CN116580602B - 一种场面飞机滑行冲突预测与可视化方法 - Google Patents

一种场面飞机滑行冲突预测与可视化方法 Download PDF

Info

Publication number
CN116580602B
CN116580602B CN202310857572.0A CN202310857572A CN116580602B CN 116580602 B CN116580602 B CN 116580602B CN 202310857572 A CN202310857572 A CN 202310857572A CN 116580602 B CN116580602 B CN 116580602B
Authority
CN
China
Prior art keywords
edge
track
conflict
time
route
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310857572.0A
Other languages
English (en)
Other versions
CN116580602A (zh
Inventor
王国强
朱敏
谭晶
朱佳旻
杨丹
古名扬
王启鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN202310857572.0A priority Critical patent/CN116580602B/zh
Publication of CN116580602A publication Critical patent/CN116580602A/zh
Application granted granted Critical
Publication of CN116580602B publication Critical patent/CN116580602B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0043Traffic management of multiple aircrafts from the ground
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/04Anti-collision systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Theoretical Computer Science (AREA)
  • Development Economics (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明涉及民航机场场面交通管制技术领域,公开了一种场面飞机滑行冲突预测与可视化方法,首先根据具有地理信息的线图层数据,建立两个层次的滑行路网模型;记录监视数据并建立轨迹,提取历史滑行路线,分别计算进离港选择边的概率模型;根据概率模型预测后续的滑行路线和滑行时间,得到每架飞机的预测路线;根据预测路线,判断飞机之间是否可能发生冲突;当预测会发生冲突时,将预测路线和冲突信息进行直观的可视化映射。本发明能够在形成确定的冲突场景之前进行提前预测,不增加管制员人机交互工作负荷的同时实现对滑行态势的预判,提升滑行态势的可预测性,方便对滑行中的飞机进行动态调配,减少滑行冲突和地面等待。

Description

一种场面飞机滑行冲突预测与可视化方法
技术领域
本发明涉及民航机场场面交通管制技术领域,具体为一种场面飞机滑行冲突预测与可视化方法。
背景技术
国际上提出的高级场面活动引导与控制系统(A-SMGCS,Advanced SurfaceMovement Guidance and Control System)是一种解决机场安全、效率和容量问题的运行体系,能够实现场面飞机和车辆的实时监控和引导、有效地避免场面活动目标冲突的发生。A-SMGCS主要包括了监视、控制、路由和引导四大功能:监视功能是对场面区域内所有飞机和车辆等活动目标进行精确定位与身份识别;控制功能是对活动目标进行冲突检测,并对管制员提供告警;路由功能为场面每一架飞机或车辆指派运行路线;引导功能为飞行员和驾驶员提供清晰的指示以允许他们沿指派的路线行进活动。国际民航组织结合以上的四项功能,将A-SMGCS的运行水平划分为四个等级,其中一级为监视功能,是实现所有A-SMGCS高级别功能的基础,二级在一级的基础上增加基于监视数据的告警功能,三级在二级的基础上融合多源信息进行告警并能计算分配路径,四级在三级基础上提供自动的冲突解脱与滑行引导功能。
要建设并达到完整四级水平的A-SMGCS是相当复杂的大型系统工程,建设运行成本极高,因此,我国大部分机场在未来均只能建设达到一级或二级的运行水平。在这种情况下,各机场依赖监视功能提供的轨迹数据对飞机之间的冲突进行检测与告警。而由于现有技术难以实现对飞机运行路线和意图的有效预测,主要依靠理想化的飞机运动模型进行推算,导致冲突检测提前量小、准确率低,告警提示信息单一、管制员认知困难,给场面运行安全和效率带来严峻挑战。
对于二级水平的A-SMGCS来说,现有技术方案还存在以下一些问题:
1、目前的二级A-SMGCS可以根据监视数据,结合运行规则、滑行道结构、目标间空间关系等,实现违反最小间隔、“交叉”、“对头”等预定义滑行冲突场景的检测与告警,但仅能有效检测在滑行道拓扑结构上具有邻接关系、已形成确定冲突场景的情况,检测范围小、预判能力不足、可调配空间小,已形成冲突场景后大多只能通过指挥需要避让飞机停下等待的方式解决冲突,滑行连续性不高,影响场面运行效率。
2、为了提升冲突检测的提前量,现有技术通常引入航班计划、管制指令等外部系统信息,通过人工操作为飞机分配好滑行路线,在确定滑行路线的基础上再预测冲突,但由于该类方法依赖其他系统和管制员人机交互输入信息,需要额外开发数据接口对不同厂商的数据进行集成,同时也增加了管制员的工作负荷,实施成本较高、系统操作复杂,难以大规模推广应用。
3、现有技术的告警提示采用传统的可视化方式,通过在管制员人机界面上高亮冲突目标标牌和文本信息弹窗的方式进行呈现,这种方式适用于运动趋势稳定的空中飞行飞机,但在场面滑行道系统中,该方法难以直观快速地了解冲突产生来源、时空关系和发展趋势,对下一步冲突解脱操作的决策支持不足。
发明内容
针对上述问题,本发明的目的在于提供一种场面飞机滑行冲突预测与可视化方法,能够在形成确定的冲突场景之前进行提前预测,不增加管制员人机交互工作负荷的同时实现对滑行态势的预判,提升滑行态势的可预测性,方便对滑行中的飞机进行动态调配,减少滑行冲突和地面等待。技术方案如下:
一种场面飞机滑行冲突预测与可视化方法,包括以下步骤:
步骤1:根据包括机场场面滑行道中心线矢量地图的具有地理信息的线图层数据,建立两个层次的滑行路网模型,包括与滑行道中心线完全一致的基础路网模型,以及简化的路网模型;
步骤2:记录监视数据并建立轨迹,与基础路网模型进行地图匹配,统计每条边上的平均滑行时间,提取历史滑行路线;
步骤3:根据同一机场进离港滑行路线的特点,及历史进离港路线,分别计算进离港选择边的概率模型;
步骤4:接入读取场面监视系统输出的实时监视数据报告,从当前位置开始,根据概率模型预测后续的滑行路线和滑行时间,得到每架飞机的预测路线;
步骤5:遍历场面上所有飞机的预测路线,进行两两比对,判断飞机之间是否可能发生冲突;
步骤6:当预测会发生冲突时,将预测路线和冲突信息进行直观的可视化映射。
进一步的,所述步骤1具体包括:
步骤1.1:建立与滑行道中心线完全一致的基础路网模型,具体为:
步骤1.1.1:定义节点集合,边集合/>;其中,n为节点数,m为边数;将路网模型表示为一个无向图G=(V,E),其中,每个节点/>都至少有三条边与其相连接;每条边e j E存储其两端的节点v j1和v j2j1和j2取1,2,...,n),表示v j1和v j2之间存在一条无向边;
步骤1.1.2:定义节点的几何对象:每个节点都包含一个几何对象,表示节点在地图上的位置,具体为包含X,Y坐标的点对象:/>
步骤1.1.3:定义边的几何对象:每条边e j 都包含一个几何对象,表示边的形状;具体为包含多个坐标的线对象:,如果边是直线段,则用仅有两个坐标的直线段对象表示,如果边是弧线段,则用具有多个坐标的折线段对象表示;其中,k为边e j 所包含的点数量;
步骤1.1.4:定义边的类型:每条边e j 还包含一个类型属性,表示路段的类型,具体包括普通滑行线、跑道脱离口、跑道入口和停机坪线;
步骤1.2:根据基础路网模型,建立简化的路网模型,具体为:
步骤1.2.1:将两架飞机不能同时通过的交叉道口和T型道口,聚合成为一个节点,每个聚合节点都包含一个圆形或多边形几何对象,用于判断飞机是否位于该区域内;
步骤1.2.2:用基础路网模型中不属于聚合节点范围内的边,连接聚合后的节点,形成一个简化的路网模型
更进一步的,所述步骤2具体包括:
步骤2.1:记录监视数据报告并构建轨迹数据集:
将场面监视系统输出的数据报告记作D={d1,d2,…,dm},记录的每个数据报告di包括:轨迹号tidi、航班号fidi、报告时间戳ti、XY坐标(xi,yi)、高度h i;将记录的数据报告形成轨迹数据集T={t1,t2,…,tn},定义每架飞机的轨迹tj包括轨迹号tidj、航班号fidj、轨迹类型typej、轨迹集合trackj;轨迹集合按时间顺序包含多个轨迹对象trackj,1,trackj,2,…,trackj,k,每个轨迹对象track包括报告时间戳tj,k、XY坐标(xj,k,yj,k)、高度h j,k
步骤2.2:将轨迹自动划分为进港轨迹和离港轨迹:
先由人工在地图上分别划定跑道和停机坪的多边形区域,判断每条轨迹中的track对象与跑道和停机坪的关系,对于每条轨迹tj在时间关系上检查是否具有部分轨迹对象的位置在跑道或停机坪区域内,根据进出港航班的特点,将轨迹的起始位置在跑道区域内或终止位置在停机坪区域内的轨迹归为进港轨迹,将起始位置在停机坪区域内或终止位置在跑道区域内的轨迹归为离港轨迹,将每条轨迹类型字段设置为进港类型或者离港类型;
步骤2.3:对每条轨迹进行地图匹配,并计算路网中每条边飞机通过的平均滑行时间;
根据路网模型G=(V,E),采用地图匹配算法将轨迹对象与路网的边进行匹配计算,将每个track对象都正确地匹配到一条边e j E上;对于每条边,根据进入该边的第一个轨迹对象时间戳和离开该边前的最后一个轨迹对象时间戳,计算飞机通过该边的滑行时间;结合使用该条边的通行次数,求得该边的平均滑行时间te,并计算所有历史轨迹使用过的边的平均通行时间;
步骤2.4:根据进港轨迹和离港轨迹的匹配结果,将历史轨迹对象匹配的边集合,按照边的序列构建为没有重复边的路线Route={e1,…e j1}(j1为历史轨迹对象匹配的边集合的边数),实现进港历史滑行路线和离港历史滑行路线的正确提取。
更进一步的,所述步骤3具体包括:
步骤3.1:将历史路线划分为进港路线和离港路线分别计算概率;
步骤3.2:根据历史路线计算给定一条边的情况下,选择下一条边为滑行路线的概率;
统计历史路线集合{Route1,…Routen}中飞机使用边e通过的总次数ne;对于与边e相邻的每一条边,统计选择边ei+1的次数,表示所有从边e通过滑行的飞机中,有多少架飞机选择了边ei+1作为下一条边继续滑行;计算选择边ei+1的条件概率/>,即在已知飞机选择从边e进入跑道滑行的情况下,选择边ei+1作为下一条进港滑行路线的概率:
进而得到所有历史轨迹滑行通过的边到下一条边的选择概率。
更进一步的,所述步骤4具体包括:
步骤4.1:接收并记录实时的监视数据报告,每次接收到新的数据报告时,更新场面上所有飞机的轨迹集合;
步骤4.2:当飞机位于跑道区域或停机坪区域以内的时候,返回执行步骤4.1;
步骤4.3:当飞机位于跑道区域或停机坪区域以外的时候,判断飞机为进港飞机还是离港飞机;
步骤4.4:当飞机为进港飞机时,选择由历史进港路线构建的概率模型进行预测;当飞机为离港飞机时,选择由历史离港路线构建的概率模型进行预测;返回步骤4.1根据新接收到的监视报告进行计算,更新预测路线与滑行时间。
更进一步的,所述步骤4.4中预测的具体为:
步骤4.4.1:将当前的飞机轨迹位置与路网模型G=(V,E)进行地图匹配,得到当前的正确匹配边,按向前的运动方向得到与当前匹配边相邻的边集合;根据进离港选择边的概率模型得到所有相邻边的概率值,当至少有一条边概率值大于0时,选择概率最大的边为后续的滑行路线,当所有边的概率值都为0时,表示没有历史轨迹使用过这条路线,则按照飞机运动趋势和路网结构构建拓扑概率模型,进而计算相邻边的概率值;
步骤4.4.2:在相邻边当中每次都选择概率最大的边作为后续路线,直到所有相邻边的概率都为0,或者直到下一条边中有一条边的类型为跑道脱离口、跑道入口、停机坪线,则停止预测;将选择的边集合作为飞机的预测路线;
步骤4.4.3:根据飞机当前速度和到当前边终点的距离,计算得到进入下一条边的滑行时间,再根据步骤2.3得到的每条边的平均滑行时间,累加得到在预测路线上每一条边的进入时间和离开时间。
更进一步的,所述步骤4.4.1中计算相邻边的概率值具体为:
定义飞机的当前速度为s,当前加速度为a,相邻边与当前边连接处的转向角度为θ;
当θ>90时,相邻边的概率为0;
当θ≤90时,若s>40或a≥0,则计算选取相邻边的概率为P(θ)=cos(θ);若s≤40或a<0,则计算选取相邻边的概率为P(θ)=1-cos(θ)。
更进一步的,所述步骤5具体包括:
步骤5.1:判断两条预测路线中是否具有反向的同一条边,当预测路线中有两条边相同且方向相反时,具有对头冲突的空间关系;
步骤5.2:当具有对头冲突的空间关系时,根据步骤4.4.3计算得到两架飞机通过该边的进入和离开时间,判断两个时间段是否会重合,当时间段有重合部分时,则预测两架飞机会有冲突,将重合的时间段开始和结束作为预测冲突的开始时间conflictstar和结束时间conflictend
步骤5.3:当路线上不具备相同边时,根据步骤1.2.2得到的简化的路网模型,再判断是否有两条路线的边位于同一个聚合节点范围内;如果是,则表明在空间关系上存在会发生交叉冲突的可能,发生冲突的区域为聚合节点;
步骤5.4:当具有交叉或对头冲突的空间关系时,根据步骤4.4.3计算得到两架飞机通过位于聚合节点区域内边的进入和离开时间,判断两个时间段是否会重合,当时间段有重合部分时,则预测两架飞机会有冲突,并将重合的时间段开始和结束作为预测冲突的开始时间conflictstar和结束时间conflictend
更进一步的,所述步骤6具体包括:
1)从飞机的当前边开始,按预测路线用醒目线型绘制边,按运动的方向在每条边的终点绘制箭头,直到冲突区域终止,同时用醒目颜色的多边形绘制冲突区域,当为对头冲突时按设定距离宽度,以边的几何线段为中心线绘制矩形边框;当为交叉冲突时,绘制聚合节点的几何对象边框;当冲突消失时,则从地图视图上清除绘制的预测路线和冲突区域;
2)同时,在单独的视图中根据冲突信息绘制柱状图,柱状图位于地图主视图的底部;横轴为时间轴,其值代表预测的冲突发生时刻,纵轴为冲突持续的时间长度,每个柱状块代表每一个预测冲突持续时间,柱状块的透明度按照预测概率设置,将两条边的条件概率相乘得到乘积Pe,则透明度为1-Pe,透明度越低、颜色越深,代表预测的冲突可能性越高;
3)同时,在柱状图的顶部中心点向冲突区域图形的几何中心点绘制虚线,表示柱状块与预测冲突的对应关系。
与现有技术相比,本发明的有益效果是:
1、本发明只利用场面矢量地图数据、飞机历史轨迹数据与飞机实时轨迹数据进行建模与计算,可实现对场面多个飞机滑行意图与潜在冲突的准确自动预测,不依赖航班计划信息、管制指令信息等其他外部系统的数据,无需开发额外数据接口,建设实施成本低,适用于我国大、中、小型各类机场。
2、本发明提供的滑行意图与潜在冲突自动预测方法,可以在形成确定的冲突场景之前进行提前预测,不增加管制员人机交互工作负荷的同时实现对滑行态势的预判,提升滑行态势的可预测性,方便对滑行中的飞机进行动态调配,减少滑行冲突和地面等待。
3、本发明还提供一种可视化方法,能够通过直观的图形方式展示陷入冲突的目标、预计发生冲突的地点、预计发生冲突的时间、预计的冲突持续时间、预计的冲突可能性等信息,方便管制员了解冲突形成原因与变化趋势,从而帮助管制员制定合理的冲突解决方案对飞机进行指挥调配。
附图说明
图1为机场局部区域的路段示意图。
图2为聚合节点示意图。
图3为简化的路网模型。
图4为进港轨迹与离港轨迹示意图。
图5为根据概率模型预测后续的滑行路线和滑行时间的流程图。
图6为根据预测路线判断飞机之间是否可能发生冲突的流程图。
图7为对头冲突示意图。
图8为预测冲突的开始时间和结束时间示意图。
图9为可能发生冲突的区域为聚合节点的示意图。
图10(a)为冲突区域示意图中对头冲突区域。
图10(b)为冲突区域示意图中交叉冲突区域。
图11为预测发生冲突的可视化示意图。
图12为最终的可视化效果。
具体实施方式
下面结合附图和具体实施例对本发明做进一步详细说明。
本发明提出的场面飞机滑行冲突预测与可视化方法具体步骤如下:
1.步骤1:根据机场场面滑行道中心线矢量地图等具有地理信息的线图层数据,建立两个层次的滑行路网模型。
1.1建立与滑行道中心线完全一致的基础路网模型,具体为:
1.1.1定义节点集合,边集合/>。其中,n为节点数,m为边数。将路网模型表示为一个无向图G=(V,E),其中每个节点/>都至少有三条边与其相连接。每条边e j E存储其两端的节点v j1和v j2j1和j2取1,2,...,n),表示v j1和v j2之间存在一条无向边。
1.1.2定义节点的几何对象:每个节点都包含一个几何对象,表示节点在地图上的位置,具体为包含X,Y坐标的点对象:/>
1.1.3定义边的几何对象:每条边e j 都包含一个几何对象,表示边的形状,具体为包含多个坐标的线对象:,如果边是直线段,则用仅有两个坐标的直线段对象表示,如果边是弧线段,则用具有多个坐标的折线段对象表示。其中,k为边e j 所包含的点数量,每个线段对象的两个端点坐标与该边e j 对应的两端的节点v j1和v j2所存储点对象的坐标是完全一样的。
1.1.4定义边的类型:每条边e j 还包含一个类型属性,表示路段的类型,具体包括普通滑行线、跑道脱离口、跑道入口、停机坪线等,建立模型时默认为所有边类型为普通滑行线,再通过人为操作根据机场实际的运行规则标记边的路段类型。如图1所示机场的一个局部区域。
1.2根据基础路网模型,建立简化的路网模型,具体为:
1.2.1将两架飞机不能同时通过的交叉道口和T型道口,聚合成为一个节点,每个聚合节点都包含一个圆形或多边形几何对象,用于判断飞机是否位于该区域内。每个聚合节点还包括位于该节点范围内的基础路网模型中的点集合与边集合。一个聚合的节点如图2所示。
1.2.2用基础路网模型中不属于聚合节点范围内的边,连接聚合后的节点,形成一个简化的路网模型。如图3所示。
2.步骤2:记录监视数据并建立轨迹,与基础路网模型G进行地图匹配,统计每条边上的平均滑行时间,提取历史滑行路线。
2.1记录监视数据报告并构建轨迹数据集。具体的,假设场面监视系统输出的数据报告为D={d1,d2,…,dm},记录的每个数据报告di应至少包括轨迹号tidi、航班号fidi、报告时间戳ti、XY坐标(xi,yi)、高度h i等信息。记录数据时只记录高度低于50米的监视数据报告,过滤掉无关的空中目标,将记录的数据报告形成轨迹数据集T={t1,t2,…,tn},定义每架飞机的轨迹tj包括轨迹号tidj、航班号fidj、轨迹类型typej(进港或离港)、轨迹集合trackj,轨迹集合按时间顺序包含多个轨迹对象trackj,1,trackj,2,…,trackj,k,每个轨迹对象track包括报告时间戳tj,k、XY坐标(xj,k,yj,k)、高度h j,k
2.2将轨迹自动划分为进港轨迹和离港轨迹。具体方法是先由人工在地图上分别划定跑道和停机坪的多边形区域,判断每条轨迹中的track对象与跑道和停机坪的关系,对于每条轨迹tj在时间关系上检查是否具有部分轨迹对象的位置在跑道或停机坪区域内,根据进出港航班的特点,将轨迹的起始位置在跑道区域内或终止位置在停机坪区域内的归为进港轨迹,将起始位置在停机坪区域内或终止位置在跑道区域内的归为离港轨迹,在能够判断出轨迹类型后,将每条轨迹类型字段设置为进港类型或者离港类型,如图4所示。
2.3对每条轨迹进行地图匹配,计算路网中每条边飞机通过的平均滑行时间。具体方法为:根据路网模型G=(V,E),采用地图匹配算法将轨迹对象与路网的边进行匹配计算,将每个track对象都正确地匹配到一条边e j E上;对于每条边,根据进入该边的第一个轨迹对象时间戳和离开该边前的最后一个轨迹对象时间戳,得到该边上飞机的进入时间t enter,e 、离开时间t leave,e ,进而计算得到飞机通过该边的滑行时间;匹配完所有的历史轨迹后,再结合使用该条边的通行次数,可求得该边的平均滑行时间t e ,按照此方法计算所有历史轨迹使用过的边的平均通行时间。对于没有历史轨迹通过的边,设定预设速度,比如直线段平均速度为60km/h、弧线段速度为30km/h,在利用边的实际距离计算得到该边的平均滑行时间。
2.4根据进港轨迹和离港轨迹的匹配结果,将历史轨迹对象匹配的边集合,按照边的序列构建为没有重复边的路线Route={e1,…e j1}(j1为历史轨迹对象匹配的边集合的边数),实现进港历史滑行路线和离港历史滑行路线的正确提取。
3.步骤3:基于同一机场进离港的主要滑行路线相对固定的特点,根据历史的进离港路线,分别计算进离港选择边的概率模型。
3.1将历史路线划分为进港路线和离港路线分别计算概率。
3.2根据历史路线计算给定一条边的情况下,选择下一条边为滑行路线的概率。具体的,统计历史路线集合{Route1,…Routen}中飞机使用边e通过的总次数ne,表示有多少架飞机从边e通过滑行。对于与边e相邻的每一条边,统计选择边ei+1的次数,表示所有从边e通过滑行的飞机中,有多少架飞机选择了边ei+1作为下一条边继续滑行。计算选择边ei+1的条件概率/>,即在已知飞机选择从边e进入跑道滑行的情况下,选择边ei+1作为下一条进港滑行路线的概率,计算公式:/>,得到所有历史轨迹滑行通过的边到下一条边的选择概率。
4.步骤4:接入读取场面监视系统输出的实时监视数据报告,从当前位置开始,根据概率模型预测后续的滑行路线和滑行时间,流程如图5所示,具体步骤如下:
4.1按照步骤2.1的方法接收并记录实时的监视数据报告,每次接收到新的数据报告时,更新场面上所有飞机的轨迹集合。
4.2当飞机位于跑道区域或停机坪区域内的时候,返回执行步骤4.1。
4.3当飞机位于跑道区域或停机坪区域以外的时候,根据步骤2.2的方法判断飞机为进港飞机还是离港飞机。
4.4当飞机为进港飞机时,选择由历史进港路线构建的概率模型进行预测。当飞机为离港飞机时,选择由历史离港路线构建的概率模型进行预测。预测的具体方法如下:
4.4.1将当前的飞机轨迹位置与路网模型G=(V,E)进行地图匹配,得到当前的正确匹配边,由于飞机不可能倒退,按向前的运动方向得到与当前匹配边相邻的边集合。根据步骤3的概率模型得到所有相邻边的概率值,当至少有一条边概率值大于0时,选择概率最大的边为后续的滑行路线,当所有边的概率值都为0时,表示没有历史轨迹使用过这条路线,则按照飞机运动趋势和路网结构构建拓扑概率模型,进而计算相邻边的概率值,具体步骤如下:
4.4.1.1定义飞机的当前速度为s,当前加速度为a,相邻边与当前边连接处的转向角度为θ
4.4.1.2由于滑行速度较大或加速滑行时,直行或小角度转向的概率大,滑行速度较小或减速滑行时,大角度转向的概率大,并且根据机场滑行的运行规则,不可能出现大于90度转向的情况,因此,概率的取值计算如下:当θ>90时,相邻边的概率为0;当θ≤90时,如果s>40或a≥0,直行或小角度转向的概率大,则计算选取相邻边的概率为P(θ)=cos(θ),如果s≤40或a<0时,大角度转向的概率大,则计算选取相邻边的概率为P(θ)=1-cos(θ)。
4.4.2按照步骤4.4.1的方法进行递归计算和预测,在相邻边当中每次都选择概率最大的边作为后续路线,直到所有相邻边的概率都为0,或者直到下一条边中有一条边的类型为跑道脱离口、跑道入口、停机坪线,则停止预测。将选择的边集合作为飞机的预测路线。
4.4.3根据飞机当前速度和到当前边终点的距离,可以计算得到进入下一条边的滑行时间,再根据步骤2.3得到的每条边的平均滑行时间,可以累加得到在预测路线上每一条边的进入时间和离开时间。
4.5返回步骤4.1根据新接收到的监视报告进行计算,更新预测路线与滑行时间。
5.步骤5:遍历场面上所有飞机的预测路线,进行两两比对,判断飞机之间是否可能发生冲突。流程如图6所示,具体步骤如下:
5.1首先判断两条预测路线中是否具有反向的同一条边,当预测路线中有两条边相同且方向相反时,可能发生对头冲突。如图7所示,其中不同的虚线表示不同飞机的预测路线。
5.2当具有对头冲突的空间关系时,根据步骤4.4.3计算得到两架飞机通过该边的进入和离开时间,判断两个时间段是否会重合,当时间段有重合部分时,则预测两架飞机会有冲突,冲突区域如图7所示,将重合的时间段开始和结束作为预测冲突的开始时间conflictstar和结束时间conflictend,如图8所示。
5.3当路线上不具备相同边时,根据步骤1.2.2得到的简化的路网模型,再判断是否有两条路线的边位于同一个聚合节点范围内。如果是,则表明在空间关系上可能会发生交叉冲突,发生冲突的区域为聚合节点,如图9灰色的聚合节点所示。
5.4当具有交叉或对头冲突的空间关系时,根据步骤4.4.3计算得到两架飞机通过位于聚合节点区域内边的进入和离开时间,判断两个时间段是否会重合,当时间段有重合部分时,则预测两架飞机会有冲突,冲突区域如上图所示,参考步骤5.1.2,将重合的时间段开始和结束作为预测冲突的开始时间conflictstar和结束时间conflictend
6.步骤6:当预测会发生冲突时,将预测路线和冲突信息进行直观的可视化映射。
6.1对所有预测发生冲突的飞机,为了减少遮挡原有的主视图,用简单的图形在地图视图界面上叠加绘制路线和冲突区域。具体为从飞机的当前边开始,按预测路线用红色高亮加粗的线型绘制边,按运动的方向在每条边的终点绘制箭头,直到冲突区域终止,同时用红色的多边形绘制冲突区域,当为对头冲突时按设定距离宽度d,以边的几何线段为中心线绘制矩形边框,当为交叉冲突时,绘制聚合节点的几何对象边框;当冲突消失时,则从地图视图上清除绘制的预测路线和冲突区域。通过以上的绘制,可以直观地呈现冲突发生的区域和冲突来源。绘制示意图如图10(a)对头冲突区域和如图10(b)交叉冲突区域所示。
6.2在上一个步骤的同时,在单独的视图中根据冲突信息绘制柱状图,柱状图位于地图主视图的底部。横轴是以秒为单位的时间轴,其值代表预测的冲突发生时刻,默认显示范围为120秒,距离原点越近代表冲突发生时间越近。纵轴为冲突持续的时间长度,每个柱状块代表每一个预测冲突持续时间,柱状块的透明度按照预测概率设置,具体的计算为先根据步骤3.2计算得到两条边的条件概率,将两个概率相乘,设概率的乘积为Pe,则透明度为1-Pe,透明度越低、颜色越深,代表预测的冲突可能性越高,能够为管制员实时直观的呈现冲突发生的先后顺序、持续时间和可能性,并通过不断的更新,展现出冲突态势的变化,能够为飞机的调配提供决策支持。冲突信息柱状图及其按时间推移的变化如下图所示,图11中有4个预测发生的冲突。
6.3在步骤6.1的同时,在柱状图的顶部中心点向冲突区域图形的几何中心点绘制虚线,表示柱状块与预测冲突的对应关系。图12为最终的可视化效果,按照现行的管制系统雷达标牌标准,目标当前位置用圆形标记显示、标牌上显示目标的航班号,图12中共有4个目标,其中航班号TST1111的飞机与TST2222的飞机形成交叉冲突,航班号TST3333的飞机与TST4444的飞机形成对头冲突。
6.4根据监视数据报告的更新,不断的动态计算和更新步骤6.1和6.2的视图,以及步骤6.3的连接线位置,提供随时间推进变化的冲突信息可视化视图。

Claims (5)

1.一种场面飞机滑行冲突预测与可视化方法,其特征在于,包括以下步骤:
步骤1:根据包括机场场面滑行道中心线矢量地图的具有地理信息的线图层数据,建立两个层次的滑行路网模型,包括与滑行道中心线完全一致的基础路网模型,以及简化的路网模型;
步骤2:记录监视数据并建立轨迹,与基础路网模型进行地图匹配,统计每条边上的平均滑行时间,提取历史滑行路线;
步骤3:根据同一机场进离港滑行路线的特点,及历史进离港路线,分别计算进离港选择边的概率模型;
步骤4:接入读取场面监视系统输出的实时监视数据报告,从当前位置开始,根据概率模型预测后续的滑行路线和滑行时间,得到每架飞机的预测路线;
步骤5:遍历场面上所有飞机的预测路线,进行两两比对,判断飞机之间是否可能发生冲突;
步骤6:当预测会发生冲突时,将预测路线和冲突信息进行直观的可视化映射;
所述步骤1具体包括:
步骤1.1:建立与滑行道中心线完全一致的基础路网模型,具体为:
步骤1.1.1:定义节点集合V={v1,v2,…,vn},边集合E={e1,e2,…,em};其中,n为节点数,m为边数;将路网模型表示为一个无向图G=(V,E),其中每个节点vi都至少有三条边与其相连接;每条边ej∈E存储其两端的节点vj1和vj2表示vj1和vj2之间存在一条无向边,j1和j2取1,2,...,n;
步骤1.1.2:定义节点的几何对象:每个节点vi都包含一个几何对象,表示节点在地图上的位置,具体为包含X,Y坐标的点对象:vi=(xi,yi);
步骤1.1.3:定义边的几何对象:每条边ej都包含一个几何对象,表示边的形状;具体为包含多个坐标的线对象:ej=[(xj1,yj1),(xj2,yj2),…,(xjk,yjk)],如果边是直线段,则用仅有两个坐标的直线段对象表示,如果边是弧线段,则用具有多个坐标的折线段对象表示;其中,k为边ej所包含的点数量;
步骤1.1.4:定义边的类型:每条边ej还包含一个类型属性,表示路段的类型,具体包括普通滑行线、跑道脱离口、跑道入口和停机坪线;
步骤1.2:根据基础路网模型,建立简化的路网模型,具体为:
步骤1.2.1:将两架飞机不能同时通过的交叉道口和T型道口,聚合成为一个节点V,每个聚合节点都包含一个圆形或多边形几何区域,用于判断飞机是否位于该区域内;
步骤1.2.2:用基础路网模型中不属于聚合节点范围内的边,连接聚合后的节点,形成一个简化的路网模型G
所述步骤2具体包括:
步骤2.1:记录监视数据报告并构建轨迹数据集:
将场面监视系统输出的数据报告记作D={d1,d2,…,dm},记录的每个数据报告di包括:轨迹号tidi、航班号fidi、报告时间戳ti、XY坐标(xi,yi)、高度hi;将记录的数据报告形成轨迹数据集T={t1,t2,…,tn},定义每架飞机的轨迹tj包括轨迹号tidj、航班号fidj、轨迹类型typej、轨迹集合trackj;轨迹集合按时间顺序包含多个轨迹对象trackj,1,trackj,2,…,trackj,k,每个轨迹对象track包括报告时间戳tj,k、XY坐标(xj,k,yj,k)、高度hj,k
步骤2.2:将轨迹自动划分为进港轨迹和离港轨迹:
先由人工在地图上分别划定跑道和停机坪的多边形区域,判断每条轨迹中的track对象与跑道和停机坪的关系,对于每条轨迹tj在时间关系上检查是否具有部分轨迹对象的位置在跑道或停机坪区域内,根据进出港航班的特点,将轨迹的起始位置在跑道区域内或终止位置在停机坪区域内的轨迹归为进港轨迹,将起始位置在停机坪区域内或终止位置在跑道区域内的轨迹归为离港轨迹,将每条轨迹类型字段设置为进港类型或者离港类型;
步骤2.3:对每条轨迹进行地图匹配,并计算路网中每条边飞机通过的平均滑行时间;根据路网模型G=(V,E),采用地图匹配算法将轨迹对象与路网的边进行匹配计算,将每个track对象都正确地匹配到一条边ej∈E上;对于每条边,根据进入该边的第一个轨迹对象时间戳和离开该边前的最后一个轨迹对象时间戳,计算飞机通过该边的滑行时间;结合使用该边的通行次数,求得该边的平均滑行时间te,并计算所有历史轨迹使用过的边的平均通行时间;
步骤2.4:根据进港轨迹和离港轨迹的匹配结果,将历史轨迹对象匹配的边集合,按照边的序列构建为没有重复边的路线Route={e1,…ej1},j1为历史轨迹对象匹配的边集合的边数,实现进港历史滑行路线和离港历史滑行路线的正确提取;
所述步骤3具体包括:
步骤3.1:将历史路线划分为进港路线和离港路线分别计算概率;
步骤3.2:根据历史路线计算给定一条边的情况下,选择下一条边为滑行路线的概率;统计历史路线集合{Route1,…Routen}中飞机使用边e通过的总次数ne;对于与边e相邻的每一条边,统计选择边ei+1的次数表示所有从边e通过滑行的飞机中,有多少架飞机选择了边ei+1作为下一条边继续滑行;计算选择边ei+1的条件概率P(ei+1|e),即在已知飞机选择从边e进入跑道滑行的情况下,选择边ei+1作为下一条进港滑行路线的概率:
进而得到所有历史轨迹滑行通过的边到下一条边的选择概率;
所述步骤6具体包括:
1)从飞机的当前边开始,按预测路线用醒目线型绘制边,按运动的方向在每条边的终点绘制箭头,直到冲突区域终止,同时用醒目颜色的多边形绘制冲突区域,当为对头冲突时按设定距离宽度,以边的几何线段为中心线绘制矩形边框;当为交叉冲突时,绘制聚合节点的几何对象边框;当冲突消失时,则从地图视图上清除绘制的预测路线和冲突区域;
2)同时,在单独的视图中根据冲突信息绘制柱状图,柱状图位于地图主视图的底部;横轴为时间轴,其值代表预测的冲突发生时刻,纵轴为冲突持续的时间长度,每个柱状块代表每一个预测冲突持续时间,柱状块的透明度按照预测概率设置,将两条边的条件概率相乘得到乘积Pe,则透明度为1-Pe,透明度越低、颜色越深,代表预测的冲突可能性越高;
3)同时,在柱状图的顶部中心点向冲突区域图形的几何中心点绘制虚线,表示柱状块与预测冲突的对应关系。
2.根据权利要求1所述的场面飞机滑行冲突预测与可视化方法,其特征在于,所述步骤4具体包括:
步骤4.1:接收并记录实时的监视数据报告,每次接收到新的数据报告时,更新场面上所有飞机的轨迹集合;
步骤4.2:当飞机位于跑道区域或停机坪区域内的时候,返回执行步骤4.1;
步骤4.3:当飞机位于跑道区域或停机坪区域以外的时候,判断飞机为进港飞机还是离港飞机;
步骤4.4:当飞机为进港飞机时,选择由历史进港路线构建的概率模型进行预测;当飞机为离港飞机时,选择由历史离港路线构建的概率模型进行预测;返回步骤4.1根据新接收到的监视报告进行计算,更新预测路线与滑行时间。
3.根据权利要求2所述的场面飞机滑行冲突预测与可视化方法,其特征在于,所述步骤4.4中预测的具体为:
步骤4.4.1:将当前的飞机轨迹位置与路网模型G=(V,E)进行地图匹配,得到当前的正确匹配边,按向前的运动方向得到与当前匹配边相邻的边集合;根据进离港选择边的概率模型得到所有相邻边的概率值,当至少有一条边概率值大于0时,选择概率最大的边为后续的滑行路线,当所有边的概率值都为0时,表示没有历史轨迹使用过这条路线,则按照飞机运动趋势和路网结构构建拓扑概率模型,进而计算相邻边的概率值;
步骤4.4.2:在相邻边当中每次都选择概率最大的边作为后续路线,直到所有相邻边的概率都为0,或者直到下一条边中有一条边的类型为跑道脱离口、跑道入口、停机坪线,则停止预测;将选择的边集合作为飞机的预测路线;
步骤4.4.3:根据飞机当前速度和到当前边终点的距离,计算得到进入下一条边的滑行时间,再根据步骤2.3得到的每条边的平均滑行时间,累加得到在预测路线上每一条边的进入时间和离开时间。
4.根据权利要求3所述的场面飞机滑行冲突预测与可视化方法,其特征在于,所述步骤4.4.1中计算相邻边的概率值具体为:
定义飞机的当前速度为s,当前加速度为a,相邻边与当前边连接处的转向角度为θ;
当θ>90时,相邻边的概率为0;
当θ≤90时,若s>40或a≥0,则计算选取相邻边的概率为P(θ)=cos(θ);若s≤40或a<0,则计算选取相邻边的概率为P(θ)=1-cos(θ)。
5.根据权利要求3所述的场面飞机滑行冲突预测与可视化方法,其特征在于,所述步骤5具体包括:
步骤5.1:判断两条预测路线中是否具有反向的同一条边,当预测路线中有两条边相同且方向相反时,具有对头冲突的空间关系;
步骤5.2:当具有对头冲突的空间关系时,根据步骤4.4.3计算得到两架飞机通过该边的进入和离开时间,判断两个时间段是否会重合,当时间段有重合部分时,则预测两架飞机会有冲突,将重合的时间段开始和结束作为预测冲突的开始时间conflictstart和结束时间conflictend
步骤5.3:当路线上不具备相同边时,根据步骤1.2.2得到的简化的路网模型G,再判断是否有两条路线的边位于同一个聚合节点范围内;如果是,则表明在空间关系上存在会发生交叉冲突的可能,发生冲突的区域为聚合节点;
步骤5.4:当具有交叉或对头冲突的空间关系时,根据步骤4.4.3计算得到两架飞机通过位于聚合节点区域内边的进入和离开时间,判断两个时间段是否会重合,当时间段有重合部分时,则预测两架飞机会有冲突,并将重合的时间段开始和结束作为预测冲突的开始时间conflictstart和结束时间conflictend
CN202310857572.0A 2023-07-13 2023-07-13 一种场面飞机滑行冲突预测与可视化方法 Active CN116580602B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310857572.0A CN116580602B (zh) 2023-07-13 2023-07-13 一种场面飞机滑行冲突预测与可视化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310857572.0A CN116580602B (zh) 2023-07-13 2023-07-13 一种场面飞机滑行冲突预测与可视化方法

Publications (2)

Publication Number Publication Date
CN116580602A CN116580602A (zh) 2023-08-11
CN116580602B true CN116580602B (zh) 2023-10-03

Family

ID=87543530

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310857572.0A Active CN116580602B (zh) 2023-07-13 2023-07-13 一种场面飞机滑行冲突预测与可视化方法

Country Status (1)

Country Link
CN (1) CN116580602B (zh)

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012203593A (ja) * 2011-03-24 2012-10-22 Nec Corp 情報処理装置、情報処理システム、情報処理方法及び情報処理プログラム
CN103390355A (zh) * 2013-07-30 2013-11-13 中国民用航空总局第二研究所 一种基于a-smgcs系统的滑行道冲突检测方法
CN103824478A (zh) * 2014-03-05 2014-05-28 中国民用航空飞行学院 机场冲突热点识别方法
CN104916168A (zh) * 2015-06-03 2015-09-16 南京莱斯信息技术股份有限公司 机场场面活动目标的冲突规避系统及规避方法
CN106601033A (zh) * 2017-02-28 2017-04-26 中国人民解放军空军装备研究院雷达与电子对抗研究所 一种空中交通管制中期冲突的检测方法及装置
CN107622699A (zh) * 2017-09-26 2018-01-23 中国电子科技集团公司第二十八研究所 基于时序的全时段空域冲突探测与解脱方法
CN108346284A (zh) * 2018-01-29 2018-07-31 河海大学 一种基于马尔科夫模型的不确定性路网车辆轨迹预测方法
CN109313445A (zh) * 2016-03-23 2019-02-05 优特诺股份有限公司 车辆驾驶和自动驾驶的促进
CN109816976A (zh) * 2019-01-21 2019-05-28 平安科技(深圳)有限公司 一种交通管理方法及系统
CN110047332A (zh) * 2019-04-18 2019-07-23 太原理工大学 一种基于飞行计划的冲突检测方法
CN110111566A (zh) * 2019-04-19 2019-08-09 腾讯科技(深圳)有限公司 轨迹预测方法、装置和存储介质
CN110673807A (zh) * 2019-08-20 2020-01-10 华为技术有限公司 数据显示方法、终端和数据显示系统
CN111882047A (zh) * 2020-09-28 2020-11-03 四川大学 一种基于强化学习与线性规划的快速空管防冲突方法
CN111915046A (zh) * 2019-05-09 2020-11-10 北京百度网讯科技有限公司 用于输出信息的方法和装置
CN112382131A (zh) * 2020-10-16 2021-02-19 中国民用航空总局第二研究所 一种机场场面安全避撞预警系统和方法
CN113128938A (zh) * 2021-05-19 2021-07-16 广州赛特智能科技有限公司 一种机器人移动路径规划方法
CN113313957A (zh) * 2021-05-30 2021-08-27 南京林业大学 基于增强型Dijkstra算法的无信号灯交叉路口车辆调度方法
CN113313975A (zh) * 2021-04-09 2021-08-27 广州市中南民航空管通信网络科技有限公司 一种飞行冲突分析评判方法
CN113815638A (zh) * 2021-09-30 2021-12-21 戴姆勒股份公司 用于提示错误行驶方向的方法、辅助系统及车辆
CN114331210A (zh) * 2022-01-13 2022-04-12 中国电子科技集团公司第二十八研究所 一种基于碰撞保护区的空域碰撞风险评估方法
CN114610078A (zh) * 2022-05-12 2022-06-10 四川腾盾科技有限公司 一种无人机空中航路冲突预警方法及系统
CN217333502U (zh) * 2021-12-09 2022-08-30 苏州雷森电子科技有限公司 一种机场飞机滑行道与车辆交叉口的红绿灯信号系统
CN115187093A (zh) * 2022-07-04 2022-10-14 四川大学 一种机场场面运行优化方法、装置、设备及可读存储介质
CN115578860A (zh) * 2022-10-12 2023-01-06 西南交通大学 城市密集路网环境下车辆出行路径识别方法
CN115908507A (zh) * 2022-09-26 2023-04-04 清华大学 车辆轨迹恢复方法、设备、装置和存储介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040030741A1 (en) * 2001-04-02 2004-02-12 Wolton Richard Ernest Method and apparatus for search, visual navigation, analysis and retrieval of information from networks with remote notification and content delivery
US7277043B2 (en) * 2004-11-24 2007-10-02 The Mitre Corporation Tactical aircraft check algorithm, system and method

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012203593A (ja) * 2011-03-24 2012-10-22 Nec Corp 情報処理装置、情報処理システム、情報処理方法及び情報処理プログラム
CN103390355A (zh) * 2013-07-30 2013-11-13 中国民用航空总局第二研究所 一种基于a-smgcs系统的滑行道冲突检测方法
CN103824478A (zh) * 2014-03-05 2014-05-28 中国民用航空飞行学院 机场冲突热点识别方法
CN104916168A (zh) * 2015-06-03 2015-09-16 南京莱斯信息技术股份有限公司 机场场面活动目标的冲突规避系统及规避方法
CN109313445A (zh) * 2016-03-23 2019-02-05 优特诺股份有限公司 车辆驾驶和自动驾驶的促进
CN106601033A (zh) * 2017-02-28 2017-04-26 中国人民解放军空军装备研究院雷达与电子对抗研究所 一种空中交通管制中期冲突的检测方法及装置
CN107622699A (zh) * 2017-09-26 2018-01-23 中国电子科技集团公司第二十八研究所 基于时序的全时段空域冲突探测与解脱方法
CN108346284A (zh) * 2018-01-29 2018-07-31 河海大学 一种基于马尔科夫模型的不确定性路网车辆轨迹预测方法
CN109816976A (zh) * 2019-01-21 2019-05-28 平安科技(深圳)有限公司 一种交通管理方法及系统
CN110047332A (zh) * 2019-04-18 2019-07-23 太原理工大学 一种基于飞行计划的冲突检测方法
CN110111566A (zh) * 2019-04-19 2019-08-09 腾讯科技(深圳)有限公司 轨迹预测方法、装置和存储介质
CN111915046A (zh) * 2019-05-09 2020-11-10 北京百度网讯科技有限公司 用于输出信息的方法和装置
CN110673807A (zh) * 2019-08-20 2020-01-10 华为技术有限公司 数据显示方法、终端和数据显示系统
CN111882047A (zh) * 2020-09-28 2020-11-03 四川大学 一种基于强化学习与线性规划的快速空管防冲突方法
CN112382131A (zh) * 2020-10-16 2021-02-19 中国民用航空总局第二研究所 一种机场场面安全避撞预警系统和方法
CN113313975A (zh) * 2021-04-09 2021-08-27 广州市中南民航空管通信网络科技有限公司 一种飞行冲突分析评判方法
CN113128938A (zh) * 2021-05-19 2021-07-16 广州赛特智能科技有限公司 一种机器人移动路径规划方法
CN113313957A (zh) * 2021-05-30 2021-08-27 南京林业大学 基于增强型Dijkstra算法的无信号灯交叉路口车辆调度方法
CN113815638A (zh) * 2021-09-30 2021-12-21 戴姆勒股份公司 用于提示错误行驶方向的方法、辅助系统及车辆
CN217333502U (zh) * 2021-12-09 2022-08-30 苏州雷森电子科技有限公司 一种机场飞机滑行道与车辆交叉口的红绿灯信号系统
CN114331210A (zh) * 2022-01-13 2022-04-12 中国电子科技集团公司第二十八研究所 一种基于碰撞保护区的空域碰撞风险评估方法
CN114610078A (zh) * 2022-05-12 2022-06-10 四川腾盾科技有限公司 一种无人机空中航路冲突预警方法及系统
CN115187093A (zh) * 2022-07-04 2022-10-14 四川大学 一种机场场面运行优化方法、装置、设备及可读存储介质
CN115908507A (zh) * 2022-09-26 2023-04-04 清华大学 车辆轨迹恢复方法、设备、装置和存储介质
CN115578860A (zh) * 2022-10-12 2023-01-06 西南交通大学 城市密集路网环境下车辆出行路径识别方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Airport Taxiway Conflict Detection Method Based on Network Topology;Guoqiang Wang等;《2020 IEEE 2nd International Conference on Civil Aviation Safety and Information Technology (ICCASIT)》;176-181 *
Yue Xie等.Runway landing safety analysis: a case study of Atlanta Hartsfield airport.《Digital Avionics Systems Conference, 2003. DASC '03. The 22nd》.2012,1-12. *
基于ADS-B IN的终端区避撞仿真平台设计与实现;李仙颖;《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》(第3期);C031-1871 *
机场热点时空分布特征及运行风险评价;夏正洪等;《中国安全科学学报》(第1期);93-98 *

Also Published As

Publication number Publication date
CN116580602A (zh) 2023-08-11

Similar Documents

Publication Publication Date Title
Yang et al. A microscopic traffic simulator for evaluation of dynamic traffic management systems
EP3048424B1 (en) Methods and systems for route-based display of meteorological forecast information
RU2560220C1 (ru) Способ и устройство для управления наземным движением мобильных объектов на аэродроме
JP4255910B2 (ja) 複数進入時間領域間隔支援表示の方法及びシステム
KR102580095B1 (ko) 시나리오 기반 거동 명세 및 검증
CN103310661B (zh) 机场场面路网模型及机场场面冲突检测临界告警算法
US20110071750A1 (en) Airport Surface Conflict Detection
US11989625B2 (en) Method and system for detecting and avoiding loss of separation between vehicles and updating the same
CN111653130B (zh) 基于ads-b的防撞检测方法
CN106601033A (zh) 一种空中交通管制中期冲突的检测方法及装置
EP3716246A1 (en) Method and system for detecting and avoiding loss of separation between vehicles
Bulusu et al. Cooperative and non-cooperative UAS traffic volumes
EP3933807A1 (en) Cockpit display systems and methods for displaying taxiing route on airport moving map
CN107657838B (zh) 一种空中交通流特征参数指标体系中参数指标的提取方法
CN114120716A (zh) 一种机场场面交通碰撞机载告警方法及系统
US20170358218A1 (en) Runway optimization system and method
Zhang et al. Empirical study of airport geofencing for unmanned aircraft operation based on flight track distribution
CN114964286A (zh) 轨迹规划信息生成方法、装置、电子设备以及存储介质
Espadaler-Clapés et al. Empirical investigation of lane usage, lane changing and lane choice phenomena in a multimodal urban arterial
CN116580602B (zh) 一种场面飞机滑行冲突预测与可视化方法
Malygin et al. Decision support systems for ensuring safety of overland traffic at major airports
Spirkovska et al. Urban air mobility airspace dynamic density
CN115112138A (zh) 轨迹规划信息生成方法、装置、电子设备以及存储介质
Lee et al. Preliminary analysis of separation standards for urban air mobility using unmitigated fast-time simulation
Podgórski et al. Aircraft taxi route choice in case of conflict points existence

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant