CN116550318A - 一种钛铈复合脱硝催化材料的制备方法及应用 - Google Patents

一种钛铈复合脱硝催化材料的制备方法及应用 Download PDF

Info

Publication number
CN116550318A
CN116550318A CN202310601316.5A CN202310601316A CN116550318A CN 116550318 A CN116550318 A CN 116550318A CN 202310601316 A CN202310601316 A CN 202310601316A CN 116550318 A CN116550318 A CN 116550318A
Authority
CN
China
Prior art keywords
titanium
cerium composite
ceo
tio
composite denitration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310601316.5A
Other languages
English (en)
Inventor
邹伟欣
赵馨
仝庆
谭伟
董林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN202310601316.5A priority Critical patent/CN116550318A/zh
Publication of CN116550318A publication Critical patent/CN116550318A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

本发明公开了一种钛铈复合脱硝催化材料的制备方法及应用,属于催化剂材料制备和NH3选择性催化还原NOx(NH3‑SCR)的技术领域,通过以下方法制备:将硝酸铈铵溶于去离子水,加入对苯二甲酸和N‑N二甲基甲酰胺,摇晃混匀后,再加入N‑N二甲基甲酰胺过夜老化,离心后洗涤烘干得到CePTA;将钛酸四丁酯冰水浴溶于无水乙醇中,混匀加入上述CePTA粉末,蒸干后再次烘干,最后焙烧得到TiO2/CeO2‑PTA复合催化剂。本发明制造出的钛铈复合脱硝催化材料制备方法简单,可大规模生产,在脱硝方面具有良好的效果,具有潜在的工业应用前景。

Description

一种钛铈复合脱硝催化材料的制备方法及应用
技术领域
本发明属于催化剂材料制备和NH3选择性催化还原NOx(NH3-SCR)的技术领域,主要涉及一种以简单浸渍法制备的钛铈复合脱硝催化材料及在燃煤电厂烟气脱硝中的应用。
背景技术
随着人们环保意识的增强和国家相关法规的日益严格,大气污染治理技术受到了众多研究者的关注。燃煤电厂烟气中氮氧化物(NOx)的排放严重污染了大气环境,其治理已显得刻不容缓。
选择性催化还原技术(SCR)是近年来发展最为广泛的工业脱硝技术,其工艺分为氨法(NH3-SCR)和尿素法。经过诸多研究表明,NH3选择性催化还原NOx(NH3-SCR)是燃煤电厂烟气脱硝行之有效的方法之一,该技术的利用原理是利用还原剂NH3将NOx还原为无害的N2和H2O,此工艺没有副产物,不形成二次污染,装置结构简单,并且脱硝效率可达到90%以上,运行可靠,便于维护。
目前商业化的工业催化剂主要为V2Os-WO3(MOO3)/TiO2,这一催化剂在300-400℃高温段内表现出优异的催化性能,但是也存在一些不足,如:(1)V2O5在使用过程中容易升华脱落,进入环境产生生物毒性;(2)操作温度窗口太窄,低温反应性能欠佳,高温时产生大量副产物N2O;(3)高温热稳定性不好。因此,开发一种高效、低廉、环境友好的非钒基烟气脱硝催化剂已迫在眉睫。CeO2具有独特的萤石立方结构,优异的氧化还原性能、4f电子、良好的储/释氧能力和丰富的氧空位,是一种潜在的工业烟气脱硝催化材料。但是,通常纯CeO2表面酸性位点较少,脱硝催化活性差,且易在高温段发生NH3非选择性氧化,这在很大程度上影响了CeO2在NH3-SCR反应中的应用。而TiO2材料表面具备一定的酸性(L酸Ti4+位和B酸Ti-OH位),这有利于NH3分子的活化,主要被用作各种催化剂载体和光催化剂。市面上制备的CeO2/TiO2催化剂在300~400℃范围内对NOx的转化率可达到98.6%,但低于250℃区域催化剂的活性较低。而随后过渡金属元素改性的催化剂虽然低温活性优异,但抗水抗硫能力较差,中高温活性较低,且副产物N2O较多。
因此,开发具有高选择性脱硝催化剂,高稳定性,无毒无害的非钒基催化剂,仍旧是目前催化领域研究的热点。
发明内容
针对现有技术存在的上述问题,本发明所要解决的第一技术问题在于提供一种合成简单、可大规模生产的钛铈复合脱硝催化材料的制备方法,用于处理目前脱硝催化剂在工业固定源氮氧化物排放中对N2选择性、中高温脱硝催化性能差等问题。本发明所要解决的第二技术问题在于提供一种高选择性、高效、低价、环境友好的钛铈复合脱硝催化材料。本发明所要解决的第三技术问题在于提供一种钛铈复合脱硝催化材料在燃煤电厂烟气脱硝中的应用。
为达到上述目的,本发明采用以下技术方案:
一种钛铈复合脱硝催化材料的制备方法,包括CePTA材料的制备和TiO2/CeO2-PTA复合催化剂的制备,通过简单的浸渍法制备所得。
一种钛铈复合脱硝催化材料的制备方法,具体步骤如下:
1):将硝酸铈铵与去离子水、对苯二甲酸和N-N二甲基甲酰胺混匀后进行水热反应,过夜老化,离心后得到黄色产物,洗涤烘干得到CePTA;
2):将钛酸四丁酯冰水浴溶于无水乙醇中搅拌均匀,分次加入以步骤1)制得的CePTA粉末,放入油浴锅蒸干,拿出蒸干后的样品,烘干,最后马弗炉下焙烧得到TiO2/CeO2-PTA复合催化剂。
所述步骤1)中,水热反应的温度为120℃,时间为30min。
所述步骤1)中,洗涤过程用丙酮至少洗涤三次。
所述步骤1)中,洗涤过后的烘干温度为70℃,烘干时间为10h。
所述步骤2)中,钛酸四丁酯与CePTA的投料摩尔比为:1~3∶7~9。
所述步骤2)中,油浴温度保持70℃,蒸干。
所述步骤2)中,烘干步骤在烘箱中保持70℃,恒温3h。
所述步骤2)中,马弗炉的温度为450℃,焙烧2h。
所述方法制备得到的钛铈复合脱硝催化材料。
所述的钛铈复合脱硝催化材料在燃煤电厂烟气脱硝中的应用。
有益效果:与现有技术相比,本发明引入的有机物对苯二甲酸(PTA),焙烧得到具有特殊狭缝孔道、丰富缺陷和表面酸位的TiO2/CeO2-PTA催化材料,有助于提升脱硝催化剂的氧化还原能力和对反应物NH3分子的吸附活化性能。相比于普通浸渍法的TiO2/CeO2材料,TiO2/CeO2-PTA表现出优异的中高温脱硝催化性能,在NH3选择性氧化还原NO反应中热稳定性好,目标产物N2选择性高。并且该方法所用原料廉价易得,操作简便快捷,能耗小,对设备无特殊要求,附加环境污染少。
附图说明
图1为不同比例TiO2的TiO2/CeO2-PTA和TiO2/CeO2的X射线衍射(XRD)结果图;
图2为TiO2/CeO2-PTA和TiO2/CeO2的比表面积测试(BET)结果图;
图3为TiO2/CeO2-PTA和TiO2/CeO2的程序升温脱附(NH3-TPD)结果图;
图4为TiO2/CeO2-PTA和TiO2/CeO2的程序升温还原(H2-TPR)结果图;
图5为TiO2/CeO2-PTA和TiO2/CeO2的电子顺磁共振(EPR)结果图;
图6为TiO2/CeO2-PTA和TiO2/CeO2的透射电镜(TEM)结果图;
图7为不同比例TiO2的TiO2/CeO2-PTA的催化性能测试(NH3-SCR)反应NO转化率结果图;
图8为不同比例TiO2的TiO2/Ce02的催化性能测试(NH3-SCR)反应N2选择性结果图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合具体实施例对本发明的具体实施方式做详细的说明。
实施例1
TiO2/CeO2催化剂的制备:
1)取适量Ce(NO3)3·6H2O,500℃下马弗炉焙烧4h得到CeO2
2)将适量钛酸四丁酯冰水浴溶于无水乙醇中,搅拌均匀,分次加入CeO2,100℃下在油浴中蒸干。蒸干后将样品从油浴锅中取出,在120℃下烘箱中干燥3h,烘干后研磨成粉末,置于马弗炉中450℃下焙烧2h,得到TiO2/CeO2催化剂材料。其中,钛与铈的摩尔比保持1:4。
实施例2
TiO2/CeO2-PTA复合催化剂的制备:
1)将0.001moL硝酸铈铵溶于2mL去离子水,加入0.001moL对苯二甲酸,和N-N二甲基甲酰胺8mL,上述混合物摇晃均匀,在120℃下反应30min。在分层后的产物加入N-N二甲基甲酰胺过夜老化,离心,用丙酮洗涤至少三次。置于烘箱中70℃下干燥获得CePTA材料。
2)适量钛酸四丁酯冰水浴溶于无水乙醇中,搅拌均匀,分次加入Ce-PTA,70℃下在油浴中蒸干。蒸干后将样品从油浴锅中取出,70℃下烘箱中干燥3h,烘干后研磨成粉末,置于马弗炉450℃焙烧2h,得到TiO2/CeO2-PTA复合催化材料,其中Ti与Ce的摩尔比为1∶4。
图1是不同比例TiO2的TiO2/CeO2-PTA和TiO2/CeO2的X射线衍射(XRD)结果图,由图可知,本申请成功合成了立方萤石结构的CeO2
实施例3
N2吸脱附与比表面积测试(BET):N2吸脱附实验在Micromeritics ASAP-3020型测定仪上进行,所有的样品首先在300℃下抽真空脱气,然后在-196℃的液氮温度下进行比表面积测试。
图2是TiO2/CeO2-PTA和TiO2/CeO2的比表面积测试(BET)和N2吸脱附曲线的结果图,大图为N2吸脱附曲线,小图为孔径分布图;由图可知,加入有机物对苯二甲酸可以改善比表面积和孔结构,相比于普通的TiO2/CeO2催化剂,本发明所制备的TiO2/CeO2-PTA复合催化剂比表面积增大,同时具有特殊的狭缝型介孔结构,为H4型介孔,而TiO2/CeO2属于H3型介孔,这有效促进铈和钛物种间相互作用,有利于脱硝催化反应发生。
程序升温脱附(NH3-TPD)测试:NH3-TPD实验在固定床反应器上进行,并使用红外光谱仪检测出口气体的浓度,采集红外谱图的间隔为30s一次。对于NH3-TPD实验:将100mg的样品放置于石英管中,通入NH3+Ar进行吸附约2h,紧接着通入100mL/min的Ar吹扫至NH3的信号消失。然后以10℃/min的速率升温至630℃,同时采集数据。
图3是TiO2/CeO2-PTA和TiO2/CeO2的程序升温脱附(NH3-TPD)结果图,由图可知,相比于普通的TiO2/CeO2催化剂,本发明所制备的TiO2/CeO2-PTA复合催化剂吸附总酸量增多,其中L酸酸量显著增加,进而中高温脱硝催化反应转化率提升。
程序升温还原(H2-TPR)测试:H2-TPR实验在多功能化学吸附分析仪上进行,采用热导检测器(TCD)为检测器,样品放入U型石英管中进行测定。首先,10mg样品在200℃下在10mL/min的N2氛围下预处理30min后降温至30℃。然后切换成7vol.%H2/Ar混合气体,以10℃/min的升温速率,将反应温度从室温升至800℃并同时收集数据;
图4是TiO2/CeO2-PTA和TiO2/CeO2的程序升温还原(H2-TPR)结果图,由图可知,TiO2/CeO2-PTA复合催化剂β峰处的表层或深层CeO2的还原峰位置前移,氧化还原能力提高,说明钛与铈间电子作用更强。
电子顺磁共振(EPR)测试:电子顺磁共振(EPR)谱在JES FA200(JEOL)型谱仪测试。工作频率v≈9.48GHz。测试在100K下进行;
图5是TiO2/CeO2-PTA和TiO2/CeO2的电子顺磁共振(EPR)结果图,由图可知,相对于TiO2/CeO2,TiO2/CeO2-PTA复合催化剂存在丰富的氧缺陷位以及Ti3+离子,有着良好的氧化还原能力。
透射电子显微镜(TEM)测试:透射电子显微镜(TEM)测试使用日本电子JEM-2100电子显微镜,加速电压为200kV。制样方法为:取少量粉末样品,在适量无水乙醇中超声分散,取一滴该分散液滴到3mm铜网超薄碳膜上,并将其置于红外灯下烘干。
图6为TiO2/CeO2-PTA和TiO2/CeO2的透射电镜(TEM)结果图,由图可知,TiO2/CeO2-PTA由粒子堆积,形貌规则,边界较模糊,可能存在氧缺陷,结晶度较TiO2/CeO2而言偏低,TiO2/CeO2为粒子团簇,结晶度较高。
实施例4
制备的钛铈复合催化材料应用于NH3-SCR反应,相比于普通的钛铈复合催化剂,表现出优异的中高温催化性能(NO转化率和N2选择性),具体反应条件如下:催化反应测试在固定床连续流动石英反应器中进行。催化剂粒度为40-60目,用量为100mg。反应气体组成为:500ppmNO,500ppmNH3,5%O2,N2作平衡气,反应中的气体空速为60000mL·mg-1·h-1。催化反应在100-400℃进行,活性数据在反应达到平衡后采集。产物由ThermofisherIS10FTIR检测分析,NO转化率和N2选择性通过以下公式计算:
图7为不同比例TiO2的TiO2/CeO2-PTA的催化性能测试(NH3-SCR)反应NO转化率结果图,图8为不同比例TiO2的TiO2/CeO2的催化性能测试(NH3-SCR)反应N2选择性结果图,由图可知,TiO2/CeO2-PTA复合催化材料的脱硝性能明显优于普通的TiO2/CeO2,这主要由于有机物PTA作为造孔剂,在焙烧过程中对催化材料比表面积和孔结构有着促进作用,从而提升了TiO2/CeO2-PTA复合催化剂的氧化还原能力、表面L酸和缺陷数量。

Claims (10)

1.一种钛铈复合脱硝催化材料的制备方法,其特征在于,具体步骤如下:
1):将硝酸铈铵与去离子水、对苯二甲酸和N-N二甲基甲酰胺混匀后进行水热反应,过夜老化,离心后得到黄色产物,洗涤烘干得到CePTA;
2):将钛酸四丁酯冰水浴溶于无水乙醇中搅拌均匀,分次加入以步骤1)制得的CePTA粉末,放入油浴锅蒸干,拿出蒸干后的样品,烘干,最后马弗炉下焙烧得到TiO2/CeO2-PTA复合催化剂。
2.根据权利要求1所述的钛铈复合脱硝催化材料的制备方法,其特征在于,步骤1)中,水热反应的温度为120℃,时间为30min。
3.根据权利要求1所述的钛铈复合脱硝催化材料的制备方法,其特征在于,步骤1)中,洗涤过程用丙酮至少洗涤三次。
4.根据权利要求1所述的钛铈复合脱硝催化材料的制备方法,其特征在于,步骤1)中,洗涤过后的烘干温度为70℃,烘干时间为10h。
5.根据权利要求1所述的钛铈复合脱硝催化材料的制备方法,其特征在于,步骤2)中,钛酸四丁酯与CePTA的投料摩尔比为:1~3∶7~9。
6.根据权利要求1所述的钛铈复合脱硝催化材料的制备方法,其特征在于,步骤2)中,油浴温度保持70℃,蒸干。
7.根据权利要求1所述的钛铈复合脱硝催化材料的制备方法,其特征在于,步骤2)中,烘干步骤在烘箱中保持70℃,恒温3h。
8.根据权利要求1所述的钛铈复合脱硝催化材料的制备方法,其特征在于,步骤2)中,马弗炉的温度为450℃,焙烧2h。
9.权利要求1~8任一项所述方法制备得到的钛铈复合脱硝催化材料。
10.权利要求9所述的钛铈复合脱硝催化材料在燃煤电厂烟气脱硝中的应用。
CN202310601316.5A 2023-05-25 2023-05-25 一种钛铈复合脱硝催化材料的制备方法及应用 Pending CN116550318A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310601316.5A CN116550318A (zh) 2023-05-25 2023-05-25 一种钛铈复合脱硝催化材料的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310601316.5A CN116550318A (zh) 2023-05-25 2023-05-25 一种钛铈复合脱硝催化材料的制备方法及应用

Publications (1)

Publication Number Publication Date
CN116550318A true CN116550318A (zh) 2023-08-08

Family

ID=87487860

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310601316.5A Pending CN116550318A (zh) 2023-05-25 2023-05-25 一种钛铈复合脱硝催化材料的制备方法及应用

Country Status (1)

Country Link
CN (1) CN116550318A (zh)

Similar Documents

Publication Publication Date Title
Li et al. Ho-modified Mn-Ce/TiO2 for low-temperature SCR of NOx with NH3: Evaluation and characterization
CN107362807B (zh) 一种Mn/Co基低温SCO催化剂及其制备方法
Jia et al. Effects of different Zr/Ti ratios on NH3–SCR over MnOx/ZryTi1-yO2: Characterization and reaction mechanism
Wang et al. A superior cerium-tungsten bimetal oxide catalyst with flower-like structure for selective catalytic reduction of NOx by NH3
CN106268787A (zh) 一种钐掺杂MnOx低温SCR催化剂及其制备方法和应用
CN113181902B (zh) 富含金属缺陷的四氧化三锰催化剂的制备方法及其应用
CN108479762A (zh) 一种锰氧化物催化剂及其制备方法和应用
CN110773153A (zh) 一种担载型锰基中低温脱硝催化剂、制备方法及其应用
Wang et al. Coupling catalytic hydrolysis and oxidation on Mn/TiO2-Al2O3 for HCN removal
CN113042036A (zh) 一种铈改性的非晶锰氧化物催化剂的制备方法和应用
CN108993530A (zh) 一种水滑石基NiMnTi催化剂的制备方法和应用
CN110124710B (zh) 一种复合金属氧化物催化剂及其制备方法
CN113877611B (zh) 一种磷酸改性锰氧化物负载型催化剂及制备方法
CN105983408A (zh) 四氧化三钴催化剂的制备方法及其在甲烷催化燃烧中的应用
CN111111641B (zh) 一种二氧化铈基催化剂及其制备方法和应用
Wang et al. Catalytic performance of CeO2-NPs and α-MnO2 mixed oxides catalysts for low-temperature NH3-SCR of NO
Yang et al. Highly efficient MnOx catalysts supported on Mg-Al spinel for low temperature NH3-SCR
Du et al. Low-temperature selective catalytic reduction of NO with NH 3 over an FeO x/β-MnO 2 composite
CN107185555B (zh) 一种铜掺杂的硫化铈基纳米晶脱硝催化剂的制备方法
Qing et al. Depth investigation of the regulation mechanism of SiO2 on the denitrification performance and sulfur resistance of MnCe/Ti SCR catalyst
CN114849698B (zh) 一种介孔Na-α-MnO2催化剂及其制备方法和应用
CN116550318A (zh) 一种钛铈复合脱硝催化材料的制备方法及应用
CN113546622B (zh) 一种低温高活性催化氧化甲苯催化剂及其制备方法和应用
CN112717951B (zh) 一种高分散钌基催化剂的制备方法及其在含氯挥发性有机污染物净化中的应用
Zhang et al. Evolution mechanism of active sites for selective catalytic reduction of NO x with NH3 over Fe-ZSM-5 catalysts doped by Ce/Cu

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination