CN116623137A - 一种固体润滑涂层的制备方法 - Google Patents

一种固体润滑涂层的制备方法 Download PDF

Info

Publication number
CN116623137A
CN116623137A CN202310526395.8A CN202310526395A CN116623137A CN 116623137 A CN116623137 A CN 116623137A CN 202310526395 A CN202310526395 A CN 202310526395A CN 116623137 A CN116623137 A CN 116623137A
Authority
CN
China
Prior art keywords
solid lubricating
nitrogen
argon
lubricating coating
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310526395.8A
Other languages
English (en)
Inventor
曹华堂
郭树人
刘中豪
李尚�
刘鑫旺
董选普
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN202310526395.8A priority Critical patent/CN116623137A/zh
Publication of CN116623137A publication Critical patent/CN116623137A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0042Controlling partial pressure or flow rate of reactive or inert gases with feedback of measurements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/548Controlling the composition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Fluid Mechanics (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明提出了一种固体润滑涂层的制备方法,包括以下步骤:在基底表面预沉积Cr预结合层,得到预处理基底;氮气为反应气体,氩气为保护气体,进行磁控溅射镀膜,在溅射过程中使WS2与氮气发生反应,沉积在所述预处理基底表面,通过氮气和氩气的流量配比控制反应溅射气氛,得到WS2基W‑S‑N复合固体润滑涂层;其中,氩气和氮气的流量配比为2:1‑4:3;氩气流量为10‑20sccm;氮气流量为5‑15sccm。综上,本发明通过控制氮气和氩气的流量配比来控制反应溅射气氛,最终构建非晶‑纳米晶复合涂层结构,实现了WS2基固体润滑涂层在高温交变苛刻环境下的高温连续稳定低摩阻和摩擦可逆热循环,从而达到延长涂层服役寿命的目的。

Description

一种固体润滑涂层的制备方法
技术领域
本发明涉及固体润滑技术领域,尤其涉及一种固体润滑涂层的制备方法。
背景技术
在工程应用和生产生活中,有运动的地方就有摩擦磨损,磨损作为工程零件的主要失效形式之一,每年约有百分之八十的机械零部件因磨损而失效,造成大量的能源消耗和经济损失。因此润滑成为一种有效解决上述问题的重要技术方法,常见的润滑材料可分为固体润滑剂和液体润滑剂,在真空、高温、交变温等苛刻环境下液体润滑剂常被禁用,此时严格要求固体润滑。固体润滑剂主要包括层状结构物质(过渡族金属二硫化物、类金刚石碳等)、软金属(金、银、锌等)、氧化物(氧化铅、氧化硼等)和高分子聚合物(聚四氟乙烯、聚酰亚胺等)。以上固体润滑材料在真空、高温等特殊工况环境下具有优异的摩擦学性能,广泛应用于航空航天等领域。
上述固体润滑材料在应用过程中存在一些缺点,比如,WS2的致密性较差、硬度低,易发生磨损失效,仅适用于真空或干燥环境,在潮湿、高温等环境下易潮解、氧化导致润滑效果降级,同时在交变环境循环下涂层自适应能力不佳,连续变温和交变环境循环下涂层润滑效果不稳定,摩擦系数偏大且摩擦不可逆。
为了提高WS2的耐氧化、耐湿性和循环可逆性,研究人员通过添加非金属元素与WS2形成多组元固体润滑材料,发挥多组元协同作用以改善固体润滑的力学性能差和高温氧化等问题;例如,公开号为CN104862658B的专利中公开了一种W-S-C-N自润滑梯度涂层刀具及其制备工艺,在该技术中,W-S-C-N自润滑梯度涂层刀具通过添加C元素、N元素,提高WS2涂层硬度,且W-S-C-N涂层的梯度设计使涂层强度、涂层与刀具基底结合力增加,涂层内应力降低,涂层使用寿命延长,但是所得涂层的摩擦系数较高、不稳定且不具备循环可逆性能。文献Surface and Coatings Technology.2015,261:7-14公开了W-S-N涂层的制备及摩擦性能,但是该技术中的涂层并不能适应于连续变温(升温、降温)、温度湿度循环切换环境。
另外,现有技术中采用物理气相沉积技术可制备结合力好、均匀致密的固体润滑涂层,但是仍存在涂层摩擦系数高、高温潮湿环境易氧化、交变环境摩擦不可逆等问题。
发明内容
有鉴于此,本发明提出了一种固体润滑涂层的制备方法,针对WS2高温氧化和摩擦不可逆造成的服役寿命短等问题,通过改良WS2固体润滑涂层与非金属添加剂结合的成分体系,并通过控制氮气和氩气的流量配比来控制反应溅射气氛,最终构建非晶-纳米晶复合涂层结构,实现了WS2基固体润滑涂层在高温交变苛刻环境下的高温连续稳定低摩阻和摩擦可逆热循环,从而达到延长涂层服役寿命的目的。
本发明的技术方案是这样实现的:
本发明提供了一种固体润滑涂层的制备方法,固体润滑涂层的成分组元包括WS2和非金属N;非金属N为增强相;固体润滑涂层的制备方法包括以下步骤:
步骤1,在基底表面预沉积Cr预结合层;得到预处理基底。
步骤2,氮气为反应气体,氩气为溅射保护气体,进行磁控溅射镀膜,在溅射过程中使WS2靶材与氮气发生反应,沉积在预处理基底表面,通过氮气和氩气流量的配比控制反应溅射气氛,获得WS2基W-S-N复合固体润滑涂层;其中,氩气和氮气的流量配比为2:1-4:3;氩气流量为10-20sccm;氮气流量为5-15sccm。
在磁控溅射镀膜前预沉积结合层,能够有效减少涂层与基底之间的内应力,提高膜-基结合力,有利于降低涂层磨损,延长涂层服役寿命。
W-S-N复合固体润滑涂层具备单层致密结构,非金属N的加入显著改善了纯WS2疏松多孔的缺点,优化了复合涂层的力学性能。
优选的,氩气和氮气的流量配比为4:2.5,氩气流量为16sccm;氮气流量为10sccm。
优选地,步骤1中,上述基底为:单晶硅Ra<1nm或表面粗糙度为0.1-0.16μm的M2高速钢。
优选地,步骤1中,基底表面预沉积Cr预结合层的条件为:采用磁控双脉冲直流电源,在5.5-6.5kW脉冲直流功率条件下,工作10-20min。
优选地,步骤1进行前,将基底放入酒精溶液中超声清洗25-35min,然后用丙酮擦拭清洗基底表面,55-65℃烘干30-40min,在基底安装在样品支架上之后,进行镀膜实验前还需对基底和溅射靶材进行氩气等离子体清洗;进一步优选的,氩气等离子体清洗参数设置为偏压-350至-450V,脉冲频率200-300kHz,占空比80-95%,清洗时间15-25min。丙酮选用体积浓度为99.5%的分析纯,酒精选用体积浓度为99.5%的无水乙醇。
优选地,在本发明步骤1中,上述Cr预结合层的厚度为100-300nm。
优选地,步骤2中,磁控溅射镀膜的条件为:本底真空度为3×10-4-5×10-4Pa,样品台的旋转速度为2.5-3.5rpm,靶基距为70-290mm。
优选地,步骤2中,WS2靶材的溅射条件为:电压500-600V、脉冲频率100-200kHz、占空比60-70%、溅射电流0.5-1.5A;
优选地,步骤2中,总溅射压力为0.5-2Pa。
优选地,步骤2中,WS2基W-S-N复合固体润滑涂层的厚度为0.8-2.0μm。
本发明的固体润滑涂层的制备方法相对于现有技术具有以下有益效果:
1、通过氩气和氮气流量的配比来控制反应溅射气氛,不同氮气和氩气流量比调控涂层的成分与组织结构,最终构建非晶-纳米晶复合涂层结构,在高温交变温和环境循环切换下实现涂层的连续稳定低摩阻和摩擦可逆循环。
2、W-S-N复合涂层在400℃高温下能保持极低的摩擦系数(<0.02),在室温-400℃连续升温和400℃-室温连续降温环境下摩擦系数保持稳定,在室温-400℃、大气和潮湿环境循环切换下本涂层的摩擦因子仍可以保持在稳定且极低的水平,且表现出摩擦可逆循环的特性。
3、本发明的W-S-N复合涂层作为工程部件的固体润滑剂(比如高温轴承和紧固件润滑表面润滑涂层)时,因其极低的温度敏感性和环境适应性,可有效延长机械零部件在极端苛刻环境下的服役寿命;因此,本发明所制备的固体润滑涂层在航空航天、交通运输等领域具有广泛的应用前景。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是实施例1的复合涂层在不同温度测试条件下的摩擦系数图;
图2是实施例1的复合涂层在连续升温测试条件下的摩擦系数图;
图3是实施例1的复合涂层在连续降温测试条件下的摩擦系数图;
图4是实施例1的复合涂层在交变环境循环切换测试条件下的摩擦系数图;
图5是实施例2的复合涂层在不同温度测试条件下的摩擦系数图;
图6是实施例2的复合涂层在连续升温测试条件下的摩擦系数图;
图7是实施例2的复合涂层在连续降温测试条件下的摩擦系数图;
图8是实施例1的复合涂层在不同温度摩擦测试后磨道的拉曼光谱图;
图9是实施例2的复合涂层在不同温度摩擦测试后磨道的拉曼光谱图;
图10是实施例1和实施例2复合涂层在连续变温摩擦测试后磨道的拉曼光谱图;
图11是实施例1和实施例2复合涂层在交变环境循环切换摩擦测试后磨道的拉曼光谱图;
图12是实施例1的复合涂层的组织结构图;
图13是对比例1的复合涂层的组织结构图;
图14是对比例2的复合涂层的组织结构图;
图15是对比例3的复合涂层的组织结构图;
图16是对比例1的复合涂层在400℃条件下的摩擦系数图;
图17是对比例2的复合涂层在400℃条件下的摩擦系数图;
图18是对比例3的复合涂层在400℃条件下的摩擦系数图。
具体实施方式
下面将结合本发明实施方式,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。
实施例1
一种固体润滑涂层的制备方法,固体润滑涂层的成分组元包括WS2和非金属N;非金属N为增强相;固体润滑涂层的厚度为1.2μm。固体润滑涂层的制备方法包括以下步骤:
(1)对单晶硅或M2高速钢基底进行丙酮和酒精超声清洗、烘干,再进行氩气等离子清洗,等离子清洗参数设置为偏压-400V,脉冲频率250kHz,占空比88%,清洗时间20min;
(2)设置工艺参数,本底真空度为4×10-4Pa,保护气体氩气,反应气体为氮气,总溅射压力为1.5Pa,基底温度为22℃,衬底旋转速度为3rpm,靶基距为260mm;WS2靶材采用射频电源,在正式溅射前,设置6kW脉冲直流功率条件下在基底表面预沉积Cr预结合层,预结合层厚度为270nm;设置气体流量,氩气和氮气的流量配比为4:2.5,氩气流量为16sccm;氮气流量为10sccm;
(3)磁控溅射镀膜,WS2靶采用电压为560V、脉冲频率140kHz、占空比65%、溅射电流0.8A的脉冲直流电源,溅射时间2h,与氮气发生反应沉积在基底表面,获得WS2基W-S-N复合固体润滑涂层。
实施例2
一种固体润滑涂层的制备方法,固体润滑涂层的成分组元包括WS2和非金属N;非金属N为增强相;固体润滑涂层的厚度为0.8μm。固体润滑涂层的制备方法包括以下步骤:
(1)对单晶硅或M2高速钢基底进行丙酮和酒精超声清洗、烘干,在进行氩气等离子清洗,等离子清洗参数设置为偏压-350V,脉冲频率200kHz,占空比80%,清洗时间15min;
(2)设置工艺参数,本底真空度为3×10-4Pa,保护气体氩气,反应气体为氮气,总溅射压力为0.5Pa,基底温度为20℃,衬底旋转速度为2.5rpm,靶基距为70mm;WS2靶材采用射频电源,在正式溅射前,设置5.5kW脉冲直流功率条件下在基底表面预沉积Cr预结合层,预结合层厚度为100nm;设置气体流量,氩气和氮气的流量配比为2:1;氩气流量为10sccm;氮气流量为5sccm;
(3)磁控溅射镀膜,WS2靶采用电压为500V、脉冲频率100kHz、占空比60%、溅射电流0.5A的脉冲直流电源,溅射时间1.5h,与氮气发生反应沉积在基底表面,获得WS2基W-S-N复合固体润滑涂层。
实施例3
一种固体润滑涂层的制备方法,固体润滑涂层的成分组元包括WS2和非金属N;非金属N为增强相;固体润滑涂层的厚度为2.0μm。固体润滑涂层的制备方法包括以下步骤:
(1)对单晶硅或M2高速钢基底进行丙酮和酒精超声清洗、烘干,在进行氩气等离子清洗,等离子清洗参数设置为偏压-450V,脉冲频率300kHz,占空比95%,清洗时间25min;
(2)设置工艺参数,本底真空度为5×10-4Pa,保护气体氩气,反应气体为氮气,总溅射压力为2Pa,基底温度为25℃,衬底旋转速度为3.5rpm,靶基距为290mm;WS2靶材采用射频电源,在正式溅射前,设置6.5kW脉冲直流功率条件下在基底表面预沉积Cr预结合层,预结合层厚度为300nm;设置气体流量,氩气和氮气的流量配比为4:3;氩气流量为20sccm;氮气流量为15sccm;
(3)磁控溅射镀膜,WS2靶采用电压为600V、脉冲频率200kHz、占空比70%、溅射电流1.5A的脉冲直流电源,溅射时间2.5h,与氮气发生反应沉积在基底表面,获得WS2基W-S-N复合固体润滑涂层。
对比例1
在实施例1的基础上,氩气和氮气的流量配比为1:1;氩气流量为6sccm;氮气流量为6sccm;其他条件均一致。
对比例2
在实施例1的基础上,氩气和氮气的流量配比为4:5;氩气流量为24sccm;氮气流量为30sccm;其他条件均一致。
对比例3
在实施例1的基础上,不使用氩气作为保护气体,只通入氮气作为保护气和反应气体,氮气流量设置为26sccm,其他条件均一致。
表征与性能测试
(1)采用高速往复摩擦磨损实验仪对实施例1中制备的W-S-N复合固体润滑涂层在不同温度和高温交变环境下进行摩擦性能检测,测试条件为:100℃、200℃、400℃高温下进行高速往复摩擦磨损实验,摩擦副材料为Ф6mm的氮化硅球,所检测的摩擦系数如图1所示,结果显示在不同高温下W-S-N复合固体润滑涂层的摩擦系数始终保持稳定且极低的水平(<0.02);
设置摩擦磨损测试条件为100-400℃连续升温,所检测的摩擦系数如图2所示,设置摩擦磨损测试条件为400-100℃连续降温,所检测的摩擦系数如图3所示,结果显示在连续变温测试条件下,涂层摩擦系数仍保持在极低的水平;
设置摩擦磨损测试条件为:400℃-25℃环境循环切换,所检测的摩擦系数如图4所示,结果显示在温度湿度循环切换的条件下,W-S-N复合固体润滑涂层表现出摩擦可逆循环的特性。
(2)采用高速往复摩擦磨损实验仪对实施例2中制备的W-S-N复合固体润滑涂层在不同温度和高温交变环境下进行摩擦性能检测,设置测试条件同实施例1测试条件,所检测的W-S-N复合固体润滑涂层的摩擦系数如图5-7所示,结果显示W-S-N复合固体润滑涂层在高温、持续变温和交变环境循环切换环境下保持稳定且极低的摩擦系数,同时表现出摩擦可逆循环的特性。
(3)采用高温拉曼光谱仪对实施例1和实施例2的涂层的分子和物相结构进行表征,对经过所述高温、持续变温、交变环境循环切换测试条件之后的涂层魔道中心进行拉曼光谱检测,实施例1和实施例2经过100℃、200℃、400℃摩擦磨损测试条件后的拉曼光谱分析结果如图8和图9所示,经过连续变温摩擦磨损测试条件后的拉曼光谱分析结果如图10所示,经过交变环境循环切换摩擦磨损测试条件后的拉曼光谱分析如图11所示。
(4)实施例1中氩气和氮气的流量配比为4:2.5,氩气流量为16sccm;氮气流量为10sccm;制备的W-S-N复合固体润滑涂层的组织结构如图12,涂层断口呈现柱状结构,且均匀致密(见图12a),表现出典型的非晶纳米晶结构,涂层非晶基体上发生原子级取向重置,在摩擦过程中由于摩擦诱导在非晶基体上产生WS2纳米片,从而实现超低的摩擦系数(见图12b)。合适的氮气和氩气配比,其组织结构均表现出非晶纳米晶结构,且摩擦过程中在非晶基体上更容易析出WS2纳米晶,实现良好润滑。
由于实验过程中测得的图片较多,因此,本发明只示出实施例1和2的摩擦系数图、拉曼光谱图;只示出实施例1的组织结构图。
结果显示,W-S-N复合固体润滑涂层在高温、持续变温和交变环境循环切换测试条件后,均在非晶基底中生成了WS2相,在温度较高时WS2的锋更加尖锐,说明在高温度下复合涂层非晶基底中生成更多的WS2相,结合所示复合涂层在不同测试条件下的摩擦系数表明,复合涂层在高温、持续变温和交变环境循环切换测试条件下保持稳定且极低的摩擦系数的原因主要归因于高温摩擦诱导产生的WS2润滑相。
对比例1-3中制备的W-S-N复合固体润滑涂层的组织结构如图13、14和15,由上述三幅图可知,对比例1-2中氩气和氮气的流量配比不在本发明的流量配比范围内,涂层呈现分层、疏松多孔结构,并且在高温摩擦时,更容易发生氧化。同时,对比例3中不加入氩气,只通入氮气作为保护气和反应气体,涂层相较于对比例1-2,涂层分层和孔隙现象更加严重。
对比例1-3中制备的W-S-N复合固体润滑涂层,在400℃高温条件下,进行摩擦性能检测,所检测的摩擦系数如图16-18所示,对比例1和对比例2中,涂层的摩擦系数均在0.04上下波动,比本申请的摩擦系数大,同时,对比例1和对比例2中,涂层的摩擦系数不稳定;对比例3中,涂层的摩擦系数最大,大于0.2,且不稳定,在摩擦循环次数大于3500时,涂层摩擦系数出现跳跃式增长,涂层润滑失效,说明对比例3中制备的W-S-N复合固体润滑涂层效果最差。
由于对比例1-3中制备的W-S-N复合固体润滑涂层,在400℃高温条件下,其摩擦系数已经相对较高且不稳定,因此在100-400℃连续升温、400-100℃连续降温、400℃-25℃环境循环切换等条件下,涂层会表现出较高的温度敏感性,自适应能力较差。
以上所述仅为本发明的较佳实施方式而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种固体润滑涂层的制备方法,其特征在于:包括以下步骤:
步骤1,在基底表面预沉积Cr作为预结合层,得到预处理基底;
步骤2,以氮气为反应气体,氩气为保护气体,进行磁控溅射镀膜,在溅射过程中使WS2与氮气发生反应,沉积在所述预处理基底表面,得到WS2基W-S-N复合固体润滑涂层;
其中,氩气和氮气的流量配比为2:1-4:3;氩气流量为10-20sccm;氮气流量为5-15sccm。
2.如权利要求1所述的固体润滑涂层的制备方法,其特征在于:所述氩气和氮气的流量配比为4:2.5,所述氩气流量为16sccm,氮气流量为10sccm。
3.如权利要求1所述的固体润滑涂层的制备方法,其特征在于:所述步骤1中,所述基底为:单晶硅Ra<1nm或表面粗糙度为0.1-0.16μm的M2高速钢。
4.如权利要求1所述的固体润滑涂层的制备方法,其特征在于:所述步骤1进行前,将基底放入酒精溶液中超声清洗25-35min,然后用丙酮擦拭清洗基底表面,55-65℃烘干30-40min;基底进行镀膜实验前,对基底和溅射靶材进行氩气等离子体清洗。
5.如权利要求4所述的固体润滑涂层的制备方法,其特征在于:所述氩气等离子体清洗的参数为:偏压-350至-450V,脉冲频率200-300kHz,占空比80-95%,清洗时间15-25min。
6.如权利要求1所述的固体润滑涂层的制备方法,其特征在于:所述步骤1中,基底表面预沉积Cr预结合层的条件为:采用磁控双脉冲直流电源,在5.5-6.5kW脉冲直流功率条件下,工作10-20min。
7.如权利要求1所述的固体润滑涂层的制备方法,其特征在于:所述Cr预结合层的厚度为100-300nm。
8.如权利要求1所述的固体润滑涂层的制备方法,其特征在于:所述步骤2中,磁控溅射镀膜的条件为:本底真空度为3×10-4-5×10-4Pa,样品台的旋转速度为2.5-3.5rpm,靶基距为70-290mm。
9.如权利要求1所述的固体润滑涂层的制备方法,其特征在于:所述步骤2中,WS2靶材的溅射条件为:电压500-600V、脉冲频率100-200kHz、占空比60-70%、溅射电流0.5-1.5A;总溅射压力为0.5-2Pa。
10.如权利要求1所述的固体润滑涂层的制备方法,其特征在于:所述步骤2中,WS2基W-S-N复合固体润滑涂层的厚度为0.8-2.0μm。
CN202310526395.8A 2023-05-11 2023-05-11 一种固体润滑涂层的制备方法 Pending CN116623137A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310526395.8A CN116623137A (zh) 2023-05-11 2023-05-11 一种固体润滑涂层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310526395.8A CN116623137A (zh) 2023-05-11 2023-05-11 一种固体润滑涂层的制备方法

Publications (1)

Publication Number Publication Date
CN116623137A true CN116623137A (zh) 2023-08-22

Family

ID=87620535

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310526395.8A Pending CN116623137A (zh) 2023-05-11 2023-05-11 一种固体润滑涂层的制备方法

Country Status (1)

Country Link
CN (1) CN116623137A (zh)

Similar Documents

Publication Publication Date Title
Yang et al. Influence of service temperature on tribological characteristics of self-lubricant coatings: A review
Habig Fundamentals of the tribological behaviour of diamond, diamond-like carbon and cubic boron nitride coatings
Xu et al. Microstructure and tribological behaviors of MoN-Cu nanocomposite coatings sliding against Si3N4 ball under dry and oil-lubricated conditions
CN107653438A (zh) 一种具有真空长效润滑性能碳薄膜的制备方法
CN112760610A (zh) 一种航空轴承表面防护用高熵氮化物涂层及其制备方法
Gao et al. Structural, mechanical, and tribological properties of WS 2-Al nanocomposite film for space application
CN102994947A (zh) 类金刚石复合二硫化钼纳米多层薄膜及其制备方法
Liu et al. Tribological properties of adaptive phosphate composite coatings with addition of silver and molybdenum disulfide
Li et al. Tribological performance of GLC, WC/GLC and TiN films on the carburized M50NiL steel
Li et al. The effect of atmosphere on the tribological behavior of magnetron sputtered MoS2 coatings
Bülbül et al. MoS 2-Ti composite films having (002) orientation and low Ti content
Li et al. Tribological performance of a novel wide-temperature applicable aC/(WC/aC) film against M50 steel
Zhu et al. Nano-crystallization-driven high temperature self-lubricating properties of magnetron-sputtered WS 2 coatings
Wang et al. Microstructure and tribological properties of Ni3Al matrix micro-laminated films deposited by electrohydrodynamic atomization
Li et al. Integration of MoST and Graphit-iC coatings for the enhancement of tribological and corrosive properties
CN116623137A (zh) 一种固体润滑涂层的制备方法
CN115261791B (zh) 一种能够耐受湿度的超润滑摩擦配副方法
Huang et al. Effects of C content on the microstructure, mechanical and tribological properties of TiAlSiCN coatings
CN111455318A (zh) 一种氮化钼/二硫化钼/银三元复合高温固体润滑薄膜及其制备方法
Dong et al. Temperature-adaptive lubrication of Ag doped Cr2AlC nanocomposite coatings
Lei et al. Characterization and tribological behavior of TiAlN/TiAlCN multilayer coatings
Cai et al. Self‐lubricating effect of solid solution elements on tribological performance of Ti3AlC2 over a wide temperature range
CN114196913A (zh) 一种超低摩擦固液复合润滑涂层及其制备方法
Zhou et al. Exploiting carbon‐based (Cr, Ce)/a‐C: H nanocomposite film on cemented WC
Chen Effect of manganese phosphating on properties of 45 steel used for gear production

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination