供了一种磁场作用下自组装磁纳米线的制备方法,采用本发明的制备方法可以直接从纳米颗粒自组装得到磁纳米线。
为实现上述目的,本发明提供了如下技术方案:
本发明提供了一种磁场作用下自组装磁纳米线的制备方法,包括以下步骤:将粘结剂和α”-Fe16N2/Al2O3悬浮于溶剂中,调节pH为碱性,之后将所得悬浮液置于磁场中,待溶剂蒸发后,得到所述自组装磁纳米线。
作为本发明的优选方案,所述粘结剂包括环氧树脂,所述悬浮液中,粘结剂的浓度为0.5~1.5wt%,α”-Fe16N2/Al2O3的浓度为1~2wt%。
作为本发明的优选方案,所述溶剂为甲苯,所述调节pH至8.5~9.5。
作为本发明的优选方案,所述磁场的强度为12~18T。
作为本发明的优选方案,所述蒸发在氮气氛围下进行。
作为本发明的优选方案,所述氮气的流量为0.5~1.5L/min。
作为本发明的优选方案,所述α”-Fe16N2/Al2O3是Al2O3涂覆的Fe16N2纳米颗粒物,涂层厚度为4~5nm;所述α”-Fe16N2/Al2O3在配制悬浮液前先经过分散处理,分散后的直径为43~46nm。
本发明还提供了根据上述所述的磁场作用下自组装磁纳米线的制备方法制备得到的磁纳米线。
本发明同时提供了上述所述的磁纳米线在制备磁性导线中的应用。
与现有技术相比,本发明具有以下有益效果:
高密度阵列的磁性导线,具有独特的磁性属性,廉价可行的制造技术备受期待。本发明在高磁场下合成了高度排列的α”-Fe16N2/Al2O3纳米线,实现大块α”-Fe16N2/Al2O3磁性体的制备。在均匀分散的α”-Fe16N2/Al2O3纳米颗粒浆料的垂直方向上施加外强磁场,并同时通过氮气干燥溶剂。纳米颗粒物可以在溶剂中自由旋转,外加强磁场使它们沿着磁力线的易磁化轴定向,诱导阵列的形成。所制磁纳米线各向异性,导致在磁纳米线平行和垂直方向上的磁性能差异。磁纳米颗粒之间在纳米线方向上的磁偶极相互作用增加,所制得磁性纳米线易轴对齐,磁性显著增强,在优选磁化方向上的矫顽磁力和剩余磁化强度都明显高于未排列纳米颗粒。组装后的高磁性α”-Fe16N2/Al2O3阵列形成直径45nm、长度10mm的磁性纳米线,该磁性纳米线高度线性排列,可检测的磁场强度达0.2T,磁性增强,可实现大块α”-Fe16N2/Al2O3磁性体的制备,该方法过程简单,在非高温高压条件下,通过纳米技术在高强度外部场下制造大块磁性阵列磁体,为电子器件、传感器、数据存储等领域提供了一种环境友好可行的磁性导线制备方法。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为实施例1所采用的装置图,其中,1-内部石英烧杯;2-外部石英烧杯;3-罩子;4-托架;5-软管;6-质量流量计;7-超导磁体;8-外强磁场;
图2为不同放大倍数的α”-Fe16N2/Al2O3自组装磁纳米线的SEM图;
图3为壳核α”-Fe16N2/Al2O3磁性纳米颗粒(Raw NPs)及实施例1所制备的磁纳米线在平行(Par.wire)和垂直(Per.wire)于阵列施加磁场的磁滞回线图。
具体实施方式
现详细说明本发明的多种示例性实施方式,该详细说明不应认为是对本发明的限制,而应理解为是对本发明的某些方面、特性和实施方案的更详细的描述。应理解本发明中所述的术语仅仅是为描述特别的实施方式,并非用于限制本发明。
另外,对于本发明中的数值范围,应理解为还具体公开了该范围的上限和下限之间的每个中间值。在任何陈述值或陈述范围内的中间值以及任何其他陈述值或在所述范围内的中间值之间的每个较小的范围也包括在本发明内。这些较小范围的上限和下限可独立地包括或排除在范围内。
除非另有说明,否则本文使用的所有技术和科学术语具有本发明所述领域的常规技术人员通常理解的相同含义。虽然本发明仅描述了优选的方法和材料,但是在本发明的实施或测试中也可以使用与本文所述相似或等同的任何方法和材料。本说明书中提到的所有文献通过引用并入,用以公开和描述与所述文献相关的方法和/或材料。在与任何并入的文献冲突时,以本说明书的内容为准。
在不背离本发明的范围或精神的情况下,可对本发明说明书的具体实施方式做多种改进和变化,这对本领域技术人员而言是显而易见的。由本发明的说明书得到的其他实施方式对技术人员而言是显而易见的。本发明说明书和实施例仅是示例性的。
关于本文中所使用的“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指包含但不限于。
本发明提供了一种磁场作用下自组装磁纳米线的制备方法,包括以下步骤:将粘结剂和α”-Fe16N2/Al2O3悬浮于溶剂中,调节pH为碱性,之后将所得悬浮液置于磁场中,待溶剂蒸发后,得到所述自组装磁纳米线。
作为本发明的优选方案,粘结剂包括环氧树脂;悬浮液中,粘结剂的浓度为0.5~1.5wt%,α”-Fe16N2/Al2O3的浓度为1~2wt%。
在一些优选实施例中,粘结剂为环氧树脂;悬浮液中,粘结剂的浓度为1.0wt%,α”-Fe16N2/Al2O3的浓度为1.5wt%。
作为本发明的优选方案,溶剂为甲苯,调节pH至8.5~9.5。
在一些优选实施例中,以NH4OH调节pH至9。
作为本发明的优选方案,磁场的强度为12~18T。
在一些优选实施例中,磁场的强度为15T。
作为本发明的优选方案,蒸发在氮气氛围下进行。
作为本发明的优选方案,氮气的流量为0.5~1.5L/min。
在一些优选实施例中,氮气的流量为1.0L/min。
作为本发明的优选方案,α”-Fe16N2/Al2O3是Al2O3涂覆的Fe16N2纳米颗粒物,涂层厚度为4~5nm;α”-Fe16N2/Al2O3在配制悬浮液前先经过分散处理,分散后的直径为43~46nm。
本发明还提供了根据上述磁场作用下自组装磁纳米线的制备方法制备得到的磁纳米线。
本发明同时提供了上述磁纳米线在制备磁性导线中的应用。
以下实施例及对比例中,所采用的α”-Fe16N2/Al2O3胶体为自制,其为Al2O3涂覆的Fe16N2纳米颗粒物,涂层厚度为4.8nm。制备方法为:在立方体状的Fe3O4纳米颗粒物表面涂覆Al2O3,用H2气体还原后再用NH3气体氮化即可。以下不再重复描述。
实施例1
外强磁场作用下自组装磁纳米线的制备方法,步骤如下:
(1)使用珠磨机分散装置将壳核α”-Fe16N2/Al2O3胶体分散至平均直径45.3nm,得到壳核α”-Fe16N2/Al2O3磁性纳米颗粒;
(2)将步骤(1)所得壳核α”-Fe16N2/Al2O3磁性纳米颗粒混合环氧树脂分散于甲苯中,使所得悬浮液中,α”-Fe16N2/Al2O3的浓度为1.5wt%,环氧树脂的浓度为1.0wt%。之后加入NH4OH将pH调节至9。将所得悬浮液超声30min后,取30mL转移至内径35mm、内部高度15mm石英烧杯(内部石英烧杯)中,再将盛有溶液的石英烧杯置于内径为45mm、上带罩子、下带筛网的另一石英烧杯(外部石英烧杯)中,固定于下方托架上。
(3)在一超导磁体中心位置钻50mm孔,将步骤(2)所得盛有悬浮液的双层石英烧杯置于钻孔中心;
(4)在石英烧杯的上部罩子上连接软管,通氮气,通过质量流量计控制氮气流量为1L min-1
(5)外部磁场的最大强度在中心位置的垂直方向上,在中心位置的垂直方向上施加15.0T的外强磁场。
(6)悬浮液在该外强磁场中蒸发24h后取出烧杯,刮擦烧杯内物质,得到干燥的高度阵列排列的壳核α”-Fe16N2/Al2O3自组装磁纳米线。整个制备过程在室温(25℃)下进行。
本实施例所采用的装置如图1所示,其中,1-内部石英烧杯;2-外部石英烧杯;3-罩子;4-托架;5-软管;6-质量流量计;7-超导磁体;8-外强磁场。
所制备的磁纳米线性能测试:
图2为不同放大倍数的α”-Fe16N2/Al2O3自组装磁纳米线的SEM图像,α”-Fe16N2/Al2O3自组装磁纳米线阵列的长度为10mm,长径比的数量级为105。由图2可以看出,分散良好的单个α”-Fe16N2/Al2O3磁性纳米颗粒参与了沿外磁场方向的磁纳米线的形成。磁纳米线不是单个纳米颗粒连接而成,每条线的横截面中包含许多纳米颗粒物。组装磁纳米线的直径为45nm,平均长度为10mm。组装好的电线是直的,彼此平行。
图3为壳核α”-Fe16N2/Al2O3磁性纳米颗粒(Raw NPs)及实施例1所制备的磁纳米线在平行(Par.wire)和垂直(Per.wire)于阵列施加磁场的磁滞回线图。由图3可以看出,与分散的壳核α”-Fe16N2/Al2O3磁性纳米颗粒相比,所制备的阵列沿线方向具有明显的磁性增强效果。磁化特征曲线研究表明,沿导线方向的磁滞回线的矩形比(Mr/Ms)和磁感应矫顽力(Hc)值均显著高于壳核α”-Fe16N2/Al2O3磁性纳米颗粒。组装后的高磁性α”-Fe16N2/Al2O3阵列形成直径45nm、长度10mm的磁性纳米线,可检测的磁场强度为0.2T,而α”-Fe16N2/Al2O3磁性纳米颗粒可检测的磁场强度为<0.1T。详见表1。
表1
对比例1
同实施例1,区别在于,步骤(4)中,通过质量流量计控制氮气流量为0.2L/min。
对比例2
同实施例1,区别在于,步骤(4)中,通过质量流量计控制氮气流量为2L/min。
结果表明,对比例1中,氮气流速较慢时,溶剂挥发慢,会形成短而有序的纳米线。对比例2中,氮气流速较快时,溶剂挥发速度快,虽然纳米线长,但容易形成无规则聚集。因此,氮气流速对于本发明产品制备的成功与否起到至关重要的作用。
对比例1及对比例2所得产品的性能测试如表2所示。
表2
由表2可以看出:氮气流速直接影响产品质量,流速过高或过低都会降低产品性能,实施例中的1L min-1为较佳氮气流速。
以上所述,仅为本发明较佳的具体实施方式,本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围内。

Claims (9)

1.一种磁场作用下自组装磁纳米线的制备方法,其特征在于,包括以下步骤:将粘结剂和α”-Fe16N2/Al2O3悬浮于溶剂中,调节pH为碱性,之后将所得悬浮液置于磁场中,待溶剂蒸发后,得到所述自组装磁纳米线。
2.根据权利要求1所述的磁场作用下自组装磁纳米线的制备方法,其特征在于,所述粘结剂包括环氧树脂,所述悬浮液中,粘结剂的浓度为0.5~1.5wt%,α”-Fe16N2/Al2O3的浓度为1~2wt%。
3.根据权利要求1所述的磁场作用下自组装磁纳米线的制备方法,其特征在于,所述溶剂为甲苯,所述调节pH至8.5~9.5。
4.根据权利要求1所述的磁场作用下自组装磁纳米线的制备方法,其特征在于,所述磁场的强度为12~18T。
5.根据权利要求1所述的磁场作用下自组装磁纳米线的制备方法,其特征在于,所述蒸发在氮气氛围下进行。
6.根据权利要求5所述的磁场作用下自组装磁纳米线的制备方法,其特征在于,所述氮气的流量为0.5~1.5L/min。
7.根据权利要求1所述的磁场作用下自组装磁纳米线的制备方法,其特征在于,所述α”-Fe16N2/Al2O3是Al2O3涂覆的Fe16N2纳米颗粒物,涂层厚度为4~5nm;所述α”-Fe16N2/Al2O3在配制悬浮液前先经过分散处理,分散后的直径为43~46nm。
8.一种根据权利要求1~7任一项所述的磁场作用下自组装磁纳米线的制备方法制备得到的磁纳米线。
9.权利要求8所述的磁纳米线在制备磁性导线中的应用。
CN202310732694.7A 2023-06-19 2023-06-19 一种磁场作用下自组装磁纳米线的制备方法 Pending CN116666099A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310732694.7A CN116666099A (zh) 2023-06-19 2023-06-19 一种磁场作用下自组装磁纳米线的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310732694.7A CN116666099A (zh) 2023-06-19 2023-06-19 一种磁场作用下自组装磁纳米线的制备方法

Publications (1)

Publication Number Publication Date
CN116666099A true CN116666099A (zh) 2023-08-29

Family

ID=87715150

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310732694.7A Pending CN116666099A (zh) 2023-06-19 2023-06-19 一种磁场作用下自组装磁纳米线的制备方法

Country Status (1)

Country Link
CN (1) CN116666099A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011190486A (ja) * 2010-03-12 2011-09-29 Nagoya Institute Of Technology 磁性体粒子で構成されるワイヤーの形成方法
CN104969308A (zh) * 2013-02-06 2015-10-07 日清制粉集团本社股份有限公司 磁性粒子的制造方法、磁性粒子及磁性体
JP2016149465A (ja) * 2015-02-12 2016-08-18 公立大学法人 滋賀県立大学 磁場配向性金属ナノワイヤ分散流体
CN113368855A (zh) * 2021-05-25 2021-09-10 清华大学 一种具有生物催化效果的多功能磁控纳米链

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011190486A (ja) * 2010-03-12 2011-09-29 Nagoya Institute Of Technology 磁性体粒子で構成されるワイヤーの形成方法
CN104969308A (zh) * 2013-02-06 2015-10-07 日清制粉集团本社股份有限公司 磁性粒子的制造方法、磁性粒子及磁性体
JP2016149465A (ja) * 2015-02-12 2016-08-18 公立大学法人 滋賀県立大学 磁場配向性金属ナノワイヤ分散流体
CN113368855A (zh) * 2021-05-25 2021-09-10 清华大学 一种具有生物催化效果的多功能磁控纳米链

Similar Documents

Publication Publication Date Title
Wang et al. Synthesis and characteristics of carbon encapsulated magnetic nanoparticles produced by a hydrothermal reaction
Guo et al. Uniform magnetic chains of hollow cobalt mesospheres from one‐pot synthesis and their assembly in solution
Hui et al. Core-shell Fe 3 O 4@ SiO 2 nanoparticles synthesized with well-dispersed hydrophilic Fe 3 O 4 seeds
Si et al. Preparation and characterization of bio-compatible Fe3O4@ Polydopamine spheres with core/shell nanostructure
Zou et al. A facile bi-phase synthesis of Fe 3 O 4@ SiO 2 core–shell nanoparticles with tunable film thicknesses
Liu et al. Synthesis of Fe3O4/CNTs magnetic nanocomposites at the liquid–liquid interface using oleate as surfactant and reactant
Zhang et al. Halloysite nanotubes coated with magnetic nanoparticles
Lan et al. Facile synthesis of monodisperse superparamagnetic Fe3O4/PMMA composite nanospheres with high magnetization
Xuan et al. Hierarchical core/shell Fe 3 O 4@ SiO 2@ γ-AlOOH@ Au micro/nanoflowers for protein immobilization
Na et al. Fabrication and characterization of the magnetic ferrite nanofibers by electrospinning process
Gervald et al. Synthesis of magnetic polymeric microspheres
Liu et al. Electrostatic self-assembly of Fe3O4 nanoparticles on carbon nanotubes
Ma et al. Fabrication of electromagnetic Fe 3 O 4@ polyaniline nanofibers with high aspect ratio
Hao et al. Sandwich Fe 2 O 3@ SiO 2@ PPy ellipsoidal spheres and four types of hollow capsules by hematite olivary particles
Zhang et al. Magnetic recyclable Ag catalysts with a hierarchical nanostructure
Liu et al. Comparison of the effects of microcrystalline cellulose and cellulose nanocrystals on Fe 3 O 4/C nanocomposites
Feng et al. Polymer-controlled synthesis of Fe3O4 single-crystal nanorods
Wang et al. Large-scale fabrication and application of magnetite coated Ag NW-core water-dispersible hybrid nanomaterials
Salgueiriño-Maceira et al. Cobalt and silica based core–shell structured nanospheres
Liu et al. Synthesis of monodispersed Fe 3 O 4@ C core/shell nanoparticles
CN105435753A (zh) 一种介孔磁性高分子复合球及其制备方法与应用
CN116666099A (zh) 一种磁场作用下自组装磁纳米线的制备方法
Nidhin et al. Polysaccharide films as templates in the synthesis of hematite nanostructures with special properties
Dong et al. Controlled synthesis and self-assembly of dendrite patterns of Fe3O4 nanoparticles
Li et al. Synthesis of ellipsoidal hematite/polymer/titania hybrid materials and the corresponding hollow ellipsoidal particles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20230829