CN116569004A - 用于测量光辐射的光谱感测设备和方法 - Google Patents

用于测量光辐射的光谱感测设备和方法 Download PDF

Info

Publication number
CN116569004A
CN116569004A CN202180080948.0A CN202180080948A CN116569004A CN 116569004 A CN116569004 A CN 116569004A CN 202180080948 A CN202180080948 A CN 202180080948A CN 116569004 A CN116569004 A CN 116569004A
Authority
CN
China
Prior art keywords
sensing device
optical
spectrum sensing
detector
photosensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180080948.0A
Other languages
English (en)
Inventor
C·M·奥古恩
S·库尔卡尼
F·普罗埃尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TrinamiX GmbH
Original Assignee
TrinamiX GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TrinamiX GmbH filed Critical TrinamiX GmbH
Publication of CN116569004A publication Critical patent/CN116569004A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0256Compact construction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/021Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using plane or convex mirrors, parallel phase plates, or particular reflectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • G01J3/4412Scattering spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • G01J3/433Modulation spectrometry; Derivative spectrometry
    • G01J2003/4334Modulation spectrometry; Derivative spectrometry by modulation of source, e.g. current modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/069Supply of sources
    • G01N2201/0696Pulsed
    • G01N2201/0697Pulsed lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/127Calibration; base line adjustment; drift compensation

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Engineering & Computer Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

本发明涉及用于测量光辐射(112)的光谱感测设备(110)和方法(160)。光谱感测设备110包括‑至少一个光敏检测器(120),其中,所述至少一个光敏检测器(120)具有至少一个光敏区域(122),所述至少一个光敏区域(122)被指定为接收光辐射(112),其中,由所述至少一个光敏检测器(120)生成的至少一个检测器信号取决于所述至少一个光敏区域(122)的照射;‑至少一个辐射发射元件(116),其中,所述至少一个辐射发射元件(116)被指定为发射所述光辐射(112);‑至少一个光学元件(124),其中,所述至少一个光学元件(124)被指定为将所述光辐射(112)的第一部分(128)引导到所述至少一个光敏检测器(120);‑至少一个评估单元(140),其中,所述至少一个评估单元(140)被配置为通过使用由所述至少一个光敏检测器(120)基于由所述光辐射(112)的所述第一部分(128)对所述至少一个光敏区域(122)的照射生成的至少一个第一检测器信号来执行对所述光谱感测设备(110)的校准,其中,所述校准是指不时地校正在所述光谱感测设备(110)中发生的漂移效应的过程,其中,所述飘移效果由与所述光谱感测设备(110)本身有关的或者对所述光谱感测设备(110)有影响的改变引起。用于测量光辐射(112)的光谱感测设备(110)和方法(160)被配置为优选地以全自动化的方式对光谱感测设备(110)进行自校准而不需要任何预定义的反射目标。因此,光谱感测设备和方法可以具体地被配置为执行自校准而无需用户参与。

Description

用于测量光辐射的光谱感测设备和方法
技术领域
本发明涉及用于测量光辐射的光谱感测设备和方法。这样的设备和方法一般可以被用于调查或监测的目的,特别是在红外(IR)光谱区域,尤其是在近红外(NIR)光谱区域,以及用于检测热量、火焰、火灾或烟雾。然而,其他种类的应用是可行的。
背景技术
已知的光谱感测设备,诸如光谱仪系统,其特别地可用于扩散反射光谱法,通常相对于由光谱感测设备所包含的至少一个检测器元件的波长相关灵敏度进行校准。示例性的光谱仪系统在US 2014/131578 A1、WO 2019/115594A1、WO 2019/115595 A1或WO 2019/115596 A1中公开;然而,其他种类的光谱感测设备也是已知的。
在实践中,光谱感测设备可能会遭受漂移效应,该飘移效应主要是由可能与光谱感测设备本身有关的改变或可能对光谱感测设备有影响的改变引起的。具体地,这些改变可能包括以下至少一者:设备所包含的辐射源或检测器元件中的至少一者的退化;辐射源或检测器元件中的至少一者的温度漂移;影响设备的环境温度的变化;设备温度的变化,即至少一个检测器和对应的电子装置可以工作的温度的变化;设备所包含的至少一个部件(特别是机械外壳、支架或光学元件(尤其是分散元件(诸如棱镜、分束镜)或光栅中的至少一者)中的至少一者)的机械延伸或收缩。然而,其他种类的改变是可以想象的。
在实践中,漂移效应需要不时地通过一个过程(通常,用术语“校准”表示)进行校正,特别是为了保持测量数据的可靠性,具体是通过避免漂移效应可能将测量数据扭曲到由光谱感测设备确定的结果可能变得不确定的程度。为此,优选地,可以不时地执行光校准和暗校准。在本文中,可以执行不同类型的校准测量,然而,这需要预定义的反射目标或在至少一个检测器元件前面的空体积,特别是为了避免反射辐射可能到达至少一个检测器元件。
特别是,在暗校准的“暗”测量中,不需要校准目标来重新校准暗电流、暗噪声或暗电阻中的最后一项。对于暗校准,至少一个辐射源通常被关闭。与此相反,对于“光”测量,特别是反射光谱法,具有预定义反射光谱以保证已知的和可重复的校准信号的校准目标可以被放置在从至少一个辐射源到至少一个检测器元件的辐射路径中,其方式与通常用于光谱测量的至少一个测量对象相同,据此,除其他外,可以校准至少一个检测器元件的波长相关的灵敏度。对于光谱感测设备的校准,用户通常负责定位校准目标,并移除可能被置于感测设备的感测范围内的任何对象。
WO 2018/203831 A1公开了校准光谱仪模块包括:使用光谱仪模块执行测量,以为光谱仪模块生成波长与操作参数校准数据;使用光谱仪模块执行测量,以为光谱仪模块生成光学串扰和暗噪声校准数据;以及使用光谱仪模块执行测量,以针对已知反射率标准,为光谱仪模块生成全系统响应校准数据。该方法进一步包括:在与光谱仪模块耦接的存储器中存储校准记录,该校准记录包含了波长与操作参数校准数据、光学串扰和暗噪声校准数据、以及全系统响应校准数据,并由光谱仪模块将该校准记录应用于测量。
EP 3 460 509 A1公开了一种用于校准飞行时间系统的方法,该飞行时间系统具有位于盖板(CP)后面的飞行时间传感器。该方法包括:响应控制信号(CS1)的各自触发脉冲,发射光的多个发送脉冲(EP);以及检测接收到的光脉冲(RP,RP')。相应的差值被确定,其代表发送脉冲(EP)之一和接收到的脉冲(RP,RP')之一之间的时间段。这些差值被累积到至少一个直方图的多个仓位(1,……,N)中。该方法进一步包括:将至少一个串扰响应(CTP)记录在预定的仓位范围(1,……,M)内的直方图中;以及使用记录的串扰响应(CTP)校准直方图。最后,生成输出信号(OS),该输出信号基于对校准直方图的评估指示飞行时间。
WO 2019/215323 A1公开了一种光谱仪设备(110)。该光谱仪设备(110)包括:至少一个过滤元件(114),其适于将至少一个入射光束分成组分波长的光谱;至少一个传感器元件(140),其具有光学传感器(116,142)的矩阵,光学传感器(116,142)各自具有光敏区,其中,每个光学传感器(116,142)被配置为响应于由从至少一个对象(112)传播到光谱仪的至少一个光束对光敏区的照射而生成至少一个传感器信号,其中,光学传感器(116,142)中的至少一个第一光学传感器适于响应于由第一组分波长的照射生成第一传感器信号,并且其中光学传感器(116,142)中的至少一个第二光学传感器适于响应于第一组分波长的照射生成第二传感器信号;至少一个评估设备(120),其被配置为通过评估来自第一传感器信号和第二传感器信号的组合信号Q来确定对象(112)的至少一个纵坐标z,其中,评估设备(120)被配置为通过执行考虑所确定的纵坐标z的至少一个光谱分析来评估由光学传感器矩阵的光学传感器(116,142)生成的至少一个传感器信号。
尽管上述设备和方法有很多优点,但仍然需要关于简单、经济、可靠的光学检测器的改进,特别是在红外(IR)光谱范围内,用于监测或调查目的,尤其是用于光谱法、气体感测或浓度测量。具体地,光学检测器的漂移效应仍然是一个问题,在实践中,漂移效应在测量期间经常发生。此外,用户,特别是消费者层面的用户,往往不具备自己执行熟练校准的技术专长。
本发明解决的问题
因此,本发明所要解决的问题是提供一种用于测量光辐射的光谱感测设备和方法,它至少在很大程度上避免了这种类型的已知设备和方法的缺点。
特别是,人们希望有一种光谱感测设备,其被配置为优选地以完全自动化的方式对光谱感测设备执行自校准,而不需要任何预定义的反射目标。
发明内容
这个问题通过本发明的独立专利权利要求的特征来解决。本发明的可以单独或组合实施的有利发展在从属权利要求和/或在以下说明书和具体实施方式中呈现。
在本发明的第一方面中,公开了一种用于测量光辐射的光谱感测设备。因此,所述光谱感测设备包括:
-至少一个光敏检测器,其中,所述至少一个光敏检测器具有至少一个光敏区域,所述至少一个光敏区域被指定为接收所述光辐射,其中,由所述至少一个光敏检测器生成的至少一个检测器信号取决于所述至少一个光敏区域的照射;
-至少一个辐射发射元件,其中,所述至少一个辐射发射元件被指定用于发射所述光辐射;
-至少一个光学元件,其中,所述至少一个光学元件被指定为将所述光辐射的第一部分引导到所述至少一个光敏检测器;
-至少一个评估单元,其中,所述至少一个评估单元被配置为通过使用由所述至少一个光敏检测器基于由所述光辐射的所述第一部分对所述至少一个光敏区域的照射生成至少一个第一检测器信号执行对所述光谱感测设备的校准。
如本文所使用的,术语“光辐射”一般是指电磁辐射的分区(partition),其通常被称为“光谱范围”,并且其包括可见光、紫外和红外光谱范围中的至少一者。术语“紫外”一般是指波长为1nm至380nm,优选地是100nm至380nm的电磁辐射。此外,术语“可见光”一般是指380nm至760nm的波长。此外,术语“红外”,“缩写为IR”,一般是指760nm至1000μm的波长,其中,760nm至3μm的波长通常被称为“近红外”,缩写为“NIR”。优选地,用于本发明的典型目的的光辐射是红外辐射,更优选的是近红外辐射,尤其是760nm至3μm,最好是1μm至3μm的波长。
根据本发明,光辐射由指定用于发射光辐射的至少一个辐射发射元件提供。为此,光谱感测设备包括至少一个辐射发射元件,其可以以各种方式实现。至少一个辐射发射元件可以是在外壳中的光谱感测设备的一部分。附加地或替代地,至少一个辐射发射元件也可以被布置在外壳之外,例如,作为单独的辐射发射元件。至少一个辐射发射元件可以被配置为在所需的光谱范围内提供足够的发射,优选的是在如上文所限定的光学光谱范围内或其至少一个选定的分区内。至少一个辐射发射元件特别地可以包括热辐射器或半导体基辐射源中的至少一者。在本文中,半导体基辐射源尤其可以选自发光二极管(LED)或激光器,特别是激光二极管中的至少一者。此外,热辐射器尤其可以选自白炽灯或热红外发射器中的至少一者:如本文进一步使用的,术语“热红外发射器”是指微加工的热发射设备,其包括作为发射待监测的光辐射的辐射发射元件的辐射发射面。具体地,热红外发射器可作为“emirs 50”从Axetris AG、Schwarzenbergstrasse 10、CH-6056Kagiswil、Switzerland获得,作为“热红外发射器(thermal infrared emmitters)”从LASER COMPONENTS GmbH、Werner-von-Siemens-Str.15 82140Olching、Germany获得,或作为“红外线发射器(infra-red emitters)”从Hawkeye Technologies、181Research Drive#8、Milford CT 06460、United States获得。然而,其他类型的辐射发射元件,诸如结构化光源,也是可行的。
至少一个辐射发射元件可以是连续光源,或者替换地是脉冲光源,其中,脉冲光源的调制频率可以是至少1Hz、至少5Hz、至少10Hz、至少50Hz、至少100Hz、至少500Hz、至少1kHz/或更高。为了驱动脉冲光源,可以使用调制设备,其以被指定为用于调制照射,优选地是通过生成周期性调制。一般来说,术语“调制”是指一个过程,在这个过程中,照射的总功率是变化的,优选地是周期性变化,特别是以至少一个调制频率变化。特别地,周期调制可以在照射的总功率的最大值和最小值之间实现。最小值可以是0,但也可以是>0,这样,举例来说,不一定要实现完全的调制。优选地,调制可以在被指定为生成所需的调制照射的辐射源内实现,优选地,通过至少一个辐射发射元件本身具有调制的强度和/或总功率,例如周期性调制的总功率,和/或通过将至少一个辐射发射元件体现为脉冲辐射源,例如脉冲激光器。作为进一步的示例,2019年12月3日提交的欧洲专利申请19 21 3277.7公开了至少一个辐射发射元件,其被指定为在被电流加热时生成光辐射;支架,其中,该支架承载至少一个辐射发射元件,并且其中该支架或其部分可移动;以及散热器,其中,该散热器被指定为在被支架接触时冷却该支架和由该支架承载的至少一个辐射发射元件。附加地或替换地,也可以使用不同类型的调制设备,例如,基于电-光效应和/或声-光效应的调制设备。此外,还可以使用周期性束中断设备,特别是束斩波器、中断刀片或中断轮中的至少一种。
如本文所进一步使用的,术语“光谱”是指光谱范围的分区,其中光谱包括由信号波长和对应的信号强度定义的光学信号。特别是,光谱可以包括与至少一个测量对象相关的光谱信息,诸如形成至少一个测量对象的至少一种材料的类型和组成,其可以通过记录与至少一个测量对象相关的至少一个光谱来确定。术语“测量对象”一般是指选自生物体和非生物体的任意主体,其包括由光谱感测设备调查的材料。此外,术语“光谱感测设备”涉及一种装置,其被配置为通过记录与光辐射的至少一个对应的信号波长有关的至少一个信号强度的测量值,以及通过评估与信号强度有关的至少一个检测器信号来确定光谱信息。
进一步根据本发明,光谱感测设备包括至少一个光敏检测器。如一般所使用的,术语“光敏检测器”是指光学检测器,其包括至少一个光敏区域,该光敏区域被指定为取决于至少一个光敏区域的照射生成至少一个检测器信号,其中,至少一个检测器信号特别地可以被提供给评估单元进行评估。由至少一个光敏检测器包括的至少一个光敏区域优选是单一的、均匀的光敏区,其被配置为接收照射到光敏区上的发射的光辐射。然而,不止一个光敏区,诸如像素大小的光敏区,也是可行的。至少一个光敏检测器被指定为生成检测器信号,优选的是光学或电子信号,其与照射在至少一个光敏检测器上的发射的光辐射的强度有关。检测器信号可以是模拟和/或数字信号。在特定的实施例中,至少一个光敏检测器可以是或包括有源传感器,其适用于在将电子信号提供给例如外部评估单元之前,放大电子信号。为此,至少一个光敏检测器可以包括一个或多个信号处理设备,特别是一个或多个过滤器和/或模拟数字转换器,用于处理和/或预处理电子信号。
至少一个光敏检测器可以选自任何已知的光学传感器,特别是选自无机相机元件,优选的是无机相机芯片,更优选的是选自CCD芯片或CMOS芯片,其通常用于现在的各种相机。作为替代方案,至少一个光敏检测器,特别是至少一个光敏区域,可以包括光导材料,特别是无机光导材料,尤其是选自硫化铅(PbS)、硒化铅(PbSe)、锗(Ge)、砷化镓铟(InGaAs,包括但不限于Ext.InGaAs)、锑化铟(InSb)、或碲化镉汞(HgCdTe或MCT)。如一般所使用的,术语“ext.InGaAs”是指展现出高达2.6μm的光谱响应的特定类型的InGaAs。然而,不同种类的材料或其他类型的光敏检测器也是可行的。
进一步根据本发明,光谱感测设备包括至少一个光学元件,其中至少一个光学元件被指定为将由至少一个辐射发射元件发射的光辐射的第一部分引导到至少一个光敏检测器。在特别优选的实施例中,至少一个光学元件可以进一步被指定为将由至少一个辐射发射元件发射的光辐射的第二部分引导到至少一个测量对象。如本文所使用的,术语“第一”或“第二”被认为是对元素的描述,没有指定顺序或时间顺序,也没有排除其他相同类型的元素可能存在的可能性。换句话说,至少一个辐射发射元件、至少一个光学元件和至少一个光敏检测器可以以如下方式组装在光谱感测设备内,即至少一个光学元件可以用作分束元件,其被指定为将由至少一个辐射发射元件发射的光辐射分割为第一部分和第二部分,第一部分以直接方式朝向至少一个光敏检测器引导,第二部分经由至少一个测量对象以间接方式朝向至少一个光敏检测器引导。如一般所使用的,术语“引导”或其任何语法变化是指使光辐射在所需的方向上传播,特别是通过反射或透射光辐射的一部分。在优选的实施例中,至少一个光学元件可以被指定为将光辐射的第一部分反射到至少一个光敏检测器,并将第二部分透射到至少一个测量对象。因此,至少一个光学元件可以因而已经用作反射目标,以使得采用单独的反射目标是不必需的。在优选的替代实施例中,至少一个光学元件可以被指定为将光辐射的第一部分透射到至少一个光敏检测器上,并将第二部分反射到至少一个测量对象。
与选定的实施例无关,被引导到至少一个光敏检测器的光辐射的第一部分相对于被引导到至少一个测量对象的光辐射的第二部分的比值R,尤其可以表现出符合公式1的关系:
其中,noptical element对应于至少一个光学元件的折射率,nmedium对应于至少一个光学透明介质的折射率,该介质被在从至少一个辐射发射元件到至少一个光学元件的路径上传播的光辐射遍历。
特别是,比值R可以以如下方式选择:在光辐射的第一部分已被至少一个光学元件反射或已经通过至少一个光学元件透射后,由如由至少一个光敏检测器的至少一个光敏区域所接收的光辐射的第一部分的照射强度,假设与在光辐射的第二部分已被至少一个测量对象朝向至少一个光敏检测器的至少一个光敏区域反射和/或透射通过至少一个测量对象朝向至少一个光敏检测器的至少一个光敏区域后,由如由至少一个光敏区域所接收的光辐射的第二部分对至少一个光敏区域的照射强度具有相同数量级。如一般所使用的,术语“相同数量级”是指两个数字的商数超过0.1但小于10。特别是,比值R可以是至少0.15,优选的是至少0.2,更优选的是至少0.28,至多7,优选的是至多5,更优选的是至多4.1。
特别是,在至少一个光学元件处被引导到至少一个光敏检测器的光辐射的第一部分的反射类型可以是所谓的“菲涅尔反射”。如一般所使用的,术语“菲涅尔反射”是指由于具有不同折射率的至少两种介质之间的界面而产生的一种光学反射。举例来说,菲涅尔反射通常发生在与玻璃层相邻的环境空气层之间的边界表面处。因此,可由辐射发射元件发射的光辐射可传播通过光学透明介质,诸如环境空气层、惰性气体或真空,以在光学透明介质和至少一个光学元件之间的界面处被反射。一般来说,菲涅尔反射的优点是,如上所述,它取决于至少一个光学透明介质和至少一个光学元件的折射率。特别是,至少一个光学元件的折射率noptical element随着波长和至少一个光学元件所包含的材料的温度仅表现出轻微的变化,至少在光谱感测设备通常可用于消费电子产品的温度范围内。举例来说,通常用于这种目的的BK7型光学玻璃,在2.5μm波长处的折射率为1.4860,在2μm的波长处的折射率为1.4945。
对于光辐射正常入射到至少一个光学元件表面的特殊情况,菲涅尔反射的比值R可以根据公式(2)来确定:
优选地,至少一个光学元件可以是或包括至少一个光学窗口。如一般所使用的,术语“光学窗口”是指包括至少一种透明材料的光学元件,其中,至少一种光学材料优选地可以在由光辐射覆盖的波长范围的至少一个分区中是至少部分透明的。特别是,至少一个光学窗口可以包括选自包括以下项的组的至少一种材料:硅;铝硅酸盐玻璃;锗;砷化镓;磷化镓;锗硅酸盐玻璃;硒化锌;硫化锌;氟化钙;氟化镁;氟化钡;氯化钠;溴化钾;方解石;氟锆酸盐;稀土掺杂玻璃;氟化物玻璃;铬化物玻璃、蓝宝石;钕掺杂正钒酸钇;掺杂变体,尤其是硅玻璃;磷酸盐玻璃;聚甲基丙烯酸甲酯;聚苯乙烯;或氟聚合物,诸如聚(全氟丁烯-乙烯基醚)。然而,其他类型的光学元件,优选地是至少一个分束器,也是可行的。
具体地,至少一个光学元件可以附加地或替代地是或包括至少一个内部光学元件。作为示例,至少一个内部光学元件可以包括至少一片纸和/或聚四氟乙烯(PTFE),也被称为TeflonTM。至少一个内部光学元件可以位于光谱感测设备内,具体是位于在至少一个辐射发射元件和至少一个光敏检测器之间的光辐射束路径中。作为示例,至少一个内部光学元件可以被附接到,优选地是粘在光谱感测设备的至少一个光学窗口的内侧。具体地,至少一个内部光学元件可用作光谱感测设备内的分束器,或可作为分束器的一部分。因此,至少一个内部光学元件可以被配置为至少部分地反射光辐射。作为示例,至少一个内部光学元件可以覆盖光谱感测设备的至少一个光学窗口的一部分,其中,至少一个内部元件光学可以被配置为朝向至少一个光敏检测器反射光辐射,其中,至少一个光学窗口可以被配置为朝向至少一个测量对象透射光辐射。
至少一个光学元件可以具有已知的光学特性。附加地或替代地,至少一个光学元件的至少一个光学特性与至少一个外部校准目标的至少一个光学特性之间的至少一种关系可以是已知的,例如,以至少一个传递函数的形式。至少一个外部校准目标可以具体具有精确已知的光学特性。作为示例,在制造光谱感测设备后,可以通过使用至少一个外部校准目标执行工厂校准。在最初的工厂校准之后,光谱感测设备的校准可以通过使用至少一个光学元件和在至少一个光学元件的至少一个光学特性与至少一个外部校准目标的至少一个光学特性之间的已知关系来执行。换句话说,评估单元可以被配置为通过使用至在少一个光学元件的至少一个光学特性和至少一个外部校准目标的至少一个光学特性之间的至少一种关系来执行对光谱感测设备的校准。如前所述,至少一个光学元件可以具体地被装配在光谱感测设备内,就像至少一个内部光学元件的情况一样。因此,至少一个光学元件可以例如被光谱感测设备的外壳所保护。因此,至少一个光学元件可以具体地具有稳定的光学特性。因此,在至少一个光学元件的至少一个光学特性和至少一个外部校准目标的至少一个光学特性之间的至少一种关系可以是稳定的。正如本文所使用的,“稳定”是指在预定阈值内的一段时间内确实保持不变的属性的值或关系。
此外,在从至少一个辐射发射元件到至少一个光学元件的路径上,被光辐射遍历的至少一个光学透明介质特别地可以选自包括以下项的组:空气;浸泡油;二氧化硅;铝硅酸盐玻璃;锗;砷化镓;磷化镓;锗硅酸盐玻璃;硒化锌;硫化锌;氟化钙;氟化镁;氟化钡;氯化钠;溴化钾;方解石;氟锆酸盐;稀土掺杂玻璃;氟化物玻璃;铬化物玻璃;蓝宝石;钕掺杂正钒酸钇;掺杂变体,特别是硅玻璃;磷酸盐玻璃;聚甲基丙烯酸甲酯;聚苯乙烯;氟聚合物,诸如聚(全氟丁烯基-乙烯基醚);或真空。然而,更多种类的光学透明介质也可能是可行的。
举例来说,可以选择具有折射率nmedium=1的环境空气作为光学透明介质,而光学元件可以包括表示为“BK7”的光学玻璃类型。在本文中,光辐射的反射部分,在波长为2μm时,占照射在界面上的总入射光辐射的≈3.9%,在波长为2.5μm时,占≈3.82%,因此,导致≈2%的波长相关反射变化。因此,≈96%的入射光辐射被透射到至少一个测量对象。
在另一示例中,至少一个光学元件可以是包括硅(Si)的光学窗口。硅的折射率noptical element在2.5μm的波长处的值为3.4394,在2μm的波长处的值为3.4527,因此,当环境空气被用作光学透明介质时,这导致硅上的总入射辐射的≈30%反射。因此,只有≈70%的入射光辐射被透射到至少一个测量对象。由于≈30%的反射份额中波长相关变化仅≈0.5%,所以硅窗优选地可以用作基本上与波长无关的反射目标。
作为上面已经指出的另一示例,可以有利地使用分束器,特别是由于分束器一般不表现出反射和透射对入射光辐射的波长的任何依赖性。
一般来说,检测器信号可以随着至少一个测量对象的反射率而变化。一方面,对于具有弱反射等级的测量对象,至少一个光学元件优选地包括BK7型光学玻璃,其将≈96%的入射光辐射透射到测量对象。因此,包括BK7型光学玻璃的至少一个光学元件允许对测量对象进行密集照射,作为一种补偿。另一方面,对于表现出高反射等级的测量对象,硅窗可能是优选的。然而,用于至少一个光学元件的其他类型的材料也是可行的。
在优选实施例中,光谱感测设备可以进一步包括至少一种光谱转移(transfer)元件。如本文所使用的,术语“光谱转移元件”是指被配置为选择光辐射的至少一个波长,第一部分、第二部分或两部分,来照射至少一个光敏检测器的至少一个光敏区域的光学元件。特别地,至少一个光谱转移元件可以尤其选自包括以下项的组:至少一个衍射光学元件;至少一个角相关反射元件;至少一个衍射光栅元件,特别是闪耀光栅元件;至少一个棱镜;至少一个透镜阵列,特别是至少一个微透镜阵列;至少一个光学滤波器;至少一个偏振滤波器;至少一个带通滤波器;至少一个液晶滤波器,特别是液晶可调谐滤波器;至少一个短通滤波器;至少一个长通滤波器;至少一个陷波滤波器;至少一个干涉滤波器;至少一个透射光栅;至少一个非线性光学元件,特别是至少一个双折射光学元件,或至少一个可调谐法布里-珀罗干涉仪;至少一个可调谐迈克尔逊干涉仪;或至少一个线性可变滤波器。然而,其他种类的光谱转换元件也可以是可行的。
进一步根据本发明,光谱感测设备包括至少一个评估单元。如一般所使用的,术语“评估单元”是指如下装置,该装置被指定用于确定光谱信息,即,与特别是如本文所述的通过使用至少一个光敏检测器已经记录光谱的测量对象的光谱相关的信息,其中,通过评估由至少一个光敏检测器生成的至少一个检测器信号来获得该信息。评估单元可以是或可以包括以下中的至少一者:集成电路,特别是专用集成电路(ASIC);或数据处理设备,特别是数字信号处理器(DSP)、现场可编程门阵列(FPGA)、微控制器、微型计算机、计算机、或电子通信单元(特别是智能电话或平板电脑)中的至少一者。进一步的部件也是可行的,特别是至少一个预处理设备或数据获取设备。此外,评估单元可以包括至少一个数据存储单元,特别是用于存储至少一个电子表,诸如至少一个查找表。此外,评估单元可以包括至少一个接口,特别是无线接口或有线接口中的至少一者。此外,评估单元可以被设计为完全或部分地控制或驱动光谱感测设备或其部分。特别地,评估单元可以被设计为执行至少一个测量循环,在该测量循环中可以拾取多个检测器信号。由评估单元确定的光谱信息可以特别地被提供给其他装置中的至少一个或给用户,优选地以电子、视觉、听觉、或触觉方式中的至少一者。此外,可以将信息存储在至少一个数据存储单元中,具体是在由光谱感测设备特别是由至少一个评估单元所包括的内部数据存储单元中;或在外部存储设备中,该信息经由至少一个接口被发送到该外部存储设备。
评估单元可以优选地被配置为执行至少一个计算机程序,特别是执行或支持生成光谱信息的步骤的至少一个计算机程序。以示例的方式,可以实施一个或多个算法,通过将至少一个检测器信号用作至少一个输入变量,该一个或多个算法可以执行到一条光谱信息的转换。为此,评估单元特别地可以包括至少一个数据处理装置,特别是电子或光学数据处理装置中的至少一个,其可以被设计为通过评估至少一个检测器信号来生成光谱信息。因此,评估单元被设计为使用至少一个检测器信号作为至少一个输入变量,并通过处理至少一个输入变量来生成光谱信息。处理可以以连续、并行或组合的方式进行。评估单元可以使用任意程序来生成光谱信息,特别是通过计算和/或使用至少一个所存储和/或已知的关系。
特别地,至少一个评估单元可以优选地被配置为通过使用至少一个第二检测器信号来确定与至少一个测量对象相关的光谱信息,该至少一个第二检测器信号由至少一个光敏检测器基于由光辐射的第二部分对至少一个光敏区域的照射而生成,该光辐射的第二部分由至少一个光敏检测器在光辐射的第二部分已经被至少一个测量对象朝向至少一个光敏检测器的至少一个光敏区域反射或透射通过至少一个测量对象之后接收,据此如下面更详细描述的可以考虑至少一条校准信息。
根据本发明,至少一个评估单元被配置为执行对光谱感测设备的校准。如一般所使用的,术语“校准”是指不时地校正在实践中可能在光谱感测设备中发生的漂移效应的过程,该漂移效应主要由与光谱感测设备本身有关或者对光谱感测设备有影响的改变引起。改变可以尤其包括以下至少一项:辐射发射元件或光敏检测器中至少一个的退化;辐射发射元件或光敏检测器中至少一个的温度漂移;影响光谱感测设备的环境温度变化;与光谱感测设备相关的温度变化,即至少一个光敏检测器和对应的电子元件可以工作的温度;由光谱感测设备所包含的至少一个部件的机械延伸或收缩,特别是机械外壳、支架或光学元件中的至少一者,尤其是至少一个光学窗口。然而,其他改变也是可行的。
此外,术语“执行校准”或其任何语法变化是指执行生成至少一条校准信息的过程,具体地,通过校正漂移效应,特别是为了保持测量数据的可靠性,具体地通过避免漂移效应可能使测量数据失真到由光谱感测设备确定的结果可能不可信的程度。通过执行校准,可以确定至少一条校准信息,特别是以校准因子、校准曲线或校准函数的形式,该至少一条校准信息可以优选地作为校准文件存储在数据存储单元中,具体地,以表格、一组值及相关函数中的至少一者形式、以参数化形式或以函数方程形式。特别地,至少一条校准信息可优选用于确定与至少一个测量对象相关的光谱信息。然而,执行校准和存储或使用至少一条校准信息的其他方式也是可以想象的。
为了执行校准的目的,评估单元被配置为使用至少一个第一检测器信号,其是由至少一个光敏检测器基于由光辐射的第一部分对至少一个光敏区域的照射生成的,光辐射的第一部分朝向至少一个光敏检测器引导。作为特别优选的,以如下方式执行对光敏感测设备的校准:仅光辐射的第一部分朝向至少一个光敏检测器引导以照射至少一个光敏区域来生成至少一个第一检测器信号。针对该特别优选的实施例,光谱感测设备可以以如下方式组装:在可以执行对光谱感测设备的校准的时间间隔期间,没有源自至少一个测量对象,诸如被至少一个测量对象反射或透射通过至少一个测量对象,的光辐射可以照射至少一个光敏检测器的至少一个光敏区域。
为了确定在至少一个光敏检测器的前面的体积是否被占据的目的,在特别优选的实施例中,光谱感测设备可以进一步包括至少一个测量单元。如一般所使用的,术语“测量单元”是指被指定用于生成至少一个测量信号的装置,其中,至少一个测量信号取决于与至少一个可测量参数相关的至少一个值。如本文所使用的,术语“测量单元”具体地是指被指定用于生成取决于至少一个光敏检测器前面的体积的占据的至少一个测量数据的装置。如本文所使用的,术语“体积”是指被指定用于以如下方式接收至少一个测量对象的光谱感测设备的外围,即,被至少一个测量对象反射和/或透射通过至少一个测量对象的光辐射能够照射至少一个光敏检测器的至少一个光敏区域。在本文中,尤其是出于实际目的,该体积可以被限制在与光谱感测设备的外壳的至少一个距离范围内,通过确定在至少一个光敏检测器前面的体积是否可以被占用,避免源自至少一个测量对象的光辐射可以照射至少一个光敏检测器的至少一个光敏区域是可能的,并可能不希望影响对光谱感测设备的校准。
在此特别优选的实施例中,至少一个评估单元可以被配置为通过附加地使用由至少一个测量单元生成的至少一个测量信号来执行对光谱感测设备的校准。具体地,至少一个评估单元可以被配置为仅在由至少一个测量单元生成的至少一个测量信号指示在至少一个光敏检测器的前面的体积未被占用的时间间隔内执行对光谱感测设备的校准。该时间间隔可以特别优选的与如上所限定的时间间隔相同,在该如上所限定的时间间隔内,没有源自至少一个测量对象的光辐射可以照射至少一个光敏检测器的至少一个光敏区域,因为如由至少一个测量单元所指示的可能没有测量对象存在。
为了生成取决于在至少一个光敏检测器的前面的体积的占据的至少一个测量信号的目的,至少一个测量单元可以是或包括至少一个存在传感器。如一般所使用的,术语“存在传感器”是指被配置为识别人或物品的存在,特别是在位于存在传感器的前面的在预定距离范围内的体积中。特别地,至少一个存在传感器可以选自接近传感器或距离传感器中的至少一者。优选地,至少一个测量单元可以被选自以下至少一者:超声波传感器、光学传感器、电感式传感器、触觉传感器、雷达传感器、飞行时间传感器、三角测量传感器、立体传感器、结构光传感器、电容式传感器、FIP传感器、或BPA传感器。针对FIP传感器,例如可以参考WO 2012/110924 A1、WO 2014/097181A1、或WO 2016/120392 A1。针对BPA传感器,例如可以参考WO 2018/091640A2。
在本发明的其他方面,公开了一种用于测量光辐射的方法。如本文所公开的方法包括以下步骤a)至d),其可以优选地以连续的方式执行,其中,步骤a)至d)可以至少部分地以同步方式执行。此外,也可以执行本文列出或没有列出的附加步骤。
根据本发明的用于测量光辐射的方法包括以下步骤:
a)通过使用至少一个辐射发射元件来发射光辐射;
b)通过使用至少一个光学元件来将所述光辐射的第一部分引导到所述至少一个光敏检测器;
c)通过使用至少一个光敏检测器来生成至少一个检测器信号,其中,所述至少一个光敏检测器具有至少一个光敏区域,所述至少一个光敏区域被指定为接收所述光辐射,其中,由所述至少一个光敏检测器生成的至少一个检测器信号取决于所述至少一个光敏区域的照射;以及
d)通过使用所述至少一个评估单元使用至少一个第一检测器信号执行对所述光谱感测设备的校准,所述至少一个检测器信号由所述至少一个光敏检测器基于由所述光辐射的所述第一部分对所述至少一个光敏区域的照射而生成,。
此外,附加地,可以优选地执行以下其他步骤e)至g)中任一步骤:
e)通过使用至少一个测量单元生成至少一个测量信号,其中,所述至少一个测量信号取决于在所述至少一个光敏检测器前面的体积的占据。
f)使用至少一个光学元件将所述光辐射的第二部分引导到至少一个测量对象;以及
g)通过使用由所述至少一个光敏检测器基于由所述光辐射的所述第二部分对所述至少一个光敏区域的照射生成的至少一个第二检测器信号,并通过考虑在步骤d)期间获得的至少一条校准信息,确定与所述至少一个测量对象相关的光谱信息。
根据步骤a),通过使用至少一个辐射发射元件发射光辐射,特别是如上文或在下文更详细描述的辐射发射元件。
根据步骤b),通过使用至少一个光学元件,将由至少一个辐射发射元件发射的光辐射的第一部分引导到至少一个光敏检测器,同时根据步骤f),另外,可以使用至少一个光学元件将由至少一个辐射发射元件发射的光辐射的第二部分引导到至少一个测量对象。在本文中,根据步骤g),可以通过使用至少一个第二检测器信号以及根据步骤d)确定的至少一条校准信息,来确定与至少一个测量对象相关的信息,该至少一个第二检测器信号由至少一个光敏检测器基于由被引导到至少一个光敏检测器的光辐射的第二部分对至少一个光敏区域的照射而生成。
根据步骤c),通过使用至少一个光敏检测器生成至少一个检测器信号,特别是如上文所述或如在下文更详细描述的光敏检测器,其中,至少一个光敏检测器具有至少一个光敏区域,该至少一个光敏区域被指定为接收所发射的光辐射,并且其中,至少一个检测器信号取决于对至少一个光敏区域的照射。
根据步骤d),通过使用至少一个评估单元通过考虑至少一个第一检测器信号来执行对光谱感测设备的校准,至少一个第一检测器信号由至少一个光敏检测器基于由朝向至少一个光敏检测器引导的光辐射的第一部分对至少一个光敏区域的照射而生成,特别是在优选地在步骤e)期间确定在至少一个光敏检测器前面的体积未被占用,尤其是未被至少一个测量对象占用时。
根据步骤e),可以通过使用至少一个测量单元,以至少一个测量信号取决于在至少一个光敏检测器前面,尤其是在距光谱感测设备的外壳的表面至少一个预定距离范围内,的体积的占用的方式,特别优选地生成至少一个测量信号。
在其他方面,本发明涉及包括可执行指令的计算机程序,在被计算机执行时,该可执行指令使得计算机执行如在本文其他位置所述的用于测量光学辐射的方法的步骤。包括可执行指令的计算机程序可以优选地完全或部分地被集成在评估单元中,特别是在数据处理设备中,特别是计算机或电子通信单元,具体地是智能手机或平板电脑。计算机程序可能能够使用已经由评估单元(特别是电子通信单元)包括的至少一个数据处理单元来执行该方法。举例来说,该方法可以作为电子通信单元上的应用(也可以用术语“app”来表示)来执行。
在本发明的其它方面,公开了根据本发明的光谱感测设备的用途。在其中,提出了用于确定信息,特别是光谱信息,的目的的光谱感测设备的用途,其与至少一个测量对象相关。在本文中,光谱感测设备可以优选地用于选自包括以下项的用途的目的:红外检测应用;光谱学应用;废气监测应用;燃烧过程监测应用;污染监测应用;工业过程监测应用;混合或搅拌过程监测;化学过程监测应用;食品加工过程监测应用;食品制备过程监测;水质监测应用;空气质量监测应用;质量控制应用;温度控制应用;运动控制应用;排气控制应用;气体感测应用;气体分析应用;运动感测应用;化学感测应用;移动应用;医疗应用;移动光谱学应用;食品分析应用;农业应用,特别是土壤、青贮、饲料、作物或产品的特性;监测植物健康;塑料识别和/或回收应用。然而,其他应用也可能是可行的。
针对关于用于测量光辐射的方法的其他细节、对应的计算机程序和根据本发明的光谱感测设备的相应的用途,可以参考如在本文其他位置提供的用于测量光辐射的光谱感测设备的描述。
如本文所公开的用于测量光辐射的光谱感测设备和方法具有优于现有技术的相当大的优势。根据本发明的光谱感测设备和方法被配置为优选地以完全自动的方式执行自校准,而无需任何预定义反射目标。因此,光谱感测设备和方法可以具体地被配置为在无需用户参与的情况下执行自校准。特别地,光谱感测设备和方法可以用于增强光谱感测设备和多像素感测方案的测量结果的可靠性,并尤其可用于使得能够基于多像素方案对IR感测模型进行自校准。具体地,光谱感测设备和方法可被配置为校正可在实践中在光谱感测设备中发生的漂移效应。因此,如本文所公开的光谱感测设备和方法可以促进由用户对设备的使用和校准。因此,此类光谱感测设备可以被日常用户用于消费电子产品中。
如本文所用,术语“具有”(“have”)、“包括”(“comprise”)、“包含”(“include”)或其任意的语法变化是以非排他性的方式使用的。因此,这些术语既可以指除了由这些术语引入的特征外,在此背景下描述的实体中没有其他特征存在的情况,也可以指存在一个或多个其他特征的情况。作为示例,短语“A具有B”、“A包括B”和“A包含B”都可以指除了B,A中没有其他元素存在的情况(即A仅仅且排他地由B组成的情况),以及除了B,实体A中存在一个或多个其他元素,诸如元素C、元素C和D或甚至其他元素的情况。
此外,如本文所使用的,术语“优选地”、“更优选地”、“特别地”、“更特别地”、“具体地”、“更具体地”或类似术语与可选特征结合使用,而不限制替代的可能性。因此,由这些术语引入的特征是可选特征,不旨在以任何方式限制权利要求的范围。如技术人员将认识到的那样,本发明可以通过使用替代特征来执行。同样,由“在本发明的实施例中”或类似的表达引入的特征旨在为可选择的特征,对于本发明的替代实施例没有任何限制,对于本发明的范围没有任何限制,对以这种方式引入的特征与本发明的其他可选或非可选特征结合的可能性没有任何限制。
综上所述,在本发明的背景下,以下实施例被认为是特别优选的:
实施例1:一种用于测量光辐射的光谱感测设备,包括:
-至少一个光敏检测器,其中,所述至少一个光敏检测器具有至少一个光敏区域,所述至少一个光敏区域被指定为接收光辐射,其中,由所述至少一个光敏检测器生成的至少一个检测器信号取决于所述至少一个光敏区域的照射;
-至少一个辐射发射元件,其中,所述至少一个辐射发射元件被指定为发射所述光辐射;
-至少一个光学元件,其中,所述至少一个光学元件被指定为将所述光辐射的第一部分引导到所述至少一个光敏检测器;
-至少一个评估单元,其中,所述至少一个评估单元被配置为通过使用由所述至少一个光敏检测器基于由所述光辐射的所述第一部分对所述至少一个光敏区域的照射生成至少一个第一检测器信号执行对所述光谱感测设备的校准。
实施例2:根据前一实施例所述的光谱感测设备,其中,所述校准是指不时地校正在所述光谱感测设备中发生的漂移效应的过程,其中,所述漂移效应由与所述光谱感测设备本身有关的或者对所述光谱感测设备有影响的改变引起。
实施例3:根据前述实施例中的任一项所述的光谱感测设备,其中,在所述至少一个光学元件处的被引导到所述至少一个光敏检测器的所述光辐射的所述第一部分的反射类型是菲涅尔反射。
实施例4:根据前述实施例中的任一项所述的光谱感测设备,其中,所述至少一个光学元件被组装在所述光谱感测设备内。
实施例5:根据前述实施例中的任一项所述的光谱感测设备,其中,已知所述至少一个光学元件的至少一个光学特性与至少一个外部校准目标的至少一个光学特性之间的至少一个关系,其中,所述至少一个评估单元被配置为通过使用所述至少一个光学元件的所述至少一个光学特性与所述至少一个外部校准目标的所述至少一个光学特性之间的所述至少一个关系来执行所述光谱感测设备的校准。
实施例6:根据前述实施例中的任一项所述的光谱感测设备,其中,所述至少一个评估单元被配置为通过使用由所述至少一个光敏检测器基于仅由所述光辐射的所述第一部分对所述至少一个光敏区域的照射生成的所述至少一个第一检测器信号来执行对所述光谱感测设备的校准。
实施例7:根据前述实施例中的任一项所述的光谱感测设备,进一步包括:
-至少一个测量单元,其中,所述至少一个测量单元被指定为生成至少一个测量信号,其中,所述至少一个测量信号取决于在所述至少一个光敏检测器前面的体积的占据。
实施例8:根据前一实施例所述的光谱感测设备,其中,所述至少一个评估单元被配置为通过进一步使用由所述至少一个测量单元生成的所述至少一个测量信号来执行所述光谱感测设备的校准。
实施例9:根据前一实施例所述的光谱感测设备,其中,所述至少一个评估单元被配置为仅在由所述至少一个测量单元生成的所述至少一个测量信号指示在所述至少一个光敏检测器前面的所述体积未被占据的情况下执行所述光谱感测设备的校准。
实施例10:根据前述三项实施例中的任一项所述的光谱感测设备,其中,所述至少一个测量单元是或包括至少一个存在传感器。
实施例11:根据前一实施例所述的光谱感测设备,其中,所述至少一个存在传感器选自接近传感器或距离传感器中的至少一者。
实施例12:根据前述五项实施例中的任一项所述的光谱感测设备,其中,所述至少一个测量单元选自以下至少一者:超声波传感器、光学传感器、电感式传感器、触觉传感器、雷达传感器、飞行时间传感器、三角测量传感器、立体传感器、结构光传感器、电容式传感器、FIP传感器、或BPA传感器
实施例13:根据前述实施例中的任一项所述的光谱感测设备,其中,所述至少一个光学元件被进一步指定为将所述光辐射的第二部分引导到至少一个测量对象。
实施例14:根据前一实施例所述的光谱感测设备,其中,所述至少一个光学元件被指定为将所述光辐射的所述第一部分反射到所述至少一个光敏检测器,并将所述光辐射的所述第二部分透射到所述至少一个测量对象。
实施例15:根据前两项实施例中的任一项所述的光谱感测设备,其中,所述至少一个光学元件被指定为将所述光辐射的所述第一部分透射到所述至少一个光敏检测器,并将所述光辐射的所述第二部分反射到所述至少一个测量对象。
实施例16:根据前述实施例中的任一项所述的光谱感测设备,其中,所述光辐射的所述第一部分相对于所述光辐射的所述第二部分的比值R取决于所述至少一个光学元件的折射率noptical element相对于至少一个光学透明介质的折射率nmedium的关系,所述至少一个光学透明介质被所述光辐射在从所述至少一个辐射发射元件到所述至少一个光学元件的路径上遍历。
实施例17:根据前述实施例中的任一项所述的光谱感测设备,其中,所述至少一个光学元件是或包括光学窗口或分束器中的至少一者。
实施例18:根据前一实施例所述的光谱感测设备,其中,所述至少一个光学元件包括至少一种透明材料。
实施例19:根据前一实施例所述的光谱感测设备,其中,所述至少一中透明材料在由所述光辐射覆盖的波长范围的至少一分区中至少部分透明。
实施例20:根据前述七项实施例中的任一项所述的光谱感测设备,其中,所述至少一个评估单元被进一步配置为通过使用由所述至少一个光敏检测器基于由所述光辐射的所述第二部分对所述至少一个光敏区域的照射生成的至少一个第二检测器信号,来确定与所述至少一个测量对象相关的光谱信息。
实施例21:根据前述实施例中的任一项所述的光谱感测设备,其中,所述至少一个辐射发射元件被热辐射器或半导体基辐射源中的至少一者包括。
实施例22:根据前一实施例所述的光谱感测设备,其中,所述至少一个半导体基辐射源选自发光二极管(LED)或激光器,特别是激光二极管,中的至少一者。
实施例23:根据前述实施例中的任一项所述的光谱感测设备,其中,所述至少一个光敏检测器选自已知的光传感器,特别地选自无机相机元件,优选地选自无机相机芯片,更优选地选自CCD芯片或CMOS芯片。
实施例24:根据前述实施例中的任一项所述的光谱感测设备,其中,所述至少一个光敏检测器,特别是所述至少一个光敏区域,包括至少一种光敏材料。
实施例25:根据前一实施例所述的光谱感测设备,其中,所述至少一种光敏材料选自PbS、PbSe、Ge、InGaAs、InSb、或HgCdTe中的至少一者。
实施例26:根据前述实施例中的任一项所述的光谱感测设备,进一步包括至少一个光谱转移元件,其中,所述至少一个光谱转移元件被配置为选择所述光辐射的至少一个波长以照射所述至少一个光敏检测器的所述至少一个光敏区域。
实施例27:根据前一实施例所述的光谱感测设备,其中,所述至少一个光谱转移元件选自包括以下项的组:至少一个衍射光学元件;至少一个角相关反射元件;至少一个衍射光栅元件,特别是闪耀光栅元件;至少一个棱镜;至少一个透镜阵列,特别是至少一个微透镜阵列;至少一个光学滤波器;至少一个偏振滤波器;至少一个带通滤波器;至少一个液晶滤波器,特别是液晶可调谐滤波器;至少一个短通滤波器;至少一个长通滤波器;至少一个陷波滤波器;至少一个干涉滤波器;至少一个透射光栅;至少一个非线性光学元件,特别是至少一个双折射光学元件,或至少一个可调谐法布里-珀罗干涉仪;至少一个可调谐迈克尔逊干涉仪;或至少一个线性可变滤波器。
实施例28:根据前述实施例中的任一项所述的光谱感测设备,其中,所述至少一个光敏检测器的光谱灵敏度被所述至少一个辐射发射元件的光谱范围覆盖。
实施例29:根据前述实施例中的任一项所述的光谱感测设备,其中,所发射的光辐射包括760nm到1000μm的波长(红外光谱范围)。
实施例30:根据前一实施例所述的光谱感测设备,其中,所发射的光辐射包括760nm到3μm的波长(近红外光谱范围)。
实施例31:根据前一实施例所述的光谱感测设备,其中,所发射的光辐射包括1μm到3μm的波长。
实施例32:根据前述实施例中的任一项所述的光谱感测设备,其中,所述评估单元是至少一个电通信单元或被至少一个电通信单元包括。
实施例33:根据前一实施例所述的光谱感测设备,其中,所述至少一个电通信单元选自智能手机或平板电脑。
实施例34:根据前述实施例中的任一项所述的光谱感测设备,其中,所述评估单元被进一步指定为完全地或部分地控制或驱动所述光谱感测设备或其部分。
实施例35:根据前述实施例中的任一项所述的光谱感测设备,其中,所述评估单元进一步被配置为控制所述至少一个辐射发射元件和所述至少一个光敏检测器中的至少一者。
实施例36:根据前述实施例中的任一项所述的光谱感测设备,其中,将由所述评估单元确定的所述信息以电子、视觉、听觉、或触觉方式中的至少一者提供到其他装置中的至少一者或用户。
实施例37:根据前述实施例中的任一项所述的光谱感测设备,其中,将由所述评估单元确定的所述信息存储在至少一个数据存储单元中。
实施例38:根据前一实施例所述的光谱感测设备,其中,所述至少一个数据存储单元被所述光谱感测设备包括,特别是,被所述至少一个评估单元包括。
实施例39:根据前述两项实施例中的任一项所述的光谱感测设备,其中,所述至少一个数据存储单元是独立存储单元。
实施例40:根据前一实施例所述的光谱感测设备,其中,所述独立存储单元被至少一个电子通信单元包括。
实施例41:根据前述两项实施例中的任一项所述的光谱感测设备,其中,经由至少一个接口,特别是无线接口和/或有线接口,将所述信息发送到所述独立存储单元。
实施例42:一种用于测量光辐射的方法,所述方法包括以下步骤:
a)通过使用至少一个辐射发射元件发射光辐射;
b)通过使用至少一个光学元件将所述光辐射的第一部分引导到所述至少一个光敏检测器;
c)通过使用至少一个光敏检测器生成至少一个检测器信号,其中,所述至少一个光敏检测器具有至少一个光敏区域,所述至少一个光敏区域被指定为接收所述光辐射,其中,由所述至少一个光敏检测器生成的至少一个检测器信号取决于所述至少一个光敏区域的照射;以及
d)通过使用所述至少一个评估单元通过使用由所述至少一个光敏检测器基于由所述光辐射的所述第一部分对所述至少一个光敏区域的照射而生成的至少一个第一检测器信号,执行对所述光谱感测设备的校准。
实施例43:根据前一实施例所述的方法,其中,所述方法包括以下步骤:
e)通过使用至少一个测量单元生成至少一个测量信号,其中,所述至少一个测量信号取决于在所述至少一个光敏检测器前面的体积的占据。
实施例44:根据前述两个实施例中任一项所述的方法,其中,所述方法进一步包括以下步骤:
f)使用至少一个光学元件将所述光辐射的第二部分引导到至少一个测量对象;以及
g)通过使用由所述至少一个光敏检测器基于由所述光辐射的所述第二部分对所述至少一个光敏区域的照射生成的至少一个第二检测器信号,并通过考虑在步骤d)期间获得的至少一条校准信息,确定与所述至少一个测量对象相关的光谱信息。
实施例45:一种包括指令的计算机程序,在由计算机执行时,所述指令使得所述计算机执行用于测量光辐射的所述方法的步骤。
实施例46:根据前述涉及光谱感测设备或光谱感测设备的实施例中的任一项所述光谱感测设备的用途,为了使用的目的,选自包括以下项的组:红外检测应用;光谱学应用;废气监测应用;燃烧过程监测应用;污染监测应用;工业过程监测应用;混合或搅拌过程监测;化学过程监测应用;食品加工过程监测应用;食品制备过程监测;水质监测应用;空气质量监测应用;质量控制应用;温度控制应用;运动控制应用;排气控制应用;气体感测应用;气体分析应用;运动感测应用;化学感测应用;移动应用;医疗应用;移动光谱学应用;食品分析应用;农业应用,特别是土壤、青贮、饲料、作物或产品的特性;监测植物健康;塑料识别和/或回收应用。
附图说明
根据以下与从属权利要求书结合的优选示例性实施例的描述,本发明的进一步的可选细节和特征是显而易见的。在该上下文中,特定的特征可以单独实施,也可以与特征结合起来实施。本发明不限于示例性实施例。示例性实施例在图中以示意性方式显示。各图中相同的附图标记指相同的元件或具有相同功能的元件或在功能方面彼此对应的元件。
具体地,在附图中:
图1至5各自示出了光谱感测设备的示例性实施例的示意图;以及
图6示出了根据本发明的用于测量光辐射的方法的示例性实施例的示意图。
具体实施方式
图1至5各自以高度示意性的方式示出了根据本发明的光谱感测设备110的示例性实施例。光谱感测设备110是被配置为通过记录与光辐射112的至少一个对应的信号波长相关的至少一个信号强度的至少一个测量值以及通过评估与信号强度相关的至少一个检测器信号,来确定光谱信息的装置。根据本发明,光谱感测设备110可以尤其适用于记录红外光谱区域中,优选地在近红外中,尤其是760nm到3μm波长,优选地1μm到3μm,的光谱。因此,光谱感测设备110可用于调查或监测目的,也可用于检测热量、火焰、火灾或烟雾。然而,光谱感测设备110的其他应用也是可行的。
在如图1至5所描绘的实施例中,光谱感测设备110包括外壳114,其包含光谱感测设备110的部件。采用这种方式中,光谱感测设备110的部件可以被保护,并且外部光的进入被阻挡。然而,光谱感测设备110的部件的其他种类的布置也是可以想象的。
如图1至5所示意性地描绘的示例性光谱感测设备110包括辐射发射元件116,其被配置为发射光辐射112。特别地,辐射发射元件116可以被半导体基辐射源118包括,该半导体基辐射源118可以优选地选自发光二极管(LED)或激光器,特别是激光二极管,中的至少一者。然而,辐射发射元件116的其他类型也是可行的。辐射发射元件116可以是连续地发射或生成经调制的光脉冲,如上文更详细描述的。
此外,如图1至5中示意性地描绘的示例性光谱感测设备110包括光敏检测器120。如此处所述,光敏检测器120具有单个光敏区域122,其被指定为接收光辐射112。光敏区域120可以优选地包括至少一种光导材料,特别是选自硫化铅(PbS)、硒化铅(PbSe)、锗(Ge)、砷化镓铟(InGaAs,包括但不限于ext.InGaAs)、锑化铟(InSb)或碲化镉汞(HgCdTe或MCT)。不同种类的光导材料或其他类型的光敏检测器也是可行的。
如图1至5所示的示例性光谱感测设备110进一步包括光学元件124,特别是光学窗口126,优先地选自玻璃窗口或硅窗口。如上文已经指出的示例,可以有利地使用分束器。针对其他材料,可以参考上文的描述。在本文中,如光学窗口126所包括的至少一种透明材料可以优先地在如光辐射112所覆盖的波长范围中的至少一个分区中至少部分透明。光学元件124可以进一步是或包括如图2所描绘的至少一个内部光学元件127。作为示例,内部光学元件127可以包括至少一片纸和/或聚四氟乙烯(PTFE),也被称为TeflonTM。内部光学元件127可以位于光谱感测设备110中,具体是在辐射发射元件116和光敏检测器120之间的光辐射112的束路径中。至少一个内部光学元件127可以被配置为至少部分地反射光辐射112。具体地,内部光学元件127可以被配置为至少部分地将光辐射112引导到光敏检测器120。
如此处所示意性地描绘的,光学元件124被配置为将如辐射发射元件116发射的光辐射112的第一部分128引导到光敏检测器120,特别是到光敏区域122。如图2至4所进一步描述的,光学元件124可以被进一步配置为将如辐射发射元件116发射的光辐射112的第二部分130引导到测量对象132。该测量对象132可以是或包括选自生物体和非生物体的任意主体,其包括由光谱感测设备110调查或监测的材料。由于光谱感测设备110内的辐射发射元件116、光学元件124和光敏检测器120的该特定装配,光学元件124可以用作分束元件,其被指定为将如由辐射发射元件116发射的光辐射112分为直接朝向光敏检测器120引导的第一部分128和经由测量对象124以间接的方式朝向至少一个光敏检测器120引导的第二部分130。
如图1至5所示的,光学元件124将光辐射112的第一部分128反射到光敏检测器120,特别是到光敏区域122,并将第二部分130透射到至少一个测量对象124。然而,在替代实施例中(本文未示出),光学元件124可以将光辐射112的第一部分128透射到光敏检测器120,特别是到光敏区域122,并将第二部分130反射到测量对象124。与所选的实施例无关,光辐射在从辐射发射元件116到光学元件124的路径上遍历光学透明介质134。在本文中,光学透明介质134可以尤其选自环境空气、惰性气体或真空,然而,如上文所更详细地描述的其他材料也是可行的。
如在图1至5所进一步描述的,光谱感测设备110可以进一步包括光谱转移元件136,其被配置为选择光辐射112中的至少一个波长,第一部分128和/或第二部分130,以照射光敏检测器120中的光敏区域122。如本文所示意性描绘的,光谱转移元件136可以尤其是光学滤波器138,诸如偏振滤波器;或带通滤波器,然而,其他类型的光谱转移元件136也是可行的。在其他实施例(本文未示出)中,光谱转移元件136也可以是不必需的。
如图1至5进一步示意性描绘的,光谱感测设备110进一步包括评估单元140,其被配置通过使用如由光敏检测器120基于由光辐射112的第一部分128对光敏区域122的照射生成的第一检测器信号来执行对光谱感测设备110的校准,光辐射112的第一部分128以直接的方式经由光学元件124被引导到光敏检测器120。如图3至5所进一步描述的,评估单元140在此附加地被配置为通过使用如由光敏检测器120进一步基于由光辐射112的第二部分130对光敏区域122的照射生成的第二检测器信号,确定与测量对象132相关的光谱信息,光辐射112的第二部分130已经被测量对量132朝向光敏检测器120的光敏区域122反射和/或透射通过测量对象132。
为此,评估单元140被配置为经由接口142(具体是以有线或无线的方式)接收第一检测器信号,以及优选地,第二检测器信号。一般地,评估单元140可以是数据处理设备的一部分和/或可以包括一个或多个数据处理设备。评估单元140可以包括一个或多个附加的部件,特别是一个或多个电子硬件部件和/或一个或多个软件组件和/或一个或多个控制单元。如本文所述,评估单元140另外可以被设计为完全地或部分地控制或驱动光谱感测设备112或其部件,特别是,光敏检测器120,尤其是经由接口142,和/或辐射发射元件,尤其是经由其他接口144。
在如图1至5所描绘的示例性实施例中,评估单元140被完全集成到外壳114中;然而,外部评估单元(本文未示出)也是可行的,该外部评估单元可以被提供为位于外壳114外部的独立的实体,诸如电通信单元的一部分,具体是智能手机或平板电脑的一部分。可以以电子、视觉、听觉、或触觉的方式将由评估单元140确定的信息提供到一个或多个其他装置或用户。以示例的方式,可以使用智能手机的监测器显示该信息。此外,可以将该信息存储在数据存储单元(本文未示出)中,该数据存储单元可以被包括在评估单元140或诸如智能手机之类的独立的存储设备中。
根据本发明,评估单元140被配置为执行对光谱感测设备110的校准。如上文所述,校准是指不时地校正在实践中可能发生在光谱感测设备110中的漂移效应的过程,该漂移效应主要由与光谱感测设备110本身有关或者对光谱感测设备110有影响的改变引起。上文列出了可能的改变。通过执行校准,光谱感测设备110的用户特别地希望保持测量数据的可靠性,具体是通过避免漂移效应可能使测量数据失真到如由光谱感测设备110所确定的结果可能变得不确定的程度。
为了执行校准的目的,评估单元140被配置为使用如由光敏检测器120基于由光辐射112的第一部分128对光敏区域122的照射所生成的第一检测器信号,光辐射112的第一部分128被朝向光敏检测器120(特别是光敏区域)引导。由此优选的是以如下方式执行对光谱感测设备110的校准:仅将光辐射112的第一部分128实际朝向光敏检测器120引导以照射光敏区域122来生成第一检测器信号。为此,如图1至5所示的光谱感测设备110以如下方式组装:在执行对光谱感测设备110的校准的时间间隔期间,没有源自测量对象132,或被测量对象132反射和/或透射通过测量对象132,的光辐射可以实际照射光敏检测器120的光敏区域122。
为此,特别地,可以确定在光敏检测器120前面的体积146是否可以被占据。然而,在如图4所描绘的实施例中,在光敏检测器120前面的体积146被测量对象132占据,在图5所描绘的实施例中,在光敏检测器120前面的体积146是空的,即未被任何对象,尤其是任何测量对象132占据。
为了自动地确定在光敏检测器120前面的体积146是否可能被占据的目的,如图4和5所示的光谱感测设备110进一步包括测量单元148。如所描绘的,测量单元148被指定为生成取决于在光敏检测器120前面的体积146的占据的测量信号。为此,如此处所示出的测量单元148被配置为发射光束150并观察是否发生光束150的吸收。在本文中,测量单元148可以是或包括存在传感器,优选的是接近传感器和/或距离传感器,特别是选自超声波传感器、光学传感器、雷达传感器、飞行时间传感器。然而,诸如上文所提到的其他类型的传感器也可能是可行的。
如这里所进一步说明的,评估单元140可以另外被设计为完全或部分地控制或驱动测量单元148,尤其是经由其他接口152。
通过确定在光敏检测器120前面的体积146是否可以被占用,可以避免源自测量对象132的光辐射130可能照射光敏检测器120的光敏区域122,并可能不期望地影响对光谱感测设备110的校准。在本文中,评估单元140可以被配置为通过附加地使用如由测量单元148所生成的测量信号来执行对光谱感测设备110的校准,具体地,所使用的方式是,评估单元140可以仅在如由测量单元148所生成的测量信号指示在光敏检测器120前面的体积146未被占据的时间间隔内执行对光谱感测设备110的校准。
图6以高度示意的方式示出了根据本发明的用于测量光辐射112的方法160的示例性实施例的视图。
在根据步骤a)的发射步骤162中,通过使用辐射发射元件116发射所需的光辐射112。
在根据步骤b)的引导步骤164中,通过使用光学元件124,尤其是光学窗口126,将如由辐射发射元件116所发射的光辐射112的第一部分128引导到光敏检测器120,特别是光敏区域122。此外,根据步骤f),光学元件124,尤其是光学窗口126,可用于进一步将如由辐射发射元件116所发射的光辐射112的第二部分130引导到测量对象132。
在根据步骤c)的生成步骤166中,第一检测器信号由光敏检测器120基于接收光辐射112的第一部分128生成,该光辐射112的第一部分128从光学元件124,尤其是光学窗口126直接被朝向光敏检测器120引导以照射光敏区域122,其中,第一检测器信号取决于由光辐射112的第一部分128对光敏区域122的照射。此外,根据步骤g),第二检测器信号可以通过使用光敏检测器120基于接收光辐射112的第二部分130进一步生成,该光辐射112的第二部分130从光学元件124,尤其是光学窗口126,经由测量对象132间接地朝向光敏检测器120引导,以进一步照射光敏区域122,其中,第二检测器信号取决于由光辐射112的第二部分130对光敏区域122的照射。
在根据步骤e)的可选测量步骤168中,作为特别优选的,测量信号可以通过使用测量单元148以如下方式生成:该测量信号指示在光敏检测器120前面,特别是在距光谱感测设备110的外壳114的表面的至少一个预定义距离范围内的体积146是否可以被占用。
在根据步骤c)的校准步骤170中,通过使用评估单元140考虑到如由光敏检测器120所提供的第一检测器信号来执行对光谱感测设备110的校准。在特别优选的实施例中,校准步骤170仅在如下情况下执行:在测量步骤168期间所确认的在光敏检测器120前面的,特别是在距光谱感测设备110的外壳114的表面的至少一个预定义距离范围内的体积146可能不被占据时,如图4所示意性图示的。作为校准步骤170的结果,至少一条校准信息172被获得。
在可选的确定步骤174中,与测量对象132有关的光谱信息176可以进一步根据步骤g),通过使用如在生成步骤166期间由光敏检测器120所生成的第二检测器信号并考虑如在校准步骤170期间所获得的至少一条校准信息172来确定。
关于用于测量光辐射112的方法160的其他细节,可以参考如上文所提供的对光谱感测设备110的描述。
参考标记列表
110 光谱感测设备
112 (发射的)光辐射
114 外壳
116 辐射发射元件
118 半导体基辐射源
120 光敏检测器
122 光敏区域
124 光学元件
126 光学窗口
128 第一部分
127 内部光学元件
130 第二部分
132 测量对象
134 光学透明介质
136 光谱转移元件
138 光学滤波器
140 评估单元
142 接口
144 接口
146 体积
148 测量单元
150 光束
152 接口
160 用于测量光辐射的方法
162 发射步骤
164 引导步骤
166 生成步骤
168 测量步骤
170 校准步骤
172 校准信息
174 确定步骤
176 光谱信息

Claims (18)

1.一种用于测量光辐射(112)的光谱感测设备(110),包括:
-至少一个光敏检测器(120),其中,所述至少一个光敏检测器(120)具有至少一个光敏区域(122),所述至少一个光敏区域(122)被指定为接收光辐射(112),其中,由所述至少一个光敏检测器(120)生成的至少一个检测器信号取决于所述至少一个光敏区域(122)的照射;
-至少一个辐射发射元件(116),其中,所述至少一个辐射发射元件(116)被指定为发射所述光辐射(112);
-至少一个光学元件(124),其中,所述至少一个光学元件(124)被指定为将所述光辐射(112)的第一部分(128)引导到所述至少一个光敏检测器(120);
-至少一个评估单元(140),其中,所述至少一个评估单元(140)被配置为通过使用由所述至少一个光敏检测器(120)基于由所述光辐射(112)的所述第一部分(128)对所述至少一个光敏区域(122)的照射生成的至少一个第一检测器信号,执行对所述光谱感测设备(110)的校准,其中,所述校准是指不时地校正在所述光谱感测设备(110)中发生漂移效应的过程,其中,所述漂移效应由与所述光谱感测设备(110)本身有关的或者对所述光谱感测设备(110)有影响的改变引起。
2.根据前一权利要求所述的光谱感测设备(110),其中,在所述至少一个光学元件(124)处的被引导到所述至少一个光敏检测器(120)的所述光辐射(112)的所述第一部分(128)的反射类型是菲涅尔反射。
3.根据前述权利要求中的任一项所述的光谱感测设备(110),其中,所述至少一个光学元件(124)被组装在所述光谱感测设备(110)内。
4.根据前述权利要求中的任一项所述的光谱感测设备(110),其中,已知所述至少一个光学元件(124)的至少一个光学特性与至少一个外部校准目标的至少一个光学特性之间的至少一个关系,其中,所述至少一个评估单元(140)被配置为通过使用所述至少一个光学元件(124)的所述至少一个光学特性与所述至少一个外部校准目标的所述至少一个光学特性之间的所述至少一个关系来执行所述光谱感测设备(110)的校准。
5.根据前述权利要求中的任一项所述的光谱感测设备(110),其中,所述至少一个评估单元(140)被配置为通过使用由所述至少一个光敏检测器(120)基于仅由所述光辐射(112)的所述第一部分(128)对所述至少一个光敏区域(122)的照射生成的所述至少一个第一检测器信号执行对所述光谱感测设备(110)的校准。
6.根据前述权利要求中的任一项所述的光谱感测设备(110),进一步包括:
-至少一个测量单元(148),其中,所述至少一个测量单元(148)被指定为生成至少一个测量信号,其中,所述至少一个测量信号取决于在所述至少一个光敏检测器(120)前面的体积(146)的占据。
7.根据前一权利要求所述的光谱感测设备(110),其中,所述至少一个评估单元(140)被配置为通过进一步使用由所述至少一个测量单元(148)生成的所述至少一个测量信号来执行对所述光谱感测设备(110)的校准。
8.根据前一权利要求所述的光谱感测设备(110),其中,所述至少一个评估单元(140)被配置为仅在由所述至少一个测量单元(148)生成的所述至少一个测量信号指示在所述至少一个光敏检测器(120)前面的所述体积(146)未被占据的情况下执行对所述光谱感测设备(110)的校准。
9.根据前述三项权利要求中的任一项所述的光谱感测设备(110),其中,所述至少一个测量单元(148)是或包括至少一个存在传感器,其中,所述至少一个存在传感器选自接近传感器或距离传感器中的至少一者。
10.根据前述四项权利要求中的任一项所述的光谱感测设备(110),其中,所述至少一个测量单元(148)选自以下至少一者:超声波传感器、光学传感器、电感式传感器、触觉传感器、雷达传感器、飞行时间传感器、三角测量传感器、立体传感器、结构光传感器、电容式传感器、FIP传感器、或BPA传感器。
11.根据前述权利要求中的任一项所述的光谱感测设备(110),其中,所述至少一个光学元件(124)被进一步指定为将所述光辐射(112)的第二部分(130)引导到至少一个测量对象。
12.根据前一权利要求所述的光谱感测设备(110),其中,所述至少一个光学元件(124)被指定用于以下至少一项:
-将所述光辐射(112)的所述第一部分(128)反射到所述至少一个光敏检测器(120),并将所述光辐射(112)的所述第二部分(130)透射到所述至少一个测量对象(132),或者
-将所述光辐射(112)的所述第一部分(128)透射到所述至少一个光敏检测器(120),并将所述光辐射(112)的所述第二部分(130)反射到所述至少一个测量对象(132)。
13.根据前述权利要求中的任一项所述的光谱感测设备(110),其中,所述光辐射(112)的所述第一部分(128)相对于所述光辐射(112)的所述第二部分(130)的比值取决于所述至少一个光学元件(124)的折射率相对于至少一个光学透明介质(134)的折射率的关系,所述至少一个光学透明介质被所述光辐射(112)在从所述至少一个辐射发射元件(116)到所述至少一个光学元件(124)的路径上遍历。
14.根据前述权利要求中的任一项所述的光谱感测设备(110),其中,所述至少一个光学元件(124)是或包括光学窗口(126)或分束器中的至少一者,其中,所述至少一个光学元件(124)包括至少一种透明材料,其中,所述至少一种透明材料在由所述光辐射(112)覆盖的波长范围的至少一分区中至少部分透明。
15.根据前述四项权利要求中的任一项所述的光谱感测设备(110),其中,所述至少一个评估单元(140)被进一步配置为通过使用由所述至少一个光敏检测器(120)基于由所述光辐射(112)的所述第二部分(130)对所述至少一个光敏区域(122)的照射生成的至少一个第二检测器信号,并且通过考虑在所述光谱感测设备(110)的校准期间获取的至少一条校准信息(172),来确定与所述至少一个测量对象(132)相关的光谱信息(176)。
16.一种用于测量光辐射(112)的方法(160),所述方法(160)包括以下步骤:
a)通过使用至少一个辐射发射元件(116)发射光辐射(112);
b)通过使用至少一个光学元件(124)将所述光辐射(112)的第一部分(128)引导到所述至少一个光敏检测器(120);
c)通过使用至少一个光敏检测器(120)生成至少一个检测器信号,其中,所述至少一个光敏检测器(120)具有至少一个光敏区域(122),所述至少一个光敏区域(122)被指定为接收所述光辐射(112),其中,由所述至少一个光敏检测器(120)生成的至少一个检测器信号取决于所述至少一个光敏区域(122)的照射;以及
d)通过使用所述至少一个评估单元(140)通过使用由所述至少一个光敏检测器(120)基于由所述光辐射(112)的所述第一部分(128)对所述至少一个光敏区域(122)的照射生成的至少一个第一检测器信号,执行对所述光谱感测设备(110)的校准。
17.根据前一权利要求所述的方法(160),所述方法(160)进一步包括以下步骤:
e)通过使用至少一个测量单元(148)生成至少一个测量信号,其中,所述至少一个测量信号取决于在所述至少一个光敏检测器(120)前面的体积(146)的占据。
18.根据前述两项权利要求中的任一项所述的方法(160),所述方法(160)进一步包括以下步骤:
f)使用至少一个光学元件(124)将所述光辐射(112)的第二部分(130)引导到至少一个测量对象(132);以及
g)通过使用由所述至少一个光敏检测器(120)基于由所述光辐射(112)的所述第二部分(130)对所述至少一个光敏区域(122)的照射生成的至少一个第二检测器信号,并通过考虑在步骤d)期间获得的至少一条校准信息(172),确定与所述至少一个测量对象相关的光谱信息(176)。
CN202180080948.0A 2020-12-02 2021-12-01 用于测量光辐射的光谱感测设备和方法 Pending CN116569004A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP20211174.6 2020-12-02
EP20211174 2020-12-02
PCT/EP2021/083695 WO2022117611A1 (en) 2020-12-02 2021-12-01 Spectral sensing device and method for measuring optical radiation

Publications (1)

Publication Number Publication Date
CN116569004A true CN116569004A (zh) 2023-08-08

Family

ID=73694805

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180080948.0A Pending CN116569004A (zh) 2020-12-02 2021-12-01 用于测量光辐射的光谱感测设备和方法

Country Status (6)

Country Link
US (1) US20230417657A1 (zh)
EP (1) EP4256290A1 (zh)
JP (1) JP2023551946A (zh)
KR (1) KR20230112641A (zh)
CN (1) CN116569004A (zh)
WO (1) WO2022117611A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114144643A (zh) * 2019-07-19 2022-03-04 特里纳米克斯股份有限公司 监测辐射的方法和设备
WO2023222742A1 (en) 2022-05-19 2023-11-23 Trinamix Gmbh Spectral sensing device and method for determining at least one item of spectral information
WO2024160942A1 (en) * 2023-02-02 2024-08-08 Trinamix Gmbh Combination of two led and open port calibration
WO2024175711A1 (en) * 2023-02-23 2024-08-29 Trinamix Gmbh Determine temperature information on light source from spectrum deformation
WO2024175709A1 (en) * 2023-02-23 2024-08-29 Trinamix Gmbh Factory or in-field calibration of thermo-electric and thermo-optical properties

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2012219157C1 (en) 2011-02-15 2015-08-20 Basf Se Detector for optically detecting at least one object
CN107345835B (zh) 2012-11-13 2019-11-08 唯亚威通讯技术有限公司 便携式分光计
US9389315B2 (en) 2012-12-19 2016-07-12 Basf Se Detector comprising a transversal optical sensor for detecting a transversal position of a light beam from an object and a longitudinal optical sensor sensing a beam cross-section of the light beam in a sensor region
JP6841769B2 (ja) 2015-01-30 2021-03-10 トリナミクス ゲゼルシャフト ミット ベシュレンクテル ハフツング 少なくとも1個の物体を光学的に検出する検出器
CN109964148B (zh) 2016-11-17 2023-08-01 特里纳米克斯股份有限公司 用于光学检测至少一个对象的检测器
WO2018115073A1 (en) * 2016-12-21 2018-06-28 Trinamix Gmbh Detector for an optical detection
TWI800510B (zh) 2017-05-03 2023-05-01 新加坡商海特根微光學公司 校準一光譜儀模組之方法及非暫時性儲存媒體
EP3460509A1 (en) 2017-09-22 2019-03-27 ams AG Method for calibrating a time-of-flight system and time-of-flight system
EP3724620B1 (en) 2017-12-13 2024-02-28 trinamiX GmbH Spectrometer device and system
KR20200095547A (ko) 2017-12-13 2020-08-10 트리나미엑스 게엠베하 분광계 장치 및 시스템
US20200370958A1 (en) 2017-12-13 2020-11-26 Trinamix Gmbh Spectrometer device and system
US11913880B2 (en) 2018-05-11 2024-02-27 Trinamix Gmbh Spectrometer device

Also Published As

Publication number Publication date
EP4256290A1 (en) 2023-10-11
KR20230112641A (ko) 2023-07-27
WO2022117611A1 (en) 2022-06-09
US20230417657A1 (en) 2023-12-28
JP2023551946A (ja) 2023-12-13

Similar Documents

Publication Publication Date Title
US20230417657A1 (en) Spectral sensing device and method for measuring optical radiation
JP2021507228A (ja) 分光計装置および分光計システム
KR102343121B1 (ko) 분광 측정 장치 및 분광 측정 방법
JP6075372B2 (ja) 物質特性測定装置
US11287317B2 (en) Optical measurement device including internal spectral reference
AU2002319202B2 (en) Method and device for suppressing electromagnetic background radiation in an image
EP0961475A3 (en) Rendering apparatus, multispectral image scanner, and three-dimensional automatic gonio-spectrophotmeter
CN112105897A (zh) 光谱仪装置
CN114127520A (zh) 光谱仪装置
US10690591B2 (en) Measurement time distribution in referencing schemes
JP2017161424A (ja) 光学式成分センサ
JP2000187786A (ja) 火災検出装置及び火災検出装置における汚れ補償方法
EP3667272B1 (en) Method of characterizing an optical sensor chip, method of calibrating an optical sensor chip, method of operating an optical sensor device, optical sensor device and calibration system
KR20240054279A (ko) 스펙트럼 감지 장치 및 광학 방사선 측정 방법
WO2023222742A1 (en) Spectral sensing device and method for determining at least one item of spectral information
KR20240150447A (ko) 스펙트럼 감지 디바이스를 교정하는 방법
WO2024160942A1 (en) Combination of two led and open port calibration
CN113841040B (zh) 灵敏度调整板以及传感器装置的制造方法
KR20240150444A (ko) 교정 경로가 내장된 분광계
KR20240140097A (ko) 휴대용 분광계 장치
WO2024223507A1 (en) Temperature-robust calibration path optical design
CN118119837A (zh) 多单检测器专用光谱仪
WO2023111000A1 (en) Photodetector for measuring optical radiation
WO2024223535A1 (en) Temperature-robust calibration path optical design
SU1458700A1 (ru) Способ определения толщины листового полупрозрачного материала

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination