CN116590395A - Hdac10作为靶点在制备stat3相关疾病药物中的应用 - Google Patents

Hdac10作为靶点在制备stat3相关疾病药物中的应用 Download PDF

Info

Publication number
CN116590395A
CN116590395A CN202310367097.9A CN202310367097A CN116590395A CN 116590395 A CN116590395 A CN 116590395A CN 202310367097 A CN202310367097 A CN 202310367097A CN 116590395 A CN116590395 A CN 116590395A
Authority
CN
China
Prior art keywords
hdac10
macrophage
stat3
related disease
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310367097.9A
Other languages
English (en)
Inventor
赖天文
钟宇
吕莹莹
苏国媚
王云
方佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Affiliated Hospital of Guangdong Medical University
Original Assignee
Affiliated Hospital of Guangdong Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Affiliated Hospital of Guangdong Medical University filed Critical Affiliated Hospital of Guangdong Medical University
Priority to CN202310367097.9A priority Critical patent/CN116590395A/zh
Publication of CN116590395A publication Critical patent/CN116590395A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0276Knock-out vertebrates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • C12N9/80Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5) acting on amide bonds in linear amides (3.5.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y305/00Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
    • C12Y305/01Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in linear amides (3.5.1)
    • C12Y305/01098Histone deacetylase (3.5.1.98), i.e. sirtuin deacetylase
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/0331Animal model for proliferative diseases
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/035Animal model for multifactorial diseases
    • A01K2267/0368Animal model for inflammation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Veterinary Medicine (AREA)
  • General Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Pulmonology (AREA)
  • Environmental Sciences (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Epidemiology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Plant Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明提供HDAC10作为靶点在制备STAT3相关疾病药物中的应用。本研究发现在哮喘患者以及哮喘小鼠肺部巨噬细胞中,HDAC10高表达。此外,巨噬细胞中HDAC10的缺失显著保护小鼠免受过敏原诱导的气道炎症的影响,同时肺中M2型巨噬细胞的聚集显著减少。在机制上,Hdac10通过激活PI3K/Akt信号通路促进STAT3表达,HDAC10通过去乙酰化修饰STAT3促进巨噬细胞M2极化。本发明还探索了HDAC10抑制剂,通过腹腔内注射,靶向巨噬细胞M2极化,来缓解过敏原诱导的气道炎症。通过一系列的前期研究,本发明开辟了HDAC10作为靶点进行相关疾病研究、以及治疗的新途径。

Description

HDAC10作为靶点在制备STAT3相关疾病药物中的应用
技术领域
本发明属于生物医药技术领域,具体涉及HDAC10作为靶点在制备STAT3相关疾病药物中的应用。
背景技术
支气管哮喘是一种常见的慢性呼吸道疾病,是多种炎症细胞及炎症介质参与的气道慢性炎症。哮喘是全球发病率上升最快的疾病之一,世界范围哮喘发病率平均每10年增加50%,目前尚无有效的治疗方法。因此,研究哮喘发生与发展的分子机制至关重要。巨噬细胞在宿主肺防御中至关重要,其特点是具有可塑性和多样性,主要分为经典激活表型(M1)和替代激活表型(M2)两大类。包括我们以往的研究表明,M2巨噬细胞,在调节过敏性哮喘气道炎症、气道高反应性和气道重塑中发挥主导作用,且与哮喘疾病严重程度呈正相关。
HDAC10为第II类组蛋白去乙酰化酶。同源性比较表明HDAC10与HDAC6最相似。两者都含有在其它HDAC中未发现的独特的第二催化结构域。但是,在HDAC10中,此域不起作用。因此,HDAC10和HDAC6具有不寻常的结构和药理学特征。此外,HDAC10与HDAC6不同的是,HDAC6通常存在于细胞质中,而HDAC10主要存在于细胞核中。目前关于HDAC10是否参与哮喘的发病机制尚未见报道。此外,信号转导和转录激活因子3(STAT3)与多种免疫性疾病、感染性疾病以及肿瘤等的发生、发展密切相关。而HDAC10是否对STAT3去乙酰化表观遗传修饰的研究也未见报道。因此,有必要开展这方面的相关研究,以开辟相关疾病治疗的新途径。
发明内容
本发明的目的在于探索HDAC10与哮喘发病机制之间的关联,进而提供HDAC10作为靶点在制备STAT3相关疾病药物中的应用。还提供HDAC10作为靶点制备小鼠模型中的应用。以及一种HDAC10抑制剂及其应用。
为达到以上技术目的,本申请采用的技术方案如下:
第一方面,本发明提供HDAC10作为靶点在制备STAT3相关疾病药物中的应用。
优选地,所述STAT3相关疾病为STAT3信号通路过表达产生的免疫性疾病、感染性疾病或者肿瘤;更为优选地,所述STAT3相关疾病为过敏原诱发的哮喘;
和/或,优选地,所述药物通过抑制HDAC10生成或者降低HDAC10含量进而预防和/或治疗STAT3相关疾病。
第二方面,本发明提供HDAC10作为靶点在制备M2型巨噬细胞相关疾病药物中的应用。
优选地,所述M2型巨噬细胞相关疾病为M2型巨噬细胞极化导致的炎症性疾病;更为优选地,所述M2型巨噬细胞相关疾病为过敏原诱发的哮喘;
和/或,优选地,所述药物通过抑制HDAC10生成或者降低HDAC10含量进而预防和/或治疗M2型巨噬细胞相关疾病。
第三方面,本发明提供一种HDAC10抑制剂,所述HDAC10抑制剂通过抑制HDAC10生成或者降低HDAC10含量进而预防和/或治疗STAT3相关疾病或者M2型巨噬细胞相关疾病。
优选地,所述STAT3相关疾病为STAT3信号通路过表达产生的免疫性疾病、感染性疾病或者肿瘤;更为优选地,所述STAT3相关疾病为过敏原诱发的哮喘。
优选地,所述M2型巨噬细胞相关疾病为巨噬细胞M2极化导致的炎症性疾病;更为优选地,所述M2型巨噬细胞相关疾病为过敏原诱发的哮喘。
优选地,所述HDAC10抑制剂至少含有丹酚酸B、异类叶升麻苷、安格洛甙C、氧丙酸、帕比司他中的至少一种;
和/或,优选地,所述HDAC10抑制剂的剂型为口服剂和注射剂;更为优选地,所述HDAC10抑制剂为注射溶液剂,并通过腹腔注射方式给予;
和/或,优选地,所述HDAC10抑制剂还包括药学上可接受的载体或辅料。
第四方面,本发明提供HDAC10作为靶点制备巨噬细胞条件性敲除Hdac10缺失小鼠模型中的应用。
第五方面,本发明提供一种巨噬细胞条件性敲除Hdac10缺失小鼠模型的构建方法:包括:
步骤1,获取靶向条件敲除HDAC10基因的小鼠模型;
步骤2,将靶向条件敲除HDAC10基因的小鼠模型与LysMCre小鼠杂交繁殖,获得F1代杂合子,即为巨噬细胞条件性敲除HDAC10缺失小鼠模型。
优选地,所述步骤1中,获取靶向条件敲除HDAC10基因的小鼠模型的过程包括:
步骤1-1,采用CRISPR-Cas9系统设计靶向HDAC10基因的gRNA,所述gRNA作用位点为HDAC10的2号外显子和14号外显子;
步骤1-2,将靶向Hdac10基因的gRNA、含有loxP位点的供体载体和Cas9 mRNA共同注射到小鼠受精卵中,然后将受精卵移植到假孕母鼠体内,产出F0代,对F0代进行PCR鉴定。
优选地,所述gRNA的序列如Seq_1和Seq_2所示(5’-CTGTGCCCATAGCTACACCGTGG-3’,5’-GCCAAATTGCTTAAAACTACAGG-3’);
优选地,PCR鉴定引物序列如Seq_3~6所示:
5’arm forward primer(F2):5’-GACAAGTTCTGGGCAAATACACTTT-3’(Seq_3)
3’loxP reverse primer(R2):5’-GTGGATTCGGACCAGTCTGA-3’(Seq_4)
5’loxP forward primer(F1):5’-GACCACGGATAACTTCGTATAGC-3’(Seq_5)
3’arm reverse primer(R1):5’-GTTCTGGAGGTAGAGGACGCCTG-3’(Seq_6);
和/或,优选地,所述步骤2中,F1代杂合子进行杂交筛选获得HDAC10基因敲除的纯合子代,以所述纯合子代作为巨噬细胞条件性敲除HDAC10缺失小鼠模型。
本发明展开一系列前期研究,进而提供HDAC10作为靶点在制备STAT3相关疾病药物中的应用,以及提供HDAC10作为靶点制备小鼠模型中的应用。本研究发现在哮喘患者以及哮喘小鼠肺部巨噬细胞中,HDAC10高表达。此外,巨噬细胞中HDAC10的缺失显著保护小鼠免受过敏原诱导的气道炎症的影响,同时肺中M2巨噬细胞的聚集显著减少。在机制上,Hdac10通过激活PI3K/Akt信号通路促进STAT3表达,HDAC10通过去乙酰化修饰STAT3促进M2型巨噬细胞极化。本发明还探索了HDAC10抑制剂,通过腹腔内注射,降低M2型巨噬细胞极化,来缓解过敏原诱导的气道炎症。
附图说明
图1为本发明实施例1中对照组和哮喘患者组气道活检组织HDAC10 IHC染色结果,其中图A为哮喘患者和对照者气道活检组织的IHC染色在×400放大率下拍摄的图像;图B为使用Image J软件对IHC结果进行量化的柱状图;图C为哮喘患者和对照者气道活检组织切片HDAC10和CD206免疫共染色的代表性IHC结果,在×400放大率下拍摄图像;图D为使用Image J软件对IHC进行量化的柱状图。
图2为本发明实施例1中对照组和哮喘患者组外周血样本中Hdac10的表达情况。
图3为实施例2中小鼠模型的构建以及相关鉴定结果,其中,A图为Hdac10fl/fl-LysMCre小鼠的制备原理图;B图为Hdac10fl/fl-LysMCre小鼠的琼脂糖凝胶电泳结果;C图为Hdac10fl/fl和Hdac10fl/fl-LysMCre小鼠骨髓巨噬细胞中Hdac10缺陷的qRT-PCR分析结果;D图为Hdac10fl/fl和Hdac10fl/fl-LysMCre小鼠骨髓巨噬细胞中Hdac10缺陷的Western blot分析结果。
图4为实施例3中第3小节HDM(100μg/ml)处理完的细胞的Western blot结果。
图5为实施例3中第4小节STAT3激动剂模型小鼠的组织学和免疫组化分析结果,其中,图A为哮喘小鼠STAT3激活剂Colivilin的实验设计示意图;图B为哮喘小鼠肺匀浆中STAT3和Arg1表达的Western blot分析图;图C为肺部炎症表达的代表性显微照片,在×400放大率下拍摄图像;图D为使用Image J软件对炎症细胞进行量化。图E-G为小鼠肺匀浆中炎性细胞因子表达的qRT-PCR分析图;图H-J为小鼠肺匀浆中M2型巨噬细胞极化标志物Arg1、Fizz1和YM1 mRNA表达的qRT-PCR分析图;图K-N为Arg1、Fizz1、Cxcl1和Cxcl2 mRNA表达的qRT-PCR分析图。
图6为实施例3中第4小节HDAC10抑制剂模型小鼠的组织学和免疫组化分析结果,其中,图A为哮喘小鼠HDAC10抑制剂SAB的实验设计示意图;图B-E为HDM/LPS处理的小鼠或HDM/LPS和HDAC10抑制剂SAB处理的小鼠肺组织中HE染色、PAS染色和Masson染色的代表性显微照片,在×400放大率下拍摄图像,并使用Image J软件对气道炎症、粘液分泌和胶原沉积进行量化进行量化;图F为HDM/LPS处理的小鼠或HDM/LPS和SAB处理的小鼠肺匀浆中HDAC10、STAT3和Arg1表达的Western blot分析图;图G-I为小鼠肺匀浆中M2型巨噬细胞极化标志物Arg1、Fizz1和YM1 mRNA表达的qRT-PCR分析图;图J-L为小鼠肺匀浆中炎性细胞因子表达的qRT-PCR分析图;图M为HDM和SAB处理的小鼠肺匀浆中HDAC10和STAT3表达的Western blot分析图;图N-O为对SAB处理的BMDM中的M2型巨噬细胞极化标志物Arg1和YM1mRNA表达进行qRT-PCR分析;图P-R为对SAB处理的BMDM中炎性细胞因子的qRT-PCR分析图。
具体实施方式
在本发明的描述中,需要说明的是,实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
在本发明的描述中,需要说明的是:HE染色、IHC染色、PAS染色、Masson三色染色、免疫组织化学染色、肺组织免疫荧光、Western Blotting(免疫印迹法)、免疫共沉淀等均为本领域常规操作方法,本发明中不作详细介绍。
本发明实施例采用的LysMCre小鼠来自加州大学圣地亚哥分校,CA,USA,Dr.G.Feng课题组。
本发明实施例采用的引物合成厂家:生工生物工程股份有限公司。
下面结合附图和具体的实施例对本发明做进一步详细说明,所述是对本发明的解释而不是限定。
实施例1
本实施例是为了考察HDAC10在哮喘患者中的表达情况,具体如下:
1.临床样本
哮喘的诊断是基于全球哮喘倡议(GINA)的指南。本实施例的研究对象包括18-65岁的哮喘患者和有肺结节并接受手术的患者,其中,有肺结节并接受手术的患者作为对照组。支气管活检取自接受支气管镜检查的患者,用于诊断目的。根据制造商说明,使用密度梯度离心法从研究对象的外周血样本中分离出外周血单个核细胞(PBMC)。临床资料汇总见表1。研究方案经广东医科大学附属医院医学伦理委员会批准(PJKT2022-079)。所有参与者均获得书面知情同意。
表1外周血研究受试者的特征
注:除非另有说明,数据以平均值±SEM表示。FEV1表示1秒用力呼气量;FVC表示强迫肺活量;ACT表示哮喘控制试验;N/A表示不适用。
2.实验过程
2-1.对照组和哮喘患者组气道活检组织HDAC10 IHC染色以及HDAC10和CD206免疫共染色
气道活检组织的获取:通过纤支气镜从哮喘患者组和对照组伸入气管,取气道上皮组织,将样本用4%甲醛溶液固定,石蜡包埋,切片机切片,然后对切片进行IHC染色,以及进行HDAC10和CD206免疫共染色。
气道活检组织的IHC染色结果如图1中A图和B图所示,表明与正常对照相比,HDAC10在哮喘患者的气道活检中高表达。
气道活检组织的HDAC10和CD206免疫共染色结果如图1中C图和D图所示,表明利用M2型巨噬细胞标志物CD206的共免疫染色,发现HDAC10主要定位于M2巨噬细胞。
2-2.外周血样本的qRT-PCR分析
采集所有患者及对照者的外周血样本,并将外周血样本进行抗凝处理,收集经抗凝处理的血样品,取15ml全血移至50ml离心管中,3000rpm,离心10min,分离出血浆。接着按血和分离液体积比为1:2往血样品中加入淋巴细胞分离液,400g,20℃,离心30分钟。取中间层白膜移至新的50ml离心管,加入40ml的PBS缓冲液,200g,离心10min,洗三次,获得外周血单个核细胞(PBMC),进行实验。
将PBMC用PrimeScriptTMRT试剂盒(Takara)将总RNA反转录为cDNA。用反转录的cDNA或者实验富集的DNA片段作为qRT-PCR模板,使用TB GreenTMPremix Ex TaqTM(Takara)进行扩增。配制qRT-PCR反应液(表2),荧光定量PCR的引物(引物由上海生工上海生工生物工程有限公司合成)见表3,操作在冰上进行。将配制好的反应液加入96孔板中,贴膜,配平,4℃,2000rpm,离心5min。按两步法扩增程序进行扩增,反应条件如下:95℃-30sec,(95℃-5sec,60℃-30sec)×40次。
表2qRT-PCR反应液的配制
表3qRT-PCR用到的引物
注意:m表示鼠。
扩增结果如图2所示,图2表明与正常对照相比,Hdac10在哮喘患者外周血单个核细胞中高表达。
综上,本实施例对于哮喘患者展开的系列测试表明,哮喘患者气道活检组织和外周血单个核细胞(PBMC)中HDAC10表达上升,而在正常对照组中,HDAC10几乎无法检测到;此外,气道活检组织切片HDAC10和CD206免疫共染色结果显示,HDAC10主要定位于M2型巨噬细胞。
后续进一步开展相关动物实验研究。
实施例2
本实施例以HDAC10作为靶点制备巨噬细胞条件性敲除Hdac10缺失小鼠模型,并进行相关鉴定和分析,具体内容如下:
一、小鼠模型的构建:
步骤1,获取靶向条件敲除HDAC10基因的小鼠模型,具体过程包括:
步骤1-1,采用CRISPR-Cas9系统设计靶向HDAC10基因的gRNA,所述gRNA作用位点为HDAC10的2号外显子和14号外显子;获得两条gRNA,序列分别如Seq_1(5’-CTGTGCCCATAGCTACACCGTGG-3’)和Seq_2(5’-GCCAAATTGCTTAAAACTACAGG-3’)所示;
步骤1-2,将终浓度为2pmol/μl的靶向Hdac10基因的gRNA、15ng/μl的含有loxP位点的供体载体和30ng/μl的Cas9 mRNA共同注射到小鼠受精卵中,然后将受精卵移植到假孕母鼠体内,产出F0代;受精卵来源于C57BL/6背景的wildtype(WT)小鼠;
步骤1-3,对F0代进行PCR鉴定,PCR鉴定引物序列如Seq_3~6所示:
5’arm forward primer(F2):5’-GACAAGTTCTGGGCAAATACACTTT-3’(Seq_3);3’loxP reverse primer(R2):5’-GTGGATTCGGACCAGTCTGA-3’(Seq_4);
5’loxP forward primer(F1):5’-GACCACGGATAACTTCGTATAGC-3’(Seq_5);
3’arm reverse primer(R1):5’-GTTCTGGAGGTAGAGGACGCCTG-3’(Seq_6);
其中,F2和R2用于扩增Seq_1所示的gRNA,F1和R1用于扩增Seq_2所示的gRNA;
F0代的PCR鉴定具体操作如下:
(1)用眼科剪取F0代小鼠尾巴末端白色小段,置于1.5ml EP管中。
(2)向管中加入0.05mol/L的NaOH,放入金属浴锅内裂解30min左右。
(3)加入1mol/L,PH=6.8的Tris-HCl溶液20μl,涡旋混匀,12000rpm,离心5min,得模板DNA,继续进行后续的PCR反应或-20℃冰箱保存。
(4)配制PCR反应液(表4),总的反应体系为20μl,所有操作在冰上进行。
表4PCR反应液的配制
(5)用无酶EP管及枪头按上述表格配制PCR反应混合液,吹打混匀。将PCR反应混合液分别加入八联管内,每孔18μl,再加入2μl DNA模板,配平,离心。
(6)离心后进行后续PCR反应,反应程序如下:95℃-3min;(95℃-30sec,58℃-30sec,72℃-1min)*40;72℃-3min;4℃-Hold。
(7)琼脂糖凝胶电泳,配制2%琼脂糖凝胶:称取琼脂糖粉2g,加入1×TAE溶液100ml,微波炉加热至恰好完全溶解,液面冒大的气泡即可,稍微冷却,加入6μl~10μl EB替代物染料,同方向轻摇使其完全混匀,待温度冷却至60左右,倒入插有梳子的胶槽中,室温放置30min后,垂直向上拔出梳子,将胶块放入电泳槽。
(8)每孔加10μl PCR反应样品,160V,电泳30min左右。
(9)凝胶成像系统观察、成像,保存结果。。
步骤2,将F0代小鼠(Hdac10fl/fl)模型与LysMCre小鼠杂交繁殖,获得F1代杂合子,即为巨噬细胞条件性敲除HDAC10缺失小鼠模型(Hdac10fl/fl-LysMCre),制备原理如图3中A图所示。
以上所有实验步骤均经广东医科大学动物伦理委员会批准。
二、Hdac10fl/fl-LysMCre小鼠模型的鉴定:
对获得的Hdac10fl/fl-LysMCre小鼠进行琼脂糖凝胶电泳鉴定,操作同过程一中F0代的PCR鉴定。
三、Hdac10fl/fl-LysMCre小鼠以及Hdac10fl/fl小鼠(F0代小鼠)的骨髓巨噬细胞中Hdac10缺陷的对比分析:
将Hdac10fl/fl-LysMCre小鼠以及Hdac10fl/fl小鼠(实施例2中的F0代小鼠)的骨髓巨噬细胞中Hdac10缺陷进行qRT-PCR分析和Western blot分析,具体如下:
1)骨髓巨噬细胞中总RNA提取实验
(1-1)颈椎脱臼处死小鼠,无菌提取股骨和胫骨放于装有无菌PBS的中皿,剪去两端的软骨,露出红色的骨髓腔(尽可能少的剪走骨髓腔)。
(1-2)取5ml无菌注射器,吸取培养基,针头从骨髓腔一端插入冲洗骨髓腔获得骨髓细胞,将骨髓细胞转移至15ml离心管,1000rpm离心3min。
(1-3)离心后,弃上清,向管中加入含有10ng/ml的M-CSF的DMEM完全培养基重悬骨髓细胞,骨髓细胞分化为巨噬细胞(诱导5天)。
(1-4)弃培养基,用PBS缓冲液洗涤细胞两次,弃去PBS缓冲液并吸干。
(1-5)加入适量Trizol裂解细胞(6cm dish和6孔板均加入1ml,12孔板可加入500μl),用1ml移液器(枪头无酶)反复吹打,至皿底透亮(注意周边),吸至1.5ml无酶EP管中。
(1-6)按每1ml Trizol加入200μl氯仿(注意避光),盖紧EP管盖,上下倒置混匀至溶液呈乳白色,无分相现象,不建议涡旋混匀,静置5min。
(1-7)低温离心,4℃,12000rpm,15min。
(1-8)离心后可见溶液分3层,取出EP管(注意轻拿轻放),吸取上清液(含RNA)400μl至新的EP管中(勿吸出白色中间层)。
(1-9)向上清中加入异丙醇(约400μl),倒置充分混匀后室温静置10min。
(1-10)低温离心,4℃,12000rpm,15min。
(1-11)弃上清,留沉淀,倒置纸巾上晾干(切勿触及沉淀),加入1ml用DEPC水稀释无水乙醇配制而成的70%乙醇。
(1-12)低温离心,4℃,12000rpm,5min。
(1-13)弃上清,干燥沉淀,沉淀干燥后用20μl DEPC水溶解沉淀,吹匀。
(1-14)RNA纯度分析:测量并记录RNA浓度,并观察A260/A280比值是否在1.8~2.0之间以评估其纯度。
2)qPCR分析
以actin基因作为内参,参照PCR试剂盒(Takara)的说明书操作对骨髓巨噬细胞中提取的RNA和肺组织中提取的RNA进行扩增。qPCR采用的引物序列如表6所示:
表6引物序列
基因 引物序列
m-actin forward 5′-AGTGTGACGTTGACATCCGT-3′(Seq_9)
m-actin reverse 5′-GCAGCTCAGTAACAGTCCGC-3′(Seq_10)
m-Hdac10forward 5′-ACAGCCACTCGACTGCTCT-3′(Seq_7)
m-Hdac10reverse 5′-GATGCCTCACAAGCTGACAAA-3′(Seq_8)
3)Western blot分析
将Hdac10fl/fl-LysMCre小鼠以及Hdac10fl/fl小鼠的骨髓巨噬细胞中提取的总蛋白检测Hdac10的表达情况。
4)结果:qPCR分析和Western blot分析结果如表3中C图和D图所示,图C表明通过qRT-PCR证实Hdac10fl/fl-LysMCre小鼠模型的骨髓巨噬细胞中缺乏HDAC10,图D表明通过蛋白质印迹证实Hdac10fl/fl-LysMCre小鼠模型的骨髓巨噬细胞中缺乏HDAC10。
实施例3
本实施例展开STAT3激动剂以及HDAC10抑制剂对小鼠哮喘的影响研究,具体如下:
1.STAT3激动剂实验相关小鼠模型的制备及分组
根据实施例2的方法获得Hdac10 fl/fl正常小鼠模型和Hdac10fl/fl-LysMCre正常小鼠模型,采用6~8周龄Hdac10 fl/fl正常小鼠和Hdac10fl/fl-LysMCre正常小鼠。小鼠实验分组:Hdac10 fl/fl对照组,Hdac10fl/fl-LysMCre对照组,Hdac10 fl/fl哮喘组,Hdac10fl/fl-LysMCre哮喘组,STAT3激动剂组,每组6只小鼠。
哮喘组的处理方式:取Hdac10 fl/fl正常小鼠和Hdac10fl/fl-LysMCre正常小鼠于第0、1和2天致敏:气道滴注5μg HDM(Greer Laboratories)+3μg LPS(Sigma)和50μl生理盐水(NS),获得两种过敏性哮喘小鼠模型。在致敏后第15、16、17天,两种过敏性哮喘小鼠模型再分别用2.5μg HDM+1.5μg LPS+50μl NS气道滴注给药。最后一次给药24h后麻醉处死小鼠。
对照组的处理方式:Hdac10 fl/fl正常小鼠和Hdac10fl/fl-LysMCre正常小鼠于第0、1和2天给予50μl生理盐水进行气道滴注;在第15、16、17天对照小鼠给予50μl生理盐水气道滴注。最后一次滴注24h后麻醉处死小鼠。
STAT3激动剂组的处理方式:Hdac10fl/fl-LysMCre正常小鼠于第0、1和2天致敏:气管内灌注5μg HDM(Greer Laboratories)+3μg LPS(Sigma)和50μl生理盐水(NS)。在致敏后第15、16、17天,在2.5μg HDM+1.5μg LPS气道滴注前2h,腹腔注射STAT3激动剂(ColivelinTAF,购自SparkJade),注射量为2mg/kg。最后一次给药24h后麻醉处死小鼠。
2.HDAC10抑制剂实验相关小鼠模型的制备及分组
采用6~8周龄WT正常小鼠(购自广东迪恩基因技术有限公司),小鼠实验分组:WT对照组,WT哮喘组,HDAC10抑制剂组(SAB),每组6只小鼠。
WT哮喘组的处理方式:WT小鼠气道滴注5μg HDM(Greer Laboratories)+3μg LPS(Sigma)和50μl生理盐水(NS),于第0、1和2天致敏。在致敏后第15、16、17天,分别用2.5μgHDM+1.5μg LPS+50μl NS气道滴注给药。最后一次给药24h后麻醉处死小鼠。
WT对照组的处理方式:WT小鼠于第0、1和2天给予50μl生理盐水进行气道滴注;在第15、16、17天对照小鼠给予50μl生理盐水进行气道滴注。最后一次滴注24h后麻醉处死小鼠。
HDAC10抑制剂组(SAB)的处理方式:WT小鼠WT5μg HDM(Greer Laboratories)+3μgLPS(Sigma)和50μl生理盐水(NS),于第0、1和2天致敏。在致敏后第15、16、17天,在2.5μgHDM+1.5μg LPS气道滴注前2h,腹腔注射HDAC10抑制剂(丹酚酸B,SAB),注射量为10mg/kg。最后一次给药24h后麻醉处死小鼠。
3.Hdac10fl/fl和Hdac10fl/fl-LysMCre雄性小鼠BMDMs的培养和处理
BMDMs按文献报道(Li Z,Wu Y,Chen HP,Zhu C,Dong L,Wang Y,Liu H,Xu X,ZhouJ,Wu Y,Li W,Ying S,Shen H,Chen ZH.MTOR Suppresses Environmental Particle-Induced Inflammatory Response in Macrophages.J Immunol.2018;200:2826-2834.)分离和培养。从6到8周大的Hdac10fl/fl正常雄性小鼠、Hdac10fl/fl-LysMCre正常雄性小鼠中收集BMDMs。采用红细胞(RBCs)裂解缓冲液去除其中的红细胞。其余细胞在含有抗生素、10%胎牛血清(FBS)和10ng/ml重组小鼠M-CSF的DMEM中培养7天,以促进分化骨髓源性巨噬细胞。7d后,细胞用HDM(100μg/ml)处理24h,然后做WB检测。结果如图4所示,表明STAT3在HDM诱导的Hdac10fl/fl BMDMs中表达明显增加,而在HDM诱导的Hdac10fl/fl-LysMCre BMDMs中表达降低,可见HDAC10调控STAT3的表达。
4.组织学和免疫组化分析
(1)将STAT3激动剂模型5组小鼠左侧小鼠肺组织切片依次进行Western blot分析、HE染色、qRT-PCR分析(采用Takara,Real-Time PCR Systems),以及将Hdac10fl/fl和Hdac10fl/fl-LysMCre雄性小鼠BMDMs用对照质粒pcDNA3.1或pcDNA3.1-STAT3转染24小时,然后用HDM处理24小时。目的是验证STAT3是否在过敏原诱导的哮喘中调控巨噬细胞M2极化,结果如图5所示。图5A显示给小鼠腹腔注射STAT3选择性激动剂Colivelin的实验设计及操作(本实施例第1小节有详细文字描述)。与Hdac10fl/fl哮喘小鼠相比,Hdac10fl/fl-LysMCre哮喘小鼠肺组织中的STAT3和Arg1表达显著降低,但Colivelin治疗逆转了这一现象(图B所示)。与对照组相比,Colivelin治疗增加了Hdac10fl/fl-LysMCre哮喘小鼠气道炎症(图5C-D所示)、炎症因子和肺组织中的巨噬细胞M2标志物(如Arg1、Fizz1和Ym1)(图5E-J所示)。在HDM诱导的Hdac10fl/fl-LysMCre小鼠的BMDMs中,STAT3过表达促进了HDM诱导的Arg1、炎症细胞因子和巨噬细胞M2标志物(如Arg1、Fizz1等)表达(图5K-N所示)。总之,这些数据表明Hdac10缺失抑制STAT3表达从而减弱M2极化缓解哮喘气道炎症反应,即HDAC10通过STAT3调控M2极化及气道炎症和炎症细胞因子的表达。
(2)将HDAC10抑制剂模型3组小鼠左侧小鼠肺组织切片依次进行肺组织HE、PAS、Masson染色、肺组织匀浆Western blot分析、qRT-PCR分析、WT正常雄性小鼠BMDM细胞的Western blot分析、qRT-PCR分析获得了如图6所示结果,其中,HE染色、PAS染色和Masson染色数据证明SAB治疗减轻了过敏原诱导的气道炎症、粘液分泌和胶原沉积(图B-E所示);与HDM/LPS组相比,给予SAB明显降低了肺组织匀浆中HDAC10、STAT3和Arg1的表达(图F所示);与HDM/LPS组相比,给予SAB明显降低了肺组织匀浆中巨噬细胞M2标记物Arg1、Fizz1和YM1mRNA的表达(图G-I所示);与HDM/LPS组相比,给予SAB明显降低了肺组织匀浆中巨噬细胞Cxcl1、Cxcl2和Il-1β的表达(图J-L所示);与HDM组相比,SAB处理HDM诱导的BMDMs抑制了HDAC10、STAT3和Arg1的表达,这点与动物实验结果(图A-L的结果)一致(图M所示);与HDM组相比,SAB处理HDM诱导的BMDMs抑制了巨噬细胞M2标记物Arg1、1和Ym1的表达,这点与动物实验结果一致(图N-O所示);与HDM组相比,SAB处理HDM诱导的BMDMs抑制了巨噬细胞炎性细胞因子Cxcl1、Cxcl2和Il-1β的表达,这点与动物实验结果一致(图P-R所示)。综上,HDAC10抑制剂SAB抑制过敏原诱导的炎症反应,对哮喘治疗具有很好的应用前景。
特别说明:
①WT正常雄性小鼠BMDM细胞的培养和处理参考本实施例第3小节。
②qRT-PCR分析过程具体如下:
使用Trizol试剂从BMDMs细胞、STAT3激动剂模型5组小鼠、HDAC10抑制剂3组小鼠肺组织中分离总RNA,并使用PrimeScriptTMRT试剂盒将其反转录为cDNA(参照试剂盒中说明书进行)。利用TB GreenTM预混Ex TaqTM进行RT-PCR扩增。将单个基因(Hdac10、Cxc1、Cxcl2、Arg1、Fizz1)的表达归一化为β-actin(内参基因)的表达。用于扩增每个靶基因的引物如下:
Hdac10(正向:5'-ACAGCCACTCGACTGCTCT-3'(Seq_7)和反向:5'-GATGCCTCACAAGCTGACAAA-3'(Seq_8)),
Cxc1(正向:5′-CTGGGATTCACCTCAAGAACATC-3′(Seq_11)和反向:5′-CAGGGTCAAGGCAAGCCTC-3′(Seq_12)),
Cxcl2(正向:5′-TGTCCCTCAACGGAAGAACC-3′(Seq_13)和反向:5′-CTCAGACAGCGAGGCACATC-3′(Seq_14)),
Arg1(正向:5′-CTGACCTATGTGTCATTTGG-3′(Seq_15)和反向5′-CATCTGGGAACTTTCCTTTC-3′(Seq_16))
YM1(正向:5'-GGGCATACCTTTATCCTGAG-3'(Seq_17)和反向:5'-CATCTGGGAACTTTCCTTTC-3'(Seq_18)),
Fizz1(正向:5'-TCCCAGTGAATACTGATGAGA-3'(Seq_19)和反向:5′-CCACTCTGGATCTCCCAAGA-3′(Seq_20)),
β-actin(正向:5'-AGTGTGACGTTGACATCCGT-3'(Seq_9)和反向:5'-GCAGCTCAGTAACAGTCCGC-3'(Seq_10))。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.HDAC10作为靶点在制备STAT3相关疾病药物中的应用。
2.根据权利要求1所述的应用,其特征在于:所述STAT3相关疾病为STAT3信号通路过表达产生的免疫性疾病、感染性疾病或者肿瘤;更为优选地,所述STAT3相关疾病为过敏原诱发的哮喘;
和/或,所述药物通过抑制HDAC10生成或者降低HDAC10含量进而预防和/或治疗STAT3相关疾病。
3.HDAC10作为靶点在制备M2型巨噬细胞相关疾病药物中的应用。
4.根据权利要求3所述的应用,其特征在于:所述M2型巨噬细胞相关疾病为M2型巨噬细胞极化导致的炎症性疾病;更为优选地,所述M2型巨噬细胞相关疾病为过敏原诱发的哮喘;
和/或,所述药物通过抑制HDAC10生成或者降低HDAC10含量进而预防和/或治疗M2型巨噬细胞相关疾病。
5.一种HDAC10抑制剂,其特征在于:所述HDAC10抑制剂通过抑制HDAC10生成或者降低HDAC10含量进而预防和/或治疗STAT3相关疾病或者M2型巨噬细胞相关疾病。
6.根据权利要求5所述的一种HDAC10抑制剂,其特征在于:所述STAT3相关疾病为STAT3信号通路过表达产生的免疫性疾病、感染性疾病或者肿瘤;更为优选地,所述STAT3相关疾病为过敏原诱发的哮喘;
或者,所述M2型巨噬细胞相关疾病为巨噬细胞M2极化导致的炎症性疾病;更为优选地,所述M2型巨噬细胞相关疾病为过敏原诱发的哮喘。
7.根据权利要求5或6所述的一种HDAC10抑制剂,其特征在于:所述HDAC10抑制剂至少含有丹酚酸B、异类叶升麻苷、安格洛甙C、氧丙酸、帕比司他中的至少一种;
和/或,所述HDAC10抑制剂的剂型为口服剂和注射剂;更为优选地,所述HDAC10抑制剂为注射溶液剂,并通过腹腔注射方式给予;
和/或,所述HDAC10抑制剂还包括药学上可接受的载体或辅料。
8.HDAC10作为靶点制备巨噬细胞条件性敲除Hdac10缺失小鼠模型中的应用。
9.一种巨噬细胞条件性敲除Hdac10缺失小鼠模型的构建方法,其特征在于:包括:
步骤1,获取靶向条件敲除HDAC10基因的小鼠模型;
步骤2,将靶向条件敲除HDAC10基因的小鼠模型与LysMCre小鼠杂交繁殖,获得F1代杂合子,即为巨噬细胞条件性敲除HDAC10缺失小鼠模型。
10.根据权利要求9所述的一种巨噬细胞条件性敲除Hdac10缺失小鼠模型的构建方法,其特征在于:所述步骤1中,获取靶向条件敲除HDAC10基因的小鼠模型的过程包括:
步骤1-1,采用CRISPR-Cas9系统设计靶向HDAC10基因的gRNA,所述gRNA作用位点为HDAC10的2号外显子和14号外显子;
步骤1-2,将靶向Hdac10基因的gRNA、含有loxP位点的供体载体和Cas9 mRNA共同注射到小鼠受精卵中,然后将受精卵移植到假孕母鼠体内,产出F0代,对F0代进行PCR鉴定;
优选地,在注射体系中,所述gRNA的终浓度为2pmol/ul,所述含有loxP位点的供体载体的终浓度为15ng/ul,所述Cas9 mRNA的终浓度为30ng/ul;
优选地,所述gRNA的序列如Seq_1和Seq_2所示;
优选地,PCR鉴定引物序列如Seq_3~6所示;
和/或,优选地,所述步骤2中,F1代杂合子进行杂交筛选获得HDAC10基因敲除的纯合子代,以所述纯合子代作为巨噬细胞条件性敲除HDAC10缺失小鼠模型。
CN202310367097.9A 2023-04-06 2023-04-06 Hdac10作为靶点在制备stat3相关疾病药物中的应用 Pending CN116590395A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310367097.9A CN116590395A (zh) 2023-04-06 2023-04-06 Hdac10作为靶点在制备stat3相关疾病药物中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310367097.9A CN116590395A (zh) 2023-04-06 2023-04-06 Hdac10作为靶点在制备stat3相关疾病药物中的应用

Publications (1)

Publication Number Publication Date
CN116590395A true CN116590395A (zh) 2023-08-15

Family

ID=87606879

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310367097.9A Pending CN116590395A (zh) 2023-04-06 2023-04-06 Hdac10作为靶点在制备stat3相关疾病药物中的应用

Country Status (1)

Country Link
CN (1) CN116590395A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101574337A (zh) * 2008-05-05 2009-11-11 天津天士力制药股份有限公司 丹酚酸b和羟乙基淀粉的配伍对内毒素诱导的微循环障碍的预防和治疗
CN113018439A (zh) * 2021-01-27 2021-06-25 广东医科大学附属医院 一种缓解重症哮喘的药物、应用及动物模型构建方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101574337A (zh) * 2008-05-05 2009-11-11 天津天士力制药股份有限公司 丹酚酸b和羟乙基淀粉的配伍对内毒素诱导的微循环障碍的预防和治疗
CN113018439A (zh) * 2021-01-27 2021-06-25 广东医科大学附属医院 一种缓解重症哮喘的药物、应用及动物模型构建方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FAJUAN CHENG 等: "Histone deacetylase 10, a potential epigenetic target for therapy", BIOSCIENCE REPORTS, pages 1 - 17 *

Similar Documents

Publication Publication Date Title
Alexander et al. CSF-1–dependant donor-derived macrophages mediate chronic graft-versus-host disease
Zepp et al. IL-17A–induced PLET1 expression contributes to tissue repair and colon tumorigenesis
Yin et al. Hop functions downstream of Nkx2. 1 and GATA6 to mediate HDAC-dependent negative regulation of pulmonary gene expression
Li et al. HIMF deletion ameliorates acute myocardial ischemic injury by promoting macrophage transformation to reparative subtype
Kalin et al. Pulmonary mastocytosis and enhanced lung inflammation in mice heterozygous null for the Foxf1 gene
JP6958933B2 (ja) 異所性骨化を治療する方法
Chen et al. Endometriosis cell proliferation induced by bone marrow mesenchymal stem cells
Boucherat et al. Decreased lung fibroblast growth factor 18 and elastin in human congenital diaphragmatic hernia and animal models
WO2018028249A1 (zh) 一种miRNA及其在治疗代谢性疾病中的应用
CN113995766B (zh) 地高辛在制备治疗和/或预防骨关节炎的药物中的用途
JP7542258B2 (ja) 細胞の機械的恒常性を破壊し、組織器官の再生と修復を促進する方法、およびその使用
CN114517226A (zh) Axl作为宫腔粘连诊断和治疗靶点的应用
WO2020088070A1 (zh) Ecm1在预防和/或治疗肝纤维化相关疾病中的应用
US20020164790A1 (en) Lung stem cells and lung regeneration
CN116590395A (zh) Hdac10作为靶点在制备stat3相关疾病药物中的应用
Serapiglia et al. Fetal tracheal occlusion increases lung basal cells via increased Yap signaling
CN115381949A (zh) 靶向抑制色素上皮衍生因子在促进肝脏再生及改善肝损伤中的应用
CN113521285A (zh) 干预bok在制备治疗新冠肺炎药物中的应用
Tan et al. Targeting CEBPA to restore cellular identity and tissue homeostasis in pulmonary fibrosis
Liu et al. MicroRNAs with altered expression profiles in granulosa of women of advanced age with diminished ovarian reserve
CN113337594B (zh) Lpcat1基因在制备治疗肝脏炎症药物及诊断试剂盒中的应用
CN115198015B (zh) 一种肿瘤相关蛋白及其应用
CN113694058B (zh) Serpine1抑制剂在制备肝细胞癌微波消融术后抗复发转移的药物中的用途
US20090318413A1 (en) Bronchial smooth muscle remodeling involves calcium-dependent enhanced mitochondrial biogenesis in asthma
CN113699234B (zh) 长链非编码RNA Linc01605在作为胃癌诊断性试剂盒及靶向药物开发中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination