CN116539685B - 基于显微毛细管注射的单颗粒微电极制备装置 - Google Patents

基于显微毛细管注射的单颗粒微电极制备装置 Download PDF

Info

Publication number
CN116539685B
CN116539685B CN202310290294.5A CN202310290294A CN116539685B CN 116539685 B CN116539685 B CN 116539685B CN 202310290294 A CN202310290294 A CN 202310290294A CN 116539685 B CN116539685 B CN 116539685B
Authority
CN
China
Prior art keywords
particle
probe
microelectrode
capillary
conveying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310290294.5A
Other languages
English (en)
Other versions
CN116539685A (zh
Inventor
李哲
左安昊
方儒卿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN202310290294.5A priority Critical patent/CN116539685B/zh
Publication of CN116539685A publication Critical patent/CN116539685A/zh
Application granted granted Critical
Publication of CN116539685B publication Critical patent/CN116539685B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00134Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising flexible or deformable structures
    • B81C1/00166Electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/307Disposable laminated or multilayered electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/04Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation using electrically conductive adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

本发明涉及一种基于显微毛细管注射的单颗粒微电极制备装置,操作平台用于放置颗粒体,输送组件包括毛细输送管,毛细输送管用于向探针和位于操作台面上的颗粒体输送粘接物质,利用粘接物质将探针和颗粒体导电连接。利用输送组件的毛细输送管输送粘接物质将探针和颗粒体导电连接的过程中,整个工艺过程不再需要真空环境,摒弃了借助于FIB/SEM系统的真空环境,在探针上沉积金属后完成单颗粒微电极的制备方案,不需要在每制备出一个单颗粒微电极后都需要更换探针,再次对FIB/SEM系统的操作室重新抽真空的步骤,从制备原理的根本上解决了单颗粒微电极制备过程耗时长的技术问题,也根本上地解决了频繁打开操作室导致灰尘进入,污染操作室,导致系统损坏的问题。

Description

基于显微毛细管注射的单颗粒微电极制备装置
技术领域
本发明涉及微电极制备技术领域,特别是涉及基于显微毛细管注射的单颗粒微电极制备装置。
背景技术
现有技术中,单颗粒微电极的制备一般需要利用FIB/SEM系统(同时具有聚焦离子束和扫描电子显微镜的系统)进行操作,FIB/SEM系统的操作室内具有微纳操作器,微纳操作器用来夹持探针,在探针上沉积金属后完成单颗粒微电极的制备,每当一个单颗粒微电极制备完成后,需要更换操作室内的探针,然后将经过绝缘物质包覆的探针靠近颗粒,在探针上沉积金属后完成微电极制备。
但是,由于每次更换探针后都需要再次对FIB/SEM系统的操作室重新抽真空,导致制备过程耗时较长,常规情况下一个单颗粒微电极的制备过程至少需要一个小时的抽真空时间,并且,频繁打开操作室容易导致灰尘进入,污染操作室,进而导致系统的损坏。
发明内容
基于此,有必要针对上述技术问题,提供一种基于显微毛细管注射的单颗粒微电极制备装置。
一种基于显微毛细管注射的单颗粒微电极制备装置,所述单颗粒微电极制备装置包括:
操作平台,所述操作平台用于放置颗粒体;
输送组件,所述输送组件包括毛细输送管,所述毛细输送管具有毛细输送通道以及连通所述毛细输送通道的输入进口端和输送出口端,所述输入进口端用于接收输送至所述毛细输送通道的粘接物质,所述输送出口端用于向探针和位于所述操作台面上的颗粒体输送粘接物质,利用粘接物质将所述探针和所述颗粒体导电连接。
在其中一个实施例中,所述单颗粒微电极制备装置包括:
微纳手,所述微纳手与所述毛细输送管和所述探针中的至少一者控制连接,用于控制所述毛细输送管和所述探针相对运动。
在其中一个实施例中,所述微纳手包括:
第一操作手,所述第一操作手设置在所述操作平台上,所述第一操作手用于夹持所述探针,控制所述探针的尖端运动至所述颗粒体;
第二操作手,所述第二操作手设置在所述操作平台上,所述第二操作手夹持所述输送组件的毛细输送管,控制所述毛细输送管的输送出口端运动至所述探针与所述颗粒体的接触位置。
在其中一个实施例中,所述操作平台具有操作台面,所述操作台面上划分为多个颗粒定位区,每个所述颗粒定位区用于定位一个所述颗粒体,所述微纳手用于控制所述毛细输送管和不同的所述探针依次运动至不同的所述颗粒定位区。
在其中一个实施例中,所述输送组件包括:
微量注射仪器,所述微量注射仪器与所述毛细输送通道的输入进口端连通,用于通过所述输入进口端向所述毛细输送通道输送粘接物质。
在其中一个实施例中,所述单颗粒微电极制备装置包括:
显微镜,所述显微镜位于所述操作平台的操作台面的上方,用于观测所述探针、所述颗粒体和所述毛细输送管中的至少一者。
在其中一个实施例中,所述单颗粒微电极制备装置包括:
加热单元,所述加热单元与所述操作平台导热连接,用于加热所述操作平台的操作台面。
在其中一个实施例中,所述加热单元包括:
加热板,所述加热板设置在所述操作平台的底面,所述操作平台的底面为所述操作平台的操作台面的相对面。
在其中一个实施例中,所述探针的尖端与所述颗粒体导电接触,所述粘接物质为粘接剂,所述粘接剂用于将所述探针的尖端和所述颗粒体连接。
在其中一个实施例中,所述粘接物质为包含导电成分和粘接成分的混合剂,所述探针的尖端与所述颗粒体通过所述混合剂导电连接。
上述基于显微毛细管注射的单颗粒微电极制备装置中,利用输送组件的毛细输送管输送粘接物质将探针和颗粒体导电连接的过程中,整个工艺过程不再需要真空环境,摒弃了借助于FIB/SEM系统(同时具有聚焦离子束和扫描电子显微镜的系统)的真空环境,在探针上沉积金属后完成单颗粒微电极的制备方案,不需要在每制备出一个单颗粒微电极后都需要更换探针,再次对FIB/SEM系统的操作室重新抽真空的步骤,从制备原理的根本上解决了单颗粒微电极制备过程耗时长的技术问题,也根本上地解决了频繁打开操作室导致灰尘进入,污染操作室,导致系统损坏的问题。
附图说明
图1为本发明一个实施例中基于显微毛细管注射的单颗粒微电极制备装置的结构示意图;
图2为本发明一个实施例中提供的探针的光学显微镜图;
图3为本发明一个实施例中提供的探针的尖端的光学显微镜图;
图4为本发明一个实施例中提供的探针的尖端和颗粒体导电连接的光学显微镜图。
附图标号:
A、探针;B、颗粒体;C、粘接物质;
1000、操作平台;2000、输送组件;3000、微纳手;4000、显微镜;5000、加热单元;
1100、操作台面;
2100、毛细输送管;2200、微量注射仪器;
2100a、毛细输送通道;2100b、输入进口端;2100c、输送出口端;
3100、第一操作手;3200、第二操作手。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施例的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
参阅图1所示,一种基于显微毛细管注射的单颗粒微电极制备装置,所述单颗粒微电极制备装置包括操作平台1000和输送组件2000,所述操作平台1000用于放置颗粒体B;所述输送组件2000包括毛细输送管2100,所述毛细输送管2100具有毛细输送通道2100a以及连通所述毛细输送通道2100a的输入进口端2100b和输送出口端2100c,所述输入进口端2100b用于接收输送至所述毛细输送通道2100a的粘接物质C,所述输送出口端2100c用于向探针A和位于所述操作台面1100上的颗粒体B输送粘接物质C,利用粘接物质C将所述探针A和所述颗粒体B导电连接。
结合图1至图4所示,探针A采用为可导电的金属探针A,金属探针A上包覆有绝缘层,探针A的材质可以采用为易加工的硬质金属,如钨、钨钢合金、铍铜合金等材料,绝缘层可以采用为聚四氟乙烯、PFA、无定形氟树脂溶液等其他溶液。其中,探针A的尖端露出,露出的尖端用于连接颗粒体B,在其中一个实施例中,可以采用铂丝(直径10微米以上)作为金属探针A,将聚四氟乙烯或者玻璃等绝缘材料包覆于铂丝上形成绝缘层,铂丝露出尖端,用来连接颗粒体B。探针A的尖端裸露长度越小,绝缘效果越好,例如,探针A的尖端裸露长度L<100微米。颗粒体B采用为商用电池材料,即待测电池的材料,颗粒体B的粒径范围约为0.1-30μm。
当利用本发明提供的单颗粒微电极制备装置制备单颗粒微电极时,探针A和颗粒体B并不需要借助于真空环境进行导电连接,而是仅需要在常规的实验室环境中操作即可,不需要针对性地提供特殊的操作环境,因此,可以减少构建真空环境的时间和成本。在对探针A和颗粒体B进行导电连接过程中,毛细输送管2100可以施加具有粘接效果的粘接物质C,将探针A和颗粒体B直接粘连,例如,毛细输送管2100的输入进口端2100b接收到粘接物质C后,会使得粘接物质C经过毛细输送管2100的毛细输送通道2100a向输送出口端2100c移动,然后从毛细输送管2100的输送出口端2100c排出,落在探针A和颗粒体B上。
粘接物质C的整个移动过程中都存在于毛细输送管2100的毛细输送通道2100a内,因此粘接物质C的移动过程中不会与外界环境连通,能够保持粘接物质C具有良好的物质特性,保证原本的粘连功能,只是粘接物质C从毛细输送管2100的输送出口端2100c排出后,粘接物质C才与外界环境接触,但是,此时粘接物质C会立刻与探针A以及颗粒体B发生接触,实现对探针A和颗粒体B的粘连,因此,粘接物质C能够使得探针A和颗粒体B保持良好的粘接状态。由于探针A和颗粒体B的尺寸很小,通常需要在尺寸为几微米的区域内导入粘接物质C,因此毛细输送管2100的毛细输送通道2100a也具有几微米的尺寸量级,提供匹配的粘接物质C的量。
因为,借助于FIB/SEM系统(同时具有聚焦离子束和扫描电子显微镜的系统)制备单颗粒微电极时,制备原理是利用离子或电子诱导的方式,气体分子需要被阻隔掉,所以不能缺少真空环境,但是,本发明采用了完全不同的制备原理,毛细输送管2100施加粘接物质C完全不需要真空环境,制备过程完全脱离于FIB/SEM系统,并不依赖于FIB/SEM系统进行探针A和颗粒体B的连接加工。
由此可知,基于显微毛细管注射的单颗粒微电极制备装置的优点在于:利用输送组件2000的毛细输送管2100输送粘接物质C将探针A和颗粒体B导电连接的过程中,整个工艺过程不再需要真空环境,摒弃了借助于FIB/SEM系统(同时具有聚焦离子束和扫描电子显微镜的系统)的真空环境,在探针A上沉积金属后完成单颗粒微电极的制备方案,不需要在每制备出一个单颗粒微电极后都需要更换探针A,再次对FIB/SEM系统的操作室重新抽真空的步骤,从制备原理的根本上解决了单颗粒微电极制备过程耗时长的技术问题,也根本上地解决了频繁打开操作室导致灰尘进入,污染操作室,导致系统损坏的问题。
粘接物质C将所述探针A和所述颗粒体B导电连接,包括了所述探针A和所述颗粒体B直接地导电连接,或者是所述探针A和所述颗粒体B通过粘接物质C间接地导电连接,因此,就要取决于粘接物质C的特性。在其中一个实施例中,所述探针A的尖端与所述颗粒体B直接地导电接触,因此,此时所述粘接物质C可以采用为非导电的粘接剂,粘接剂仅具备粘接功能,所述粘接剂用于将所述探针A的尖端和所述颗粒体B连接。
或者,在其中一个实施例中,所述粘接物质C为包含导电成分和粘接成分的混合剂,使得混合剂具备导电功能,所述探针A的尖端与所述颗粒体B并不直接导电接触,而是通过所述混合剂导电连接。例如,导电成分和粘接成分制备为混合剂时,混合剂的制备过程一般可以与锂离子电池浆料的制备过程相同,即将导电成分和粘接成分利用相应的溶剂,溶剂一般可以选择采用为NMP(即N-甲基吡咯烷酮,N-甲基吡咯烷酮是一种有机物),混合后制备得到混合剂。在一个具体的例子中,配置混合剂过程中,导电成分:粘接成分:溶剂的比例为可以选择为5-10:5-10:80-90,例如导电成分:粘接成分:溶剂的比例为5:5:90,导电成分:粘接成分:溶剂的比例为6:6:88,导电成分:粘接成分:溶剂的比例为7:7:86,导电成分:粘接成分:溶剂的比例为8:8:84,导电成分:粘接成分:溶剂的比例为9:9:82,导电成分:粘接成分:溶剂的比例为10:10:80等,本领域技术人员可以根据需求选择,在此不做限定。
单颗粒微电极制备装置制备单颗粒微电极的过程中,需要将探针A和颗粒体B靠近或接触,以便粘接物质C能够在合理的空间内将探针A和颗粒体B粘连,因此,单颗粒微电极的过程中涉及探针A和颗粒体B的相对移动,由于探针A和颗粒体B的尺寸很小,通常需要在尺寸为几微米的区域内进行操作,并精确地掌握探针A和颗粒体B之间的相对位置,所以,在其中一个实施例中,所述单颗粒微电极制备装置包括微纳手3000,所述微纳手3000与所述毛细输送管2100和所述探针A中的至少一者控制连接,借助于微纳手3000的精准控制位移,能够在几微米的尺寸范围内实施对探针A和毛细输送管2100的位移控制,使得需要连接探针A和颗粒体B时,能够将探针A和毛细输送管2100朝向颗粒体B移动,从而精确地对准颗粒体B,在几微米的尺寸范围内形成位置的精确把控,同时,能够在更换探针A,制备下一个单颗粒微电极时准确的夹持控制更换的探针A,至于微纳手3000的具体结构形式和尺寸,本领域技术人员可以基于实际操作需求进行选择,在此不做限定。
微纳手3000可以单独控制探针A朝向颗粒体B移动,也可以单独控制毛细输送管2100朝向颗粒体B移动,或者,微纳手3000可以同步地控制探针A和毛细输送管2100朝向颗粒体B移动,在其中一个实施例中,所述微纳手3000可以包括第一操作手3100,所述第一操作手3100设置在所述操作平台1000上,所述第一操作手3100用于夹持所述探针A,控制所述探针A的尖端运动至所述颗粒体B。同时,所述微纳手3000也可以包括第二操作手3200,所述第二操作手3200设置在所述操作平台1000上,所述第二操作手3200夹持所述输送组件2000的毛细输送管2100,控制所述毛细输送管2100的输送出口端2100c运动至所述探针A与所述颗粒体B的接触位置。
操作平台1000可以采用多种结构形式,只要能够用来放置颗粒体B即可,例如,在其中一个实施例中,所述操作平台1000具有操作台面1100,所述操作台面1100上划分为多个颗粒定位区,每个所述颗粒定位区用于定位一个所述颗粒体B,所述微纳手3000用于控制所述毛细输送管2100和不同的所述探针A依次运动至不同的所述颗粒定位区,因此,借助于操作台面1100上划分出来的多个颗粒定位区,能够一次性地将多个颗粒体B均匀地放置在操作台面1100上,基于颗粒定位区的精准划分,微纳手3000可以借助于图象识别等自动化识别技术,通过自动化控制的方式自动地实施更换探针A、移动探针A和毛细输送管2100,移动到存在颗粒体B的不同颗粒定位区,依次地实施不同探针A和不同颗粒体B的粘连,高效地实施大量单颗粒微电极的制备工作,提高制备效率。
单颗粒微电极制备装置制备单颗粒微电极的过程中,探针A和颗粒体B靠近或接触后,可以根据需求向探针A和颗粒体B施加适当量的粘接物质C,因此,毛细输送管2100可以控量实施粘接物质C,一般可以每次施加1nL左右的粘接物质C的量,例如粘接物质C的每次施加量在0.5nL至1.5nL之间,例如粘接物质C的每次施加量控制为0.5nL、0.6nL、0.7nL、0.8nL、0.9nL、1nL、1.1nL、1.2nL、1.3nL、1.4nL、1.5nL不等,在此不做限定。在其中一个实施例中,所述输送组件2000可以包括微量注射仪器2200,所述微量注射仪器2200与所述毛细输送通道2100a的输入进口端2100b连通,用于通过所述输入进口端2100b向所述毛细输送通道2100a输送粘接物质C,因此,借助于微量注射仪可以控量地向探针A和颗粒体B施加合适量的粘接物质C。
单颗粒微电极制备装置制备单颗粒微电极的过程中,探针A和颗粒体B的尺寸很小,通常需要在尺寸为几微米的区域内进行操作,并精确地掌握探针A和颗粒体B之间的相对位置,因此,如果采用人工控制可以采用显微镜4000进行观测,在其中一个实施例中,所述单颗粒微电极制备装置包括显微镜4000,所述显微镜4000位于所述操作平台1000的操作台面1100的上方,用于观测所述探针A、所述颗粒体B和所述毛细输送管2100中的至少一者。或者,当微纳手3000采用自动化控制时,也可以不采用显微镜4000进行人工观测,本领域技术人员可以根据需求选择,在此不做限定。
粘接物质C施加在探针A和颗粒体B之间后,可以对粘接物质C实施加热操作,提高探针A和颗粒体B的粘连效果,其中,粘接物质C的加热温度可以控制在80℃至120℃之间,且粘接物质C的加热时常可以控制在1.5小时至2.5小时之间,在其中一个实施例中,所述单颗粒微电极制备装置可以包括加热单元5000,所述加热单元5000与所述操作平台1000导热连接,用于加热所述操作平台1000的操作台面1100,因此,当大量颗粒体B均匀地布置在操作平台1000的操作台面1100上以后,被加热的操作台面1100可以同时对大量探针A和颗粒体B进行加热处理,提高处理效率。加热单元5000的加热形式可以采用多种,例如在其中一个实施例中,所述加热单元5000包括加热板,所述加热板设置在所述操作平台1000的底面,所述操作平台1000的底面为所述操作平台1000的操作台面1100的相对面。加热板在操作平台1000的底面加热整个操作平台1000时,便能够使得热量传递至操作台面1100,对探针A和颗粒体B进行加热处理,除此之外,加热方式还可以采用加热棒、加热块等,在此不做限定。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种基于显微毛细管注射的单颗粒微电极制备装置,其特征在于,用于制备单颗粒微电极,所述单颗粒微电极包括探针和颗粒体,所述探针上包覆有绝缘层,所述探针的尖端相对于所述绝缘层露出,露出的尖端用于导电连接所述颗粒体,所述单颗粒微电极制备装置包括:
操作平台,所述操作平台用于在非真空环境中放置所述颗粒体;
输送组件,所述输送组件包括毛细输送管,所述毛细输送管具有毛细输送通道以及连通所述毛细输送通道的输入进口端和输送出口端,所述输入进口端用于接收输送至所述毛细输送通道的粘接物质,所述输送出口端用于在非真空环境中向所述探针和位于操作台面上的所述颗粒体输送粘接物质,所述粘接物质为包含导电成分和粘接成分的混合剂,使得混合剂具备导电功能,利用粘接物质在非真空环境中将所述探针的尖端和所述颗粒体导电连接。
2.根据权利要求1所述的单颗粒微电极制备装置,其特征在于,所述单颗粒微电极制备装置包括:
微纳手,所述微纳手与所述毛细输送管和所述探针中的至少一者控制连接,用于控制所述毛细输送管和所述探针相对运动。
3.根据权利要求2所述的单颗粒微电极制备装置,其特征在于,所述微纳手包括:
第一操作手,所述第一操作手设置在所述操作平台上,所述第一操作手用于夹持所述探针,控制所述探针的尖端运动至所述颗粒体;
第二操作手,所述第二操作手设置在所述操作平台上,所述第二操作手夹持所述输送组件的毛细输送管,控制所述毛细输送管的输送出口端运动至所述探针与所述颗粒体的接触位置。
4.根据权利要求2所述的单颗粒微电极制备装置,其特征在于,所述操作平台具有操作台面,所述操作台面上划分为多个颗粒定位区,每个所述颗粒定位区用于定位一个所述颗粒体,所述微纳手用于控制所述毛细输送管和不同的所述探针依次运动至不同的所述颗粒定位区。
5.根据权利要求1所述的单颗粒微电极制备装置,其特征在于,所述输送组件包括:
微量注射仪器,所述微量注射仪器与所述毛细输送通道的输入进口端连通,用于通过所述输入进口端向所述毛细输送通道输送粘接物质。
6.根据权利要求1所述的单颗粒微电极制备装置,其特征在于,所述单颗粒微电极制备装置包括:
显微镜,所述显微镜位于所述操作平台的操作台面的上方,用于观测所述探针、所述颗粒体和所述毛细输送管中的至少一者。
7.根据权利要求1所述的单颗粒微电极制备装置,其特征在于,所述单颗粒微电极制备装置包括:
加热单元,所述加热单元与所述操作平台导热连接,用于加热所述操作平台的操作台面。
8.根据权利要求7所述的单颗粒微电极制备装置,其特征在于,所述加热单元包括:
加热板,所述加热板设置在所述操作平台的底面,所述操作平台的底面为所述操作平台的操作台面的相对面。
9.根据权利要求1所述的单颗粒微电极制备装置,其特征在于,所述探针的尖端与所述颗粒体导电接触,所述粘接物质为粘接剂,所述粘接剂用于将所述探针的尖端和所述颗粒体连接。
10.根据权利要求1所述的单颗粒微电极制备装置,其特征在于,所述粘接物质为包含导电成分和粘接成分的混合剂,所述探针的尖端与所述颗粒体通过所述混合剂导电连接。
CN202310290294.5A 2023-03-23 2023-03-23 基于显微毛细管注射的单颗粒微电极制备装置 Active CN116539685B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310290294.5A CN116539685B (zh) 2023-03-23 2023-03-23 基于显微毛细管注射的单颗粒微电极制备装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310290294.5A CN116539685B (zh) 2023-03-23 2023-03-23 基于显微毛细管注射的单颗粒微电极制备装置

Publications (2)

Publication Number Publication Date
CN116539685A CN116539685A (zh) 2023-08-04
CN116539685B true CN116539685B (zh) 2024-01-30

Family

ID=87455022

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310290294.5A Active CN116539685B (zh) 2023-03-23 2023-03-23 基于显微毛细管注射的单颗粒微电极制备装置

Country Status (1)

Country Link
CN (1) CN116539685B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4784737A (en) * 1986-04-18 1988-11-15 The United States Department Of Energy Electromicroinjection of particles into living cells
JP2011112450A (ja) * 2009-11-25 2011-06-09 Ricoh Co Ltd コロイドプローブ作製装置、コロイドプローブの作製方法、そのコロイドプローブ及び静電荷現像用トナーの評価方法
CN109444476A (zh) * 2018-10-15 2019-03-08 上海交通大学 一种原子力显微镜用亚微米探针的制备方法
CN110057851A (zh) * 2019-05-17 2019-07-26 中国科学院地球化学研究所 一种原位制备微米级的单颗粒多个tem薄片样品的方法
CN112180124A (zh) * 2020-08-31 2021-01-05 上海交通大学 一种原子力显微镜用亚微米探针的制备方法
CN113189358A (zh) * 2021-05-06 2021-07-30 上海迈振电子科技有限公司 一种半接触式点样仪及微悬臂梁传感芯片的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7842920B2 (en) * 2006-12-14 2010-11-30 Dcg Systems, Inc. Methods and systems of performing device failure analysis, electrical characterization and physical characterization
US20110117648A1 (en) * 2007-07-26 2011-05-19 The Regents Of The University Of California Single cell surgery tool and a cell transfection device utilizing the photothermal properties of thin films and/or metal nanoparticles

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4784737A (en) * 1986-04-18 1988-11-15 The United States Department Of Energy Electromicroinjection of particles into living cells
JP2011112450A (ja) * 2009-11-25 2011-06-09 Ricoh Co Ltd コロイドプローブ作製装置、コロイドプローブの作製方法、そのコロイドプローブ及び静電荷現像用トナーの評価方法
CN109444476A (zh) * 2018-10-15 2019-03-08 上海交通大学 一种原子力显微镜用亚微米探针的制备方法
CN110057851A (zh) * 2019-05-17 2019-07-26 中国科学院地球化学研究所 一种原位制备微米级的单颗粒多个tem薄片样品的方法
CN112180124A (zh) * 2020-08-31 2021-01-05 上海交通大学 一种原子力显微镜用亚微米探针的制备方法
CN113189358A (zh) * 2021-05-06 2021-07-30 上海迈振电子科技有限公司 一种半接触式点样仪及微悬臂梁传感芯片的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Fabrication of Single-Particle Microelectrodes and Their Electrochemical Properties;Yuanyuan Ren等;ACS Appl. Mater. Interfaces;第14卷;第20981−20987页 *
Single-particle measurements of electrochemical kinetics in NMC and NCA cathodes for Li-ion batteries;Ping-Chun Tsai等;Energy Environ. Sci;第11卷;第860-871页 *

Also Published As

Publication number Publication date
CN116539685A (zh) 2023-08-04

Similar Documents

Publication Publication Date Title
US7405395B2 (en) Acoustic ejection into small openings
US6017590A (en) Tip coating system for scanning probe microscopy
US20060192107A1 (en) Methods and apparatus for porous membrane electrospray and multiplexed coupling of microfluidic systems with mass spectrometry
CN1611349A (zh) 多孔质膜及其制造方法、传感器以及传感器的制造方法
CN102016559A (zh) 用于和质谱法接合的自包含毛细管电泳系统
CN101458180B (zh) 预处理tem样品以及对样品进行tem测试的方法
MXPA04010136A (es) Lectura del microconjunto de sonda para tomar muestras utilizando espectrometria de masa de electrocio.
DE19645070A1 (de) Integriertes planares Flüssigkeitshandhabungssystem für eine Matrix-unterstützte Laser-Desorptions-/Ionisations-Laufzeit-Massenspektroskopie
CN109269978A (zh) 测量电场下固液界面间粘附力的测量装置及测量方法
US20110061476A1 (en) Method and device for transferring a microscopic, isolated sample, micro-dissection system comprising such a device and method for producing a nano-suction means
Su et al. A multifunctional microfluidic droplet-array chip for analysis by electrospray ionization mass spectrometry
US20040262513A1 (en) Parallel concentration, desalting and deposition onto MALDI targets
CN116539685B (zh) 基于显微毛细管注射的单颗粒微电极制备装置
EP3668647A1 (en) Multipin solid phase microextraction device
CN116477566B (zh) 基于显微毛细管注射的单颗粒微电极制备方法
CN109269976A (zh) 测量电场下固液界面间摩擦力的测量装置及测量方法
JP2002508841A (ja) 加熱プローブ
CN111879796A (zh) 一种透射电镜高分辨原位流体冷冻芯片及其制备方法
CN114724921A (zh) 用于质谱成像样本制备的自动电喷雾喷涂装置及方法
KR20030003718A (ko) 생체 중합체 배열을 위한 극소량의 액체의 미소 계량 방법및 장치
CN109444247B (zh) 一种瞬态毛细管等速电泳-电喷雾-质谱联用装置及方法
Tsao et al. A piezo-ring-on-chip microfluidic device for simple and low-cost mass spectrometry interfacing
US20070059217A1 (en) Process for the production of biopolymer fields with real-time control
CN116460425B (zh) 基于激光的单颗粒微电极制备装置
CN101506346A (zh) 电融合微电极和使用其操纵细胞和/或细胞组分的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant