CN114210322B - 高暴露{010}晶面的Bi0/Bi2MoO6{010}吸波材料及制备方法和应用 - Google Patents

高暴露{010}晶面的Bi0/Bi2MoO6{010}吸波材料及制备方法和应用 Download PDF

Info

Publication number
CN114210322B
CN114210322B CN202111570878.5A CN202111570878A CN114210322B CN 114210322 B CN114210322 B CN 114210322B CN 202111570878 A CN202111570878 A CN 202111570878A CN 114210322 B CN114210322 B CN 114210322B
Authority
CN
China
Prior art keywords
moo
wave
absorbing material
crystal face
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111570878.5A
Other languages
English (en)
Other versions
CN114210322A (zh
Inventor
刘雪岩
李东旭
张蕾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning University
Original Assignee
Liaoning University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning University filed Critical Liaoning University
Priority to CN202111570878.5A priority Critical patent/CN114210322B/zh
Publication of CN114210322A publication Critical patent/CN114210322A/zh
Application granted granted Critical
Publication of CN114210322B publication Critical patent/CN114210322B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/31Chromium, molybdenum or tungsten combined with bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/302Treatment of water, waste water, or sewage by irradiation with microwaves
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及高暴露{010}晶面的Bi0/Bi2MoO6{010}吸波材料及制备方法和应用。本发明通过简单的溶剂热法制备了具有特定{010}暴露面的二维Bi2MoO6纳米片,进一步水热在其侧面边缘定向原位生长零价态半金属Bi0,即可得到Bi0/Bi2MoO6{010}吸波材料。该材料在微波驱动下对抗生素类有机污染物土霉素(OTC)展现了超高的催化活性,在环境水体净化方面具有潜在的应用前景。

Description

高暴露{010}晶面的Bi0/Bi2MoO6{010}吸波材料及制备方法和 应用
技术领域
本发明属于吸波材料制备领域,具体的涉及一种高暴露{010}晶面的Bi0/Bi2MoO6吸波材料及其制备方法和应用。
背景技术
抗生素自问世以来,在人类对抗疾病的历程中起到了不可或缺的作用。然而,使用过程中部分抗生素不可避免地进入自然环境,会影响植物的正常生长,甚至导致细菌耐药性的增加。此外,抗生素类有机污染物土霉素(OTC)作为一种非常稳定的有机大分子,很难自然降解,伴随食物链进入人体后,严重威胁着人类的生命健康。因此,高效去除水体中抗生素污染物,创建清洁的水环境迫在眉睫,这也是关乎未来可持续发展的关键因素。
相比于传统的加热手段,微波加热速度更快,物料内外受热更加均匀,已被广泛应用于处理各类环境污染问题。微波与吸波材料相结合的催化技术,被用于高效诱导有机污染物的降解。
Bi2MoO6是一种层状结构的双金属氧化物,具有良好的吸波性能,近年来受到了广泛关注。Bi2MoO6微波催化活性与其形貌、组成、尺寸、暴露晶面等有关。文献报道表明,合适的暴露晶面可明显增强其催化活性。
发明内容
为了解决上述技术问题,本发明的目的之一是提供一种采用简单的溶剂热法制备高暴露{010}晶面诱导定向生长Bi0的Bi0/Bi2MoO6{010}吸波材料。
本发明的目的之二是提供Bi0/Bi2MoO6{010}吸波材料协同微波高效催化降解抗生素中的应用。
本发明采用的技术方案是:一种高暴露{010}晶面的Bi0/Bi2MoO6{010}吸波材料,按质量百分比,Bi0占Bi2MoO6质量的5-20%。
一种高暴露{010}晶面的Bi0/Bi2MoO6{010}吸波材料的制备方法,包括如下步骤:
1)Bi2MoO6{010}纳米片的制备:将铋盐、钼盐和CTAB(十六烷基三甲基溴化铵)溶解在去离子水中,剧烈搅拌30min后,用氨水调节pH=10,将所得混合物转移到反应釜中,水热反应后,用去离子水和乙醇清洗至中性,60℃干燥,得到Bi2MoO6{010}纳米片;
2)Bi0/Bi2MoO6{010}的制备:将铋盐溶解在乙二醇中,加入Bi2MoO6{010}纳米片,超声分散1h后,转移到反应釜中,水热反应后,洗涤,干燥,得到Bi0/Bi2MoO6{010}吸波材料。
进一步的,上述的制备方法,所述铋盐为Bi(NO3)3·5H2O。
进一步的,上述的制备方法,所述钼盐为Na2MoO4·2H2O。
进一步的,上述的制备方法,步骤1)中,所述水热反应为,140℃下反应24h。
进一步的,上述的制备方法,步骤2)中,铋盐中Bi和Bi2MoO6{010}纳米片的质量比为5-20%。
进一步的,上述的制备方法,步骤2)中,所述水热反应为,160℃反应12h。
本发明提供的高暴露{010}晶面的Bi0/Bi2MoO6{010}吸波材料在降解废水中抗生素中的应用。
进一步的,方法如下:于含有抗生素的废水中加入Bi0/Bi2MoO6{010}吸波材料,控制微波功率为700W,催化降解。
本发明的有益效果是:本发明通过简单的溶剂热法制备了具有特定{010}暴露面的二维Bi2MoO6纳米片,零价态半金属Bi0高度定向生长在二维Bi2MoO6{010}纳米片边缘;MW驱动Bi0/Bi2MoO6{010}催化下,仅需5min,对OTC就展现了超高的催化去除效率。本发明Bi0/Bi2MoO6{010}吸波材料在微波驱动下对抗生素类有机污染物土霉素(OTC)展现了超高的催化活性,并在环境水体净化方面具有潜在的应用前景。
附图说明
图1是Bi2MoO6,Bi2MoO6{010},Bi0/Bi2MoO6{010}的XRD图谱。
图2是Bi2MoO6{010}的SEM图。
图3是Bi0/Bi2MoO6{010}的SEM图像(a)和TEM(b)图像。
图4是MW,Bi2MoO6{010},Bi0/Bi2MoO6{010}和Bi0/Bi2MoO6的微波催化氧化OTC性能对比。
图5是Bi2MoO6{010},Bi0/Bi2MoO6{010}和Bi0/Bi2MoO6的微波催化氧化OTC动力学。
具体实施方式
实施例1高暴露{010}晶面的Bi0/Bi2MoO6{010}吸波材料(一)Bi0/Bi2MoO6{010}吸波材料,制备方法如下:
1、Bi2MoO6{010}纳米片的制备:
将Bi(NO3)3·5H2O(970mg,2mmol)、Na2MoO4·2H2O(242mg,1mmol)和CTAB(50mg,0.1mmol)溶解在40mL去离子水中,剧烈磁搅拌30min,形成非晶态白色沉淀,用氨水调节pH=10,将所得混合物转移到100mL的反应釜中,140℃下水热反应24h后,产物用去离子水和乙醇清洗至中性,60℃干燥12小时,得到Bi2MoO6{010}纳米片。
2、Bi0/Bi2MoO6{010}吸波材料的制备:
将Bi(NO3)3·5H2O(145.5mg,0.3mmol)溶解在40mL的乙二醇中,再加入Bi2MoO6{010}纳米片(418mg,0.7mmol),超声分散1h后,转移到100mL反应釜中,160℃水热反应12h后,所得产物洗涤,干燥,得到Bi0/Bi2MoO6{010}吸波材料。
(二)对比例——Bi2MoO6、Bi0/Bi2MoO6的制备:
将Bi(NO3)3·5H2O(970mg,2mmol)、Na2MoO4·2H2O(242mg,1mmol)和CTAB(50mg,0.1mmol)溶解在40mL去离子水中,剧烈磁搅拌30min,形成非晶态白色沉淀,将所得混合物转移到100mL的反应釜中,140℃下水热反应24h后,产物用去离子水和乙醇清洗至中性,60℃干燥12小时,得到Bi2MoO6材料。
将Bi(NO3)3·5H2O(145.5mg,0.3mmol)溶解在40mL的乙二醇中,再加入Bi2MoO6材料(418mg,0.7mmol),超声分散1h后,转移到100mL反应釜中,160℃水热反应12h后,所得产物洗涤,干燥,得到Bi0/Bi2MoO6材料。
(三)Bi0/Bi2MoO6{010}的表征
图1是Bi2MoO6,Bi2MoO6{010},Bi0/Bi2MoO6{010}的XRD图谱。由图1可知,通过水热直接合成的Bi2MoO6(未调pH)和本发明合成的Bi2MoO6{010}样品的XRD衍射峰均与PDFNo.21-0102标准图谱相匹配。其中,本发明合成的Bi2MoO6{010}样品结晶程度更高,并且,Bi2MoO6{010}样品的(060)晶面与(200)/(002)晶面的峰高比值显著提高,说明Bi2MoO6{010}样品高度暴露{010}晶面。在进一步水热得到的材料Bi0/Bi2MoO6{010}的XRD图谱中,可清晰地观察到Bi0(PDF No.44-1246)的衍射峰,说明零价态半金属Bi0被成功地沉积在了Bi2MoO6{010}纳米片上,并且暴露晶面没有明显变化。
图2是Bi2MoO6{010}的SEM图。由图2可见,Bi2MoO6{010}呈现2D纳米片结构,且表面及边缘均光滑。
图3为Bi0/Bi2MoO6{010}的SEM和TEM图。由图3中(a)Bi0/Bi2MoO6{010}的SEM图可见,纳米片的表面仍旧光滑,无明显沉积物,而其侧面边缘生长出极小的纳米粒子。由图3中(b)Bi0/Bi2MoO6{010}的TEM图也证明了这一点,说明在Bi0/Bi2MoO6{010}合成过程中Bi0的生长位置具有高选择性。
实施例2高暴露{010}晶面的Bi0/Bi2MoO6{010}吸波材料在降解废水中抗生素中的应用
方法如下:
采用微波仪进行催化降解实验,其温度、功率、反应时间可控,并配有冷凝回流装置。
移取50mL 10mg·L-1土霉素(OTC)溶液于250mL的三口圆底烧瓶中,加入10mg的吸波材料,开启微波辐射(700W)。一定时间间隔取样后,溶液中OTC的含量采用紫外可见分光光度计进行监测。
1、不同降解方法对降解率的影响
方法如下:
移取50mL 10mg·L-1OTC溶液于250mL的三口圆底烧瓶中,如表1采用不同的降解方法:①加入10mg的Bi0/Bi2MoO6{010}吸波材料,吸附10min;②不加入吸波材料,开启微波辐射(700W),单独微波辐射5min;③加入10mg的Bi2MoO6{010}单体协同微波辐射(700W)5min;④加入10mg的Bi0/Bi2MoO6{010}单体协同微波辐射(700W)5min。结果如图4和表1。
表1不同方法对OTC降解效果对比
Figure BDA0003423314180000041
表1表明,Bi0/Bi2MoO6{010}对OTC单独吸附10min去除率仅为5.7%;单独微波辐射对OTC的降解作用几乎可以忽略。
图4表明,Bi2MoO6{010}单体在微波驱动下,5min内对OTC的氧化降解为37.0%;相同条件下,Bi0/Bi2MoO6{010}吸波材料对OTC的氧化降解效率可达93.4%,Bi0/Bi2MoO6对OTC降解效果为70.1%,说明在微波协同作用下,Bi0/Bi2MoO6{010}吸波材料展现了更高的催化活性。
由图5可见,本发明的催化过程符合准一级动力学模型,Bi2MoO6{010}与Bi0/Bi2MoO6{010}的反应速率常数k分别为0.096min-1和0.496min-1,Bi0/Bi2MoO6{010}吸波材料较Bi2MoO6{010}单体的反应速率提高了4.2倍。
2、Bi0/Bi2MoO6{010}用量对抗生素降解率的影响
方法:移取50mL 10mg·L-1OTC溶液于250mL的三口圆底烧瓶中,分别加入1mg,3mg,5mg,7mg,10mg和15mg的Bi0/Bi2MoO6{010},微波功率700W,辐射5min。结果如表2。
表2催化剂用量对OTC降解效果的影响
Figure BDA0003423314180000051
由表2可见,随着催化剂用量的增加,降解效率也随之增大。催化剂用量为10mg时,降解率可达到93.4%,进一步增加用量催化效率没有明显提升。
3、Bi0负载量对抗生素降解率的影响
将Bi(NO3)3·5H2O(970mg,2mmol)、Na2MoO4·2H2O(242mg,1mmol)和CTAB(50mg,0.1mmol)溶解在40mL去离子水中,剧烈磁搅拌30min,形成非晶态白色沉淀,用氨水调节pH=10,将所得混合物转移到100mL的反应釜中,140℃下水热反应24h后,产物用去离子水和乙醇清洗至中性,60℃干燥12小时,得到Bi2MoO6{010}纳米片。
分别取48.5mg,97mg,145.5mg,194mg Bi(NO3)3·5H2O溶解在40mL的乙二醇中,再加入418mg Bi2MoO6{010}纳米片,超声分散1h后,转移到100mL反应釜中,160℃水热反应12h后,所得产物洗涤,干燥,得到Bi0负载量分别为5%,10%,15%和20%的Bi0/Bi2MoO6{010}吸波材料。
移取50mL 10mg L-1OTC溶液于250mL的三口圆底烧瓶中,随后加入10mg不同Bi0负载量的Bi0/Bi2MoO6{010}吸波材料,并开启微波辐射(700W)辐射5min,结果如表3。
表3不同Bi0负载量对OTC降解效率的影响
Figure BDA0003423314180000052
由表3可见,微波辐射下,Bi0/Bi2MoO6{010}对OTC的催化氧化效果随着Bi0负载量的增加呈现先升高后降低的趋势,Bi0负载量为15%的催化剂在5min内对OTC的降解效率最佳。

Claims (7)

1.一种高暴露{010}晶面的Bi0/Bi2MoO6{010}吸波材料,其特征在于,所述高暴露{010}晶面的Bi0/Bi2MoO6{010}吸波材料,按质量百分比,Bi0占Bi2MoO6质量的5-20%;
所述高暴露{010}晶面的Bi0/Bi2MoO6{010}吸波材料的制备方法,包括如下步骤:
1)Bi2MoO6{010}纳米片的制备:将铋盐、钼盐和CTAB溶解在去离子水中,剧烈搅拌30min后,用氨水调节pH=10,将所得混合物转移到反应釜中,水热反应后,用去离子水和乙醇清洗至中性,60℃干燥,得到Bi2MoO6{010}纳米片;
2)Bi0/Bi2MoO6{010}的制备:将铋盐溶解在乙二醇中,加入Bi2MoO6{010}纳米片,超声分散1h后,转移到反应釜中,水热反应后,洗涤,干燥,得到Bi0/Bi2MoO6{010}吸波材料。
2.根据权利要求1所述的高暴露{010}晶面的Bi0/Bi2MoO6{010}吸波材料,其特征在于,所述铋盐为Bi(NO3)3·5H2O。
3.根据权利要求1所述的高暴露{010}晶面的Bi0/Bi2MoO6{010}吸波材料,其特征在于,所述钼盐为Na2MoO4·2H2O。
4.根据权利要求1所述的高暴露{010}晶面的Bi0/Bi2MoO6{010}吸波材料,其特征在于,步骤1)中,所述水热反应为,140℃下反应24h。
5.根据权利要求1所述的高暴露{010}晶面的Bi0/Bi2MoO6{010}吸波材料,其特征在于,步骤2)中,所述水热反应为,160℃反应12h。
6.权利要求1所述的高暴露{010}晶面的Bi0/Bi2MoO6{010}吸波材料在降解废水中抗生素中的应用。
7.根据权利要求6所述的应用,其特征在于,方法如下:于含有抗生素的废水中加入Bi0/Bi2MoO6{010}吸波材料,控制微波功率为700W,催化降解。
CN202111570878.5A 2021-12-21 2021-12-21 高暴露{010}晶面的Bi0/Bi2MoO6{010}吸波材料及制备方法和应用 Active CN114210322B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111570878.5A CN114210322B (zh) 2021-12-21 2021-12-21 高暴露{010}晶面的Bi0/Bi2MoO6{010}吸波材料及制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111570878.5A CN114210322B (zh) 2021-12-21 2021-12-21 高暴露{010}晶面的Bi0/Bi2MoO6{010}吸波材料及制备方法和应用

Publications (2)

Publication Number Publication Date
CN114210322A CN114210322A (zh) 2022-03-22
CN114210322B true CN114210322B (zh) 2023-05-26

Family

ID=80704718

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111570878.5A Active CN114210322B (zh) 2021-12-21 2021-12-21 高暴露{010}晶面的Bi0/Bi2MoO6{010}吸波材料及制备方法和应用

Country Status (1)

Country Link
CN (1) CN114210322B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107376900A (zh) * 2017-07-26 2017-11-24 福州大学 钼酸铋超薄纳米片光催化材料的制备方法及其应用
CN108940261A (zh) * 2018-06-22 2018-12-07 江苏大学 一种整合同质结与异质结复合光催化剂的制备方法及用途
CN110227443A (zh) * 2019-05-07 2019-09-13 江苏诺菲泰安环境科技有限公司 一种量子点铋基光催化复合材料、制备方法及应用
CN112892562A (zh) * 2021-01-28 2021-06-04 辽宁大学 基于原位合成法制备的Z型Bi3O4Cl/Bi2MoO6复合光催化剂及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107376900A (zh) * 2017-07-26 2017-11-24 福州大学 钼酸铋超薄纳米片光催化材料的制备方法及其应用
CN108940261A (zh) * 2018-06-22 2018-12-07 江苏大学 一种整合同质结与异质结复合光催化剂的制备方法及用途
CN110227443A (zh) * 2019-05-07 2019-09-13 江苏诺菲泰安环境科技有限公司 一种量子点铋基光催化复合材料、制备方法及应用
CN112892562A (zh) * 2021-01-28 2021-06-04 辽宁大学 基于原位合成法制备的Z型Bi3O4Cl/Bi2MoO6复合光催化剂及其应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
(010)晶面暴露的Bi2MoO6纳米片对土霉素和四环素的可见光催化降解;康勤书等;《华中农业大学学报》;第33卷(第5期);67-72 *
Crystal defect-mediated {010} facets of Bi2MoO6 nanosheets for removal of TC: Enhanced mechanism and degradation pathway;Gui Yang et al.;《Applied Surface Science》;第539卷;148038(1-12) *
Enhanced photocatalytic performance by the synergy of Bi vacancies and Bi0 in Bi0-Bi2-δMoO6;Lili Zhang et al.;《Applied Catalysis B: Environmental》;第257卷;117785(1-9) *

Also Published As

Publication number Publication date
CN114210322A (zh) 2022-03-22

Similar Documents

Publication Publication Date Title
Song et al. Powerful combination of g-C3N4 and LDHs for enhanced photocatalytic performance: a review of strategy, synthesis, and applications
Huo et al. High efficiently piezocatalysis degradation of tetracycline by few-layered MoS2/GDY: mechanism and toxicity evaluation
Zhou et al. A novel PN heterojunction with staggered energy level based on ZnFe2O4 decorating SnS2 nanosheet for efficient photocatalytic degradation
Zhang et al. Carbon nitride nanotubes anchored with high-density CuNx sites for efficient degradation of antibiotic contaminants under photo-Fenton process: Performance and mechanism
CN108479811B (zh) 一种降解抗生素废水的z型声催化剂及其制备方法和应用
Reheman et al. Facile photo-ultrasonic assisted reduction for preparation of rGO/Ag2CO3 nanocomposites with enhanced photocatalytic oxidation activity for tetracycline
CN109550500B (zh) 一种可磁性分离的石墨烯基锌铁混合双金属氧化物光催化剂的制备方法及其应用
Luo et al. g-C3N4-based photocatalysts for organic pollutant removal: a critical review
CN112521617B (zh) 一种可用于吸附抗生素的多酸基金属有机框架材料及其制备方法和用途
Okab et al. A dual S-scheme g-C3N4/Fe3O4/Bi2WO6/Bi2S3 heterojunction for improved photocatalytic decomposition of methylene blue: Proposed mechanism, and stability studies
CN111185210B (zh) 二碳化三钛/二氧化钛/黑磷纳米片复合光催化剂及其制备方法和应用
CN113275023B (zh) 一种Bi3O4Br/CuBi2O4双金属异质结催化剂的制备方法及应用
Chen et al. Preparation of Fe3O4@ SiO2@ BiO1. 8· 0.04 H2O/Ag3PO4 magnetic nanocomposite and its photocatalytic performance
Kheraldeen Kara et al. Experimental study of methylene blue adsorption from aqueous solutions onto Fe3O4/NiO nano mixed oxides prepared by ultrasonic assisted co-precipitation
CN103894171A (zh) 一种花簇状氧化锌微米结构光催化剂的制备方法
CN114522709B (zh) 一种三维多孔石墨相氮化碳/碘氧化铋/银纳米粒子复合光催化剂及其制备方法和应用
Jabbar et al. Preparation of magnetic Fe3O4/g-C3N4 nanosheets immobilized with hierarchal Bi2WO6 for boosted photocatalytic reaction towards antibiotics in aqueous solution: S-type charge migration route
CN116099550A (zh) 一种非贵金属铜修饰碳基复合材料及其制备方法和应用
Chao et al. Facile fabrication of magnetically separable Ag3PO4/CoFe2O4/GO composites with enhanced visible light photocatalytic performance
Li et al. Enhanced visible-light activation of persulfate by g-C3N4 decorated graphene aerogel for methyl orange degradation
CN115212899A (zh) 一种光芬顿催化剂及其制备方法和应用
Wu et al. A novel core-shell Z-scheme heterojunction In2O3@ BiFeO3 with broad spectrum response for enhanced photocatalytic degradation of tetracycline
Ayappan et al. Facile construction of a fascinating dual Z-scheme Bi2S3/tg-C3N4/α-Ag2WO4 photocatalyst for effective removal of organic pollutants: influence factors, mechanism insight and degradation pathway
CN114210322B (zh) 高暴露{010}晶面的Bi0/Bi2MoO6{010}吸波材料及制备方法和应用
Li et al. Synthesizing ZnWO4 with enhanced performance in photoelectrocatalytic inactivating marine microorganisms

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant