CN116571254A - 一种高活性晶面共暴露Bi0/BiOBr吸波材料及制备方法和应用 - Google Patents

一种高活性晶面共暴露Bi0/BiOBr吸波材料及制备方法和应用 Download PDF

Info

Publication number
CN116571254A
CN116571254A CN202310567745.5A CN202310567745A CN116571254A CN 116571254 A CN116571254 A CN 116571254A CN 202310567745 A CN202310567745 A CN 202310567745A CN 116571254 A CN116571254 A CN 116571254A
Authority
CN
China
Prior art keywords
biobr
absorbing material
wave
activity
exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310567745.5A
Other languages
English (en)
Other versions
CN116571254B (zh
Inventor
刘雪岩
王鲁宁
宋宁
张晓杰
张蕾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning University
Original Assignee
Liaoning University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning University filed Critical Liaoning University
Priority to CN202310567745.5A priority Critical patent/CN116571254B/zh
Publication of CN116571254A publication Critical patent/CN116571254A/zh
Application granted granted Critical
Publication of CN116571254B publication Critical patent/CN116571254B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G29/00Compounds of bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/302Treatment of water, waste water, or sewage by irradiation with microwaves
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及一种高活性晶面共暴露Bi0/BiOBr吸波材料及制备方法和应用。本发明通过简单的溶剂热法制备了具有特定{110}与{102}高活性晶面共暴露2D BiOBr纳米片,进一步水热在其表面原位生长0D半金属Bi0,得到Bi0/BiOBr{110/102}复合吸波材料。该材料在MW驱动下对全氟辛酸(PFOA)展现了超高的催化活性,在含氟环境水体净化方面具有潜在的应用前景。

Description

一种高活性晶面共暴露Bi0/BiOBr吸波材料及制备方法和应用
技术领域
本发明属于吸波材料制备领域,特别涉及一种高活性{110}与{102}晶面共暴露的Bi0/BiOBr吸波材料及制备方法和在全氟烷基化物降解方面的应用。
背景技术
全氟辛酸(PFOA)是一种自20世纪50年代以来大量生产的全氟烷基化合物,由于具有热稳定性、化学稳定性和表面活性等性质,被广泛应用于各种工业过程和产品中,如防水和防油剂、消防泡沫、润滑剂、表面活性剂和涂料等。PFOA可通过摄取、吸入、皮肤接触等被人体吸收,导致人体中过氧物酶体繁殖,影响能量传递、破坏细胞膜等,从而诱发癌症、肝肿大等疾病。PFOA中的C-F键具有超高的键解离能,使其分子结构稳定,很难自然降解。水体中的PFOA可随食物链进入人体,严重威胁着人类的生命健康。因此,寻找高效去除环境水体中PFOA污染的新方法迫在眉睫,这是关乎未来环境可持续发展的关键因素。
微波(MW)协同吸波材料的催化技术,具有反应活化能低、反应速率快等优点,已被广泛应用于环境污染控制方面的研究,并取得了显著成果。该技术的核心是构建高MW响应、丰富活性位点、结构稳定的MW催化材料。
BiOBr具有独特的层状结构,交替的[Bi2O2]2+层和Br-层有利于载流子分离及物质的层间迁移,具有良好的插层、吸附和MW吸收性能。此外,由于BiOBr不同晶面的各向异性,可以通过调控不同暴露晶面来调整BiOBr的性质。但单纯的BiOBr载流子分离效率低,构建肖特基结是提升载流子寿命的有效途径。半金属Bi0是一种廉价易得的绿色金属,常扮演电子供体和导体的角色,且具有局域表面等离子体共振(LSPR)效应。
发明内容
为了解决上述存在的技术问题,本发明提供一种高活性{110}与{102}晶面共暴露的Bi0/BiOBr吸波材料,将Bi0负载于BiOBr上有利于提升材料对MW能的吸收。并在协同MW催化降解PFOA过程中展现了优异的催化活性。
本发明采用的技术方案是:一种高活性晶面共暴露Bi0/BiOBr吸波材料,是在{110}与{102}晶面共暴露BiOBr纳米片表面原位生长0D半金属Bi0,获得的Bi0/BiOBr{110/102}复合吸波材料。
进一步的,上述的一种高活性晶面共暴露Bi0/BiOBr吸波材料,按质量百分比,Bi0的负载量为5~20%。
一种高活性晶面共暴露Bi0/BiOBr吸波材料的制备方法,包括如下步骤:
1){110}与{102}晶面共暴露BiOBr纳米片制备:取Bi(NO3)3·5H2O和KBr溶解在去离子水中,调节溶液pH至4.0,室温下搅拌1h后,转移至反应釜中,加热至160℃,保持24h,所得产物洗涤,干燥,得到BiOBr{110/102}纳米片。
2)取Bi(NO3)3·5H2O溶解于乙二醇中,加入BiOBr{110/102}纳米片,室温下超声分散1h后,转移到反应釜中,加热至160℃,保持12h,所得产物洗涤,干燥,得到Bi0/BiOBr{110/102}复合吸波材料。
本发明提供的一种高活性晶面共暴露Bi0/BiOBr吸波材料在降解有机污染物中的应用。
进一步的,Bi0/BiOBr吸波材料协同微波降解有机污染物。
进一步的,所述有机污染物是全氟烷基化物。
进一步的,方法如下:调节含有全氟烷基化物废水的pH为2~8,加入Bi0/BiOBr{110/102}复合吸波材料,微波辐射,进行降解。
进一步的,所述微波辐射,微波功率为700W。
进一步的,全氟烷基化物的初始浓度为10mg L-1
进一步的,Bi0/BiOBr{110/102}复合吸波材料的加入量为15~30mg
本发明的有益效果是:
1、BiOBr的不同晶面具有各向异性,可以通过调控不同暴露晶面来调整BiOBr的性质。本发明通过简单的溶剂热法制备了具有特定{110}与{102}高活性晶面共暴露的2DBiOBr纳米片,调控BiOBr纳米片表面电子结构及活性位点,进一步在其侧面边缘原位生长0D半金属Bi0,制备了0D/2D Bi0/BiOBr肖特基吸波材料;MW驱动0D/2D Bi0/BiOBr催化下,仅5min对全氟辛酸(PFOA)具有超高的催化活性。
2、本发明制备的Bi0/BiOBr{110/102}复合吸波材料在MW驱动下对全氟烷基类化合物PFOA展现了超高的催化活性,在含氟环境水体净化方面具有潜在的应用前景。
附图说明
图1是不同样品的XRD图谱。
图2是BrOBr{110/102}的SEM图像(a)和TEM(b)图像。
图3是Bi0/BrOBr{110/102}的SEM图像(a)和TEM(b)图像。
图4是不同处理方式对PFOA去除效果对比。
图5是不同Bi0负载量对PFOA催化活性对比。
具体实施方式
实施例1一种高活性晶面共暴露Bi0/BiOBr吸波材料的制备
(一)高活性晶面共暴露Bi0/BiOBr吸波材料(5% Bi0/BiOBr{110/102})
制备方法如下:
1、{110}与{102}晶面共暴露BiOBr纳米片的制备:
称取1.9740g Bi(NO3)3·5H2O和0.4760g KBr溶解在60mL去离子水中,用1M NaOH调节溶液pH至4.0,在室温下搅拌1h后,将所得混合溶液转移至100mL反应釜中,加热至160℃,保持24h,洗涤,干燥,得到{110}与{102}晶面共暴露BiOBr纳米片,标记为BiOBr{110/102}。
2、5% Bi0/BiOBr{110/102}复合吸波材料的制备:
称取0.0314g Bi(NO3)3·5H2O溶解于40mL的乙二醇中,加入0.2570g BiOBr{110/102}纳米片,在室温下超声分散1h后,将所得混合溶液转移到100mL反应釜中,加热至160℃,保持12h,洗涤,干燥,得到Bi0负载量为5%的Bi0/BiOBr吸波材料,标记为5%Bi0/BiOBr{110/102}。
(二)高活性晶面共暴露Bi0/BiOBr吸波材料(10% Bi0/BiOBr{110/102})
制备方法如下:
1、{110}与{102}晶面共暴露BiOBr纳米片的制备:同(一)
2、10% Bi0/BiOBr{110/102}复合吸波材料的制备:
称取0.0628g Bi(NO3)3·5H2O溶解于40mL的乙二醇中,加入0.2570g BiOBr{110/102}纳米片,在室温下超声分散1h后,将所得混合溶液转移到100mL反应釜中,加热至160℃,保持12h,洗涤,干燥,得到Bi0负载量为10%的Bi0/BiOBr吸波材料,标记为10% Bi0/BiOBr{110/102}。
(三)高活性晶面共暴露Bi0/BiOBr吸波材料(15% Bi0/BiOBr{110/102})
制备方法如下:
1、{110}与{102}晶面共暴露BiOBr纳米片的制备:同(一)
2、15% Bi0/BiOBr{110/102}复合吸波材料的制备:
称取0.0942g Bi(NO3)3·5H2O溶解于40mL的乙二醇中,加入0.2570g BiOBr{110/102}纳米片,在室温下超声分散1h后,将所得混合溶液转移到100mL反应釜中,加热至160℃,保持12h,洗涤,干燥,得到Bi0负载量为15%的Bi0/BiOBr吸波材料,标记为15% Bi0/BiOBr{110/102}。
(四)高活性晶面共暴露Bi0/BiOBr吸波材料(20% Bi0/BiOBr{110/102})
制备方法如下:
1、{110}与{102}晶面共暴露BiOBr纳米片的制备:同(一)
2、20% Bi0/BiOBr{110/102}复合吸波材料的制备:
称取0.1256g Bi(NO3)3·5H2O溶解于40mL的乙二醇中,加入0.2570g BiOBr{110/102}纳米片,在室温下超声分散1h后,将所得混合溶液转移到100mL反应釜中,加热至160℃,保持12h,洗涤,干燥,得到Bi0负载量为20%的Bi0/BiOBr吸波材料,标记为20% Bi0/BiOBr{110/102}。
(五)对比例——主暴露{102}晶面Bi0/BiOBr吸波材料:
制备方法如下:
1、主暴露{102}晶面BiOBr纳米片的制备:
称取1.9740g Bi(NO3)3·5H2O和0.4760g KBr溶解在60mL去离子水中,在室温下搅拌1h后,将所得混合溶液转移至100mL反应釜中,加热至160℃,保持24h,洗涤,干燥,得到主暴露{102}晶面BiOBr纳米片,标记为BiOBr{102}。
2、15% Bi0/BiOBr{102}复合吸波材料的制备:
称取0.0942g的Bi(NO3)3·5H2O溶解于40mL的乙二醇中,加入0.2570g BiOBr{102}纳米片,在室温下超声分散1h后,将所得混合溶液转移到100mL反应釜中,加热至160℃,保持12h,洗涤,干燥,得到Bi0负载量为15%的Bi0/BiOBr吸波材料,标记为15%Bi0/BiOBr{102}。
(六)表征
1、图1是不同样品的XRD图谱。由图1可以看出,构建的BiOBr{110/102}与BiOBr{102}材料的衍射峰与BiOBr标准卡片(JCPDS No.73-2601)匹配良好,其位于2θ=21.99°,25.26°,31.81°,32.31°,39.43,46.34°,57.30°的衍射峰分别对应于BiOBr的{002}、{011}、{102}、{110}、{112}、{020}和{212}晶面。明显地,BiOBr{110/102}中{102}与{110}晶面的衍射峰强度相当,说明高活性{102}与{110}晶面的共暴露,BiOBr{102}中{102}晶面峰强度明显高于{110}晶面峰强,说明主要暴露高活性{102}晶面。进一步负载Bi0后的Bi0/BiOBr{110/102}和Bi0/BiOBr{102}复合材料中,在2θ=27.16°,37.94°和39.61°处出现了新的衍射峰,对应金属Bi0的{012}、{104}和{110}晶面(JCPDS No.44-1246)。
2、图2是BrOBr{110/102}的SEM图像(a)和TEM(b)图像。由图2可以看出,通过SEM和TEM图像可以观察到BiOBr{110/102}呈2D纳米片结构,且表面非常光滑。
3、图3是Bi0/BrOBr{110/102}的SEM图像(a)和TEM(b)图像。由图3可以看出,Bi0沿着BiOBr{110/102}纳米片的侧面边缘生长,且Bi0尺寸约2-5nm,TEM图也证明了这一点,说明在Bi0/BiOBr{110/102}合成过程中Bi0的生长位置具有高选择性。
实施例2高活性晶面共暴露Bi0/BiOBr吸波材料在降解有机污染物中的应用
本实施例全氟烷基化物选用全氟辛酸(PFOA)为例,进行说明,但全氟烷基化物并不限定为全氟辛酸。
(一)不同方法对PFOA去除效果的影响
分别量取50mL 10mg L-1的全氟辛酸(PFOA)标准溶液于250mL三颈烧瓶,溶液的pH为4.2:
①加入20mg Bi0/BiOBr{110/102}复合吸波材料,吸附5min;
②仅在微波功率为700W下微波辐射5min;
③加入20mg BrOBr{110/102},协同微波功率为700W下微波辐射5min;
④加入20mg 15%Bi0/BiOBr{110/102}复合吸波材料,协同微波功率为700W下微波辐射5min;
⑤加入20mg 15%Bi0/BiOBr{102}复合吸波材料,协同微波功率为700W下微波辐射5min;
取样后,采用荧光光度计进行含量监测,结果如表1和图4。
表1不同方法对PFOA去除效果对比
由表1和图4可以看出,单独MW辐射对PFOA的降解作用几乎可以忽略,Bi0/BrOBr{110/102}对PFOA单独吸附5min去除率仅为24.1%。BrOBr{110/102}单体在MW驱动下,5min内对PFOA的降解效率为37.5%,而Bi0/BrOBr{110/102}复合材料对PFOA的降解效率可达97.7%,并高于Bi0/BrOBr{102}对PFOA的降解效果(75.5%),展现了较高的催化活性。
(二)不同Bi0负载量对PFOA去除效果的影响
方法:分别量取50mL 10mg L-1的全氟辛酸(PFOA)溶液于250mL三口圆底烧瓶中,溶液的pH为4.2,分别加入20mg 5% Bi0/BiOBr{110/102}、10% Bi0/BiOBr{110/102}、15%Bi0/BiOBr{110/102}和20% Bi0/BiOBr{110/102},在微波功率为700W下微波辐射5min。取样,采用荧光光度计进行含量监测,结果如表2和图5。
表2不同Bi0负载量对PFOA降解效率的影响
由表2和图5可以看出,MW辐射下,Bi0/BrOBr{110/102}对PFOA的催化降解效果随着Bi0负载量的增加呈现先升高后降低的趋势,Bi0负载量为15%的15% Bi0/BiOBr{110/102}复合吸波材料在5min内对PFOA的降解效率最佳。
(三)Bi0/BrOBr{110/102}用量对PFOA去除效果的影响
方法:分别量取50mL 10mg L-1的全氟辛酸(PFOA)溶液于250mL三口圆底烧瓶中,溶液的pH为4.2,分别加入10mg,15mg,20mg,25mg和30mg的15%Bi0/BiOBr{110/102},在微波功率为700W下微波辐射5min。取样,采用荧光光度计进行含量监测,结果如表3。
表3催化剂用量对PFOA降解效果的影响
随着催化剂用量的增加,降解效率也随之增大。催化剂用量为20mg时,降解率可达到97.7%,进一步增加用量催化效率没有明显提升。
(四)反应时间对PFOA去除效果的影响
方法:分别量取50mL 10mg L-1的全氟辛酸(PFOA)溶液于250mL三口圆底烧瓶中,溶液的pH为4.2,加入20mg 15% Bi0/BiOBr{110/102},在微波功率为700W下微波辐射1~6min。每隔1min取样,采用荧光光度计进行含量监测,结果如表4。
表4MW辐射时间对PFOA降解效果的影响
如表4可以看出,随着MW时间的延长,降解效率也随之增大,MW辐射5min,降解率可达到97.7%,进一步延长反应时间催化效率没有明显提升。
(五)不同的溶液pH值对PFOA降解的影响
方法:分别量取50mL 10mg L-1的全氟辛酸(PFOA)溶液于250mL三口圆底烧瓶中,分别调节溶液的pH值2、4.2、8、10和12,加入20mg 15% Bi0/BiOBr{110/102},在微波功率为700W下微波辐射5min。取样,采用荧光光度计进行含量监测,结果如表5。
表5不同pH对PFOA降解效率的影响
由表5可以看出,随着pH的降低Bi0/BrOBr{110/102}对PFOA降解效率增加,pH值为4.2时催化活性最佳,进一步降低pH值至2,催化活性降低。

Claims (10)

1.一种高活性晶面共暴露Bi0/BiOBr吸波材料,其特征在于,所述高活性晶面共暴露Bi0/BiOBr吸波材料,是在{110}与{102}晶面共暴露BiOBr纳米片表面原位生长0D半金属Bi0,获得的Bi0/BiOBr{110/102}复合吸波材料。
2.根据权利要求1所述的一种高活性晶面共暴露Bi0/BiOBr吸波材料,其特征在于,按质量百分比,Bi0的负载量为5~20%。
3.一种高活性晶面共暴露Bi0/BiOBr吸波材料的制备方法,其特征在于,制备方法包括如下步骤:
1){110}与{102}晶面共暴露BiOBr纳米片制备:取Bi(NO3)3·5H2O和KBr溶解在去离子水中,调节溶液pH至4.0,室温下搅拌1h后,转移至反应釜中,加热至160℃,保持24h,所得产物洗涤,干燥,得到BiOBr{110/102}纳米片;
2)取Bi(NO3)3·5H2O溶解于乙二醇中,加入BiOBr{110/102}纳米片,室温下超声分散1h后,转移到反应釜中,加热至160℃,保持12h,所得产物洗涤,干燥,得到Bi0/BiOBr{110/102}复合吸波材料。
4.权利要求1或2所述的一种高活性晶面共暴露Bi0/BiOBr吸波材料在降解有机污染物中的应用。
5.根据权利要求4所述的应用,其特征在于,Bi0/BiOBr吸波材料协同微波降解有机污染物。
6.根据权利要求5所述的应用,其特征在于,所述有机污染物是全氟烷基化物。
7.根据权利要求6所述的应用,其特征在于,方法如下:调节含有全氟烷基化物废水的pH为2~8,加入Bi0/BiOBr{110/102}复合吸波材料,微波辐射,进行降解。
8.根据权利要求7所述的应用,其特征在于,所述微波辐射,微波功率为700W。
9.根据权利要求7所述的应用,其特征在于,全氟烷基化物的初始浓度为10mg L-1
10.根据权利要求9所述的应用,其特征在于,Bi0/BiOBr{110/102}复合吸波材料的加入量为15~30mg。
CN202310567745.5A 2023-05-19 2023-05-19 一种高活性晶面共暴露Bi0/BiOBr吸波材料及制备方法和应用 Active CN116571254B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310567745.5A CN116571254B (zh) 2023-05-19 2023-05-19 一种高活性晶面共暴露Bi0/BiOBr吸波材料及制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310567745.5A CN116571254B (zh) 2023-05-19 2023-05-19 一种高活性晶面共暴露Bi0/BiOBr吸波材料及制备方法和应用

Publications (2)

Publication Number Publication Date
CN116571254A true CN116571254A (zh) 2023-08-11
CN116571254B CN116571254B (zh) 2024-08-23

Family

ID=87540935

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310567745.5A Active CN116571254B (zh) 2023-05-19 2023-05-19 一种高活性晶面共暴露Bi0/BiOBr吸波材料及制备方法和应用

Country Status (1)

Country Link
CN (1) CN116571254B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103936096A (zh) * 2014-04-21 2014-07-23 青岛理工大学 一种微波辐射降解全氟羧酸污染物的方法
CN114210322A (zh) * 2021-12-21 2022-03-22 辽宁大学 高暴露{010}晶面的Bi0/Bi2MoO6{010}吸波材料及制备方法和应用
CN115999598A (zh) * 2022-11-22 2023-04-25 辽宁大学 一种3D/2D分级Bi7O9I3@Ti3C2复合吸波材料及其制备方法和应用
CN116078406A (zh) * 2022-06-09 2023-05-09 浙江海洋大学 一种磁性石莼生物炭基Bi/BiOBr复合光催化剂

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103936096A (zh) * 2014-04-21 2014-07-23 青岛理工大学 一种微波辐射降解全氟羧酸污染物的方法
CN114210322A (zh) * 2021-12-21 2022-03-22 辽宁大学 高暴露{010}晶面的Bi0/Bi2MoO6{010}吸波材料及制备方法和应用
CN116078406A (zh) * 2022-06-09 2023-05-09 浙江海洋大学 一种磁性石莼生物炭基Bi/BiOBr复合光催化剂
CN115999598A (zh) * 2022-11-22 2023-04-25 辽宁大学 一种3D/2D分级Bi7O9I3@Ti3C2复合吸波材料及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JUNHAO QIU ET AL.: "Vanadate-Rich BiOBr/Bi Nanosheets for Effective Adsorption and Visible-Light-Driven Photodegradation of Rhodamine B", 《JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY》, vol. 20, 31 December 2020 (2020-12-31), pages 2267 *
WENJUAN LI ET AL.: "BiOX/Bi/BiOX (X = Cl, Br) Double-Side Nanosheet Arrays: Synthesis, Structures, and Photo(electro)catalytic Applications", 《ADV. MATER. INTERFACES》, vol. 9, 31 December 2022 (2022-12-31), pages 1 - 11 *

Also Published As

Publication number Publication date
CN116571254B (zh) 2024-08-23

Similar Documents

Publication Publication Date Title
Yang et al. Insights into the degradation mechanism of perfluorooctanoic acid under visible-light irradiation through fabricating flower-shaped Bi5O7I/ZnO nn heterojunction microspheres
Zhao et al. One-pot hydrothermal fabrication of BiVO 4/Fe 3 O 4/rGO composite photocatalyst for the simulated solar light-driven degradation of Rhodamine B
Singh et al. Photocatalytic performance and quick recovery of BiOI/Fe3O4@ graphene oxide ternary photocatalyst for photodegradation of 2, 4-dintirophenol under visible light
Huo et al. High efficiently piezocatalysis degradation of tetracycline by few-layered MoS2/GDY: mechanism and toxicity evaluation
Raza et al. Hydrothermal synthesis of Fe3O4/TiO2/g-C3N4: advanced photocatalytic application
Li et al. Photocatalytic selective hydroxylation of phenol to dihydroxybenzene by BiOI/TiO2 pn heterojunction photocatalysts for enhanced photocatalytic activity
Kang et al. Electron-rich biochar enhanced Z-scheme heterojunctioned bismuth tungstate/bismuth oxyiodide removing tetracycline
Fang et al. Enhanced visible light photocatalytic activity of CdS with alkalized Ti 3 C 2 nano-sheets as co-catalyst for degradation of rhodamine B
Xu et al. Synthesis and behaviors of g-C3N4 coupled with LaxCo3-xO4 nanocomposite for improved photocatalytic activeity and stability under visible light
Huang et al. In situ synthesis of Cu+ self-doped CuWO4/g-C3N4 heterogeneous Fenton-like catalysts: the key role of Cu+ in enhancing catalytic performance
Luo et al. g-C3N4-based photocatalysts for organic pollutant removal: a critical review
Qian et al. New insights on the enhanced non-hydroxyl radical contribution under copper promoted TiO2/GO for the photodegradation of tetracycline hydrochloride
Shi et al. The bifunctional composites of AC restrain the stack of g-C3N4 with the excellent adsorption-photocatalytic performance for the removal of RhB
Meng et al. Graphitic carbon nitride nanosheets via acid pretreatments for promoted photocatalysis toward degradation of organic pollutants
Lu et al. Three-dimensional electro-Fenton degradation of ciprofloxacin catalyzed by CuO doped red mud particle electrodes: Electrodes preparation, kinetics and mechanism
CN111330648A (zh) 一种MIL-101(Fe)/g-C3N4复合可见光光催化剂及其制备方法和应用
CN114515590A (zh) 一种异质光催化材料及其制备和应用
Wang et al. Construction of a novel Cu 2 (OH) 3 F/gC 3 N 4 heterojunction as a high-activity Fenton-like catalyst driven by visible light
CN113351231A (zh) 一种高性能卤氧化铋/石墨烯纳米复合材料的制备方法及其催化应用
CN110586149B (zh) 钼酸铋/碳化钛异质结二维光催化材料及其制备方法和应用
CN116571254B (zh) 一种高活性晶面共暴露Bi0/BiOBr吸波材料及制备方法和应用
CN114210322B (zh) 高暴露{010}晶面的Bi0/Bi2MoO6{010}吸波材料及制备方法和应用
Liu et al. Halogen-doped ultrathin Bi2WO6 for promoted separation of photogenerated carriers and efficient photocatalysis
Ma et al. Flower-like hybrid composite MoS 2/NH 2-MIL-101 (Cr): A highly efficient photocatalyst for degrading indole under visible light
CN112121786B (zh) 一种氧化石墨烯掺杂改性四氧化二铋的压电催化和光催化联用催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant