CN116528362A - 用于波束故障恢复的调度请求资源优化方法及用户装置 - Google Patents
用于波束故障恢复的调度请求资源优化方法及用户装置 Download PDFInfo
- Publication number
- CN116528362A CN116528362A CN202310489848.4A CN202310489848A CN116528362A CN 116528362 A CN116528362 A CN 116528362A CN 202310489848 A CN202310489848 A CN 202310489848A CN 116528362 A CN116528362 A CN 116528362A
- Authority
- CN
- China
- Prior art keywords
- bfr
- procedure
- scell
- transmission
- resources
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 429
- 238000011084 recovery Methods 0.000 title claims abstract description 19
- 238000005457 optimization Methods 0.000 title description 3
- 230000001960 triggered effect Effects 0.000 abstract description 46
- 238000012913 prioritisation Methods 0.000 abstract description 4
- 230000005540 biological transmission Effects 0.000 description 285
- 238000005259 measurement Methods 0.000 description 33
- 230000008569 process Effects 0.000 description 31
- 230000004044 response Effects 0.000 description 31
- 238000004891 communication Methods 0.000 description 28
- 230000011664 signaling Effects 0.000 description 12
- 230000009471 action Effects 0.000 description 8
- 230000006870 function Effects 0.000 description 6
- 230000001360 synchronised effect Effects 0.000 description 6
- 238000001514 detection method Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 230000000977 initiatory effect Effects 0.000 description 5
- 238000007726 management method Methods 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 230000006399 behavior Effects 0.000 description 4
- 208000016344 lissencephaly with cerebellar hypoplasia Diseases 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000013468 resource allocation Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 101150000582 dapE gene Proteins 0.000 description 3
- 238000013507 mapping Methods 0.000 description 3
- 235000019527 sweetened beverage Nutrition 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 238000003491 array Methods 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 241000169170 Boreogadus saida Species 0.000 description 1
- 102100039292 Cbp/p300-interacting transactivator 1 Human genes 0.000 description 1
- 101100335572 Escherichia coli (strain K12) ftsN gene Proteins 0.000 description 1
- 101000888413 Homo sapiens Cbp/p300-interacting transactivator 1 Proteins 0.000 description 1
- 108700026140 MAC combination Proteins 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 101150106977 msgA gene Proteins 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000007723 transport mechanism Effects 0.000 description 1
- 238000012384 transportation and delivery Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/56—Allocation or scheduling criteria for wireless resources based on priority criteria
- H04W72/566—Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
- H04W72/569—Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/046—Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/0278—Traffic management, e.g. flow control or congestion control using buffer status reports
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/56—Allocation or scheduling criteria for wireless resources based on priority criteria
- H04W72/563—Allocation or scheduling criteria for wireless resources based on priority criteria of the wireless resources
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
- H04W72/1263—Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
- H04W72/1268—Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/21—Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
一种用于波束故障恢复(BFR)的调度请求(SR)资源优先化方法及用户装置,该方法包括:用户设备(UE)从基站(BS)接收第一SR配置,从BS接收第二SR配置,触发第一SR用于基于第一SR配置的BFR过程的过程,在第一SR过程和第二SR过程被触发并且没有被触发的情况下,针对基于第二SR配置的缓冲器状态报告(BSR)过程触发第二SR过程取消并且第一SR资源在时域中与第二SR资源重迭,将第一SR资源优先于第二SR资源,并且在将第一SR资源优先于第二SR资源之后在第一SR资源上传输SR。
Description
技术领域
本申请案主张2019年7月26日提出的美国临时申请案第62/878,973号的优先权,发明名称为「用于处理波束故障恢复的重迭情况的方法及装置」(下称「973临时申请案」),973临时申请案的全部发明内容通过引用并入本文。
本发明涉及一种无线通信,特别指一种用于波束故障恢复的调度请求资源优化方法及用户装置。
背景技术
随着连接设备数量的大量的增长和用户/网络流量的快速增加,通信业界已经做出各种努力来改进下一代无线通信系统的无线通信技术,例如第五代(5G)新无线电(NR),系通过提高数据速率、延迟、可靠性和移动性。
5GNR系统旨在提供灵活性和可配置性以优化网络服务和类型,适应各种用例,例如增强型移动宽带(eMBB)、大规模机器类型通信(mMTC)以及超可靠和低延迟通信(URLLC)。
然而,随着对无线接入的需求不断增加,下一代无线通信系统需要进一步改进无线通信技术。
发明内容
本发明涉及一种用于波束故障恢复的调度请求资源优化方法及用户装置。
根据本发明之一实施态样,提供一种用于波束故障恢复的调度请求(SR)资源优先化方法,由用户装置执行,包括:从基站(BS)接收指示与第一SR资源相关联的第一SR索引的第一SR配置;从基站接收指示与第二SR资源相关联的第二SR索引的第二SR配置;基于第一SR配置触发用于波束故障恢复(BFR)过程的第一SR过程;基于第二SR配置为缓冲器状态报告(BSR)过程触发第二SR过程;以及在第一SR流程和第二SR流程被触发且没有被取消,并且第一SR资源在时域上与第二SR资源重迭的情况下时,将第一个SR资源优先于第二个SR资源;以及在将第一SR资源优先于第二SR资源之后,在第一SR资源而不是第二SR资源上传输SR。
根据本发明之再一实施态样,提供一种用户装置,包括:储存器;以及至少一个处理器耦合到存储器,至少一个处理器被配置为:从基站(BS)接收指示与第一SR资源相关联的第一SR索引的第一SR配置;从基站接收指示与第二SR资源相关联的第二SR索引的第二SR配置;基于第一SR配置触发用于波束故障恢复(BFR)过程的第一SR过程;基于第二SR配置为缓冲器状态报告(BSR)过程触发第二SR过程;以及在第一SR流程和第二SR流程被触发且没有被取消,并且第一SR资源在时域上与第二SR资源重迭的情况下时,将第一个SR资源优先于第二个SR资源;以及在将第一SR资源优先于第二SR资源之后,在第一SR资源而不是第二SR资源上传输SR。
附图说明
通过一同参阅附图,以下详细描述可以更好理解本发明的示例性的观点。其中,附图中各种特征并没有按比例绘制,为了讨论的清楚起见,可以任意增加或减小各种特征的尺寸。
图1图示了根据本发明的实施方式的针对SCell触发的BFR过程;
图2图示了根据本发明的实施方式的信令过程,在信令过程期间当针对特殊小区(SpCell)BFR的随机接入(RA)过程正在进行时检测到波束故障事件;
图3示出了根据本发明的实施方式的信令过程,在过程中当次小区(SecondaryCell,SCell)BFR过程正在进行时检测到波束故障事件;
图4示出了根据本发明的实施方式的信令过程,在过程中当SCell BFR过程正在进行时检测到波束故障事件;
图5图示了根据本发明的实施方式的由UE执行的方法的流程图。
图6A和图6B示出了根据本发明的实施方式的第一SR资源的至少一部分在时域中与第二SR资源重迭的不同情况;以及
图7图示了根据本发明的各个方面的用于无线通信的节点的框图。
具体实施方式
以下描述包含与本发明中的示例实施方式有关的特定信息。本发明中的附图及其随附的详细描述仅针对示例实施方式。然而,本发明不仅限于这些示例实现。本领域技术人员将想到本发明的其他变化和实现。除非另有说明,图中相似或对应的组件可以由相似或对应的附图标记表示。此外,本发明中的附图和图示一般不按比例绘制,不与实际的相对尺寸相对应。
为了一致性和易于理解的目的,相似的特征在示例图中由数字标识(尽管在一些示例中未示出)。然而,不同实施方式中的特征可能在其他方面有所不同,因此不应狭隘地局限于图中所示的内容。
对“一个实现”、“一个实现”、“示例实现”、“各种实现”、“一些实现”、“本发明的实现”等的引用可以表明如此描述的本发明可以包括特定的特征、结构或特性,但并非本发明的每一个可能的实施方式都必须包括特定的特征、结构或特性。此外,重复使用短语“在一个实现中”、“在一个示例实现中”或“一个实现”不一定指代相同的实现,尽管它们可以。此外,与“本发明”相关的诸如“实施”之类的短语的任何使用绝不意味着表征本发明的所有实施必须包括特定特征、结构或特性,而是应理解为意味着“在“本发明的至少一些实施方式”包括所述的特定特征、结构或特性。术语“耦合”被定义为连接,无论是直接还是通过中间组件间接连接,并不一定限于物理连接。术语“包括”在使用时表示“包括但不一定限于”;它特别表示在上述组合、组、系列和等价物中的开放式包含或成员资格。
这里的术语“和/或”仅是描述关联对象的关联关系,表示可能存在三种关系,例如A和/或B可以表示:A单独存在,A和B存在于同时,B单独存在。“A和/或B和/或C”可以表示存在A、B和C中的至少一个。另外,这里使用的字符“/”一般表示前后关联对象为“或”关系。
此外,出于非限制性解释的目的,阐述了诸如功能实体、技术、协议、标准等的具体细节以提供对所描述技术的理解。在其他示例中,省略了对众所周知的方法、技术、系统、架构等的详细描述,以免用不必要的细节混淆描述。
本发明中描述的以下段落、(子)要点、要点、动作、行为、术语或权利要求中的任何两个或两个以上可以逻辑地、合理地和适当地组合以形成具体方法。此外,本发明中描述的任何句子、段落、(子)项目符号、要点、动作、行为、术语或权利要求都可以独立且分开地实施以形成特定方法。
依赖性,例如在以下发明中,“基于”、“更具体地”、“优选地”、“在一个实施例中”等只是一种可能的例子,并不限制具体方法。
本领域技术人员将立即认知到,本发明中描述的任何网络功能或算法都可以通过硬件、软件或软件和硬件的组合来实现。所描述的功能可以对应于可以是软件、硬件、固件或其任意组合的模块。软件实现可以包括存储在诸如存储器或其他类型的存储设备之类的计算器可读介质上的计算器可执行指令。例如,一个或多个具有通信处理能力的微处理器或通用计算器可用相应的可执行指令编程并执行所描述的网络功能或算法。微处理器或通用计算器可由专用集成电路(ASIC)、可编程逻辑数组和/或使用一个或多个数字信号处理器(DSP)形成。尽管本说明书中描述的一些示例实现面向安装并在计算器硬件上执行的软件,然而,作为固件或硬件或硬件和软件的组合实现的替代示例实现也在本发明的范围内。
计算器可读介质包括但不限于随机存取存储器(RAM)、只读存储器(ROM)、可擦可编程只读存储器(EPROM)、电可擦可编程只读存储器(EEPROM)、闪存存储器、光盘只读存储器(CD-ROM)、磁带、磁带、磁盘存储器或任何其他能够存储计算器可读指令的等效介质。
无线电通信网络架构(例如,长期演进(LTE)系统、LTE-Advanced(LTE-A)系统或LTE-Advanced Pro系统)通常包括至少一个基站(BS),至少一个UE和一个或多个可选的网络组件,它们提供到网络的连接。UE与网络(例如,核心网络(CN)、演进分组核心(EPC)网络、演进通用陆地无线接入网络(E-UTRAN)、下一代核心(NGC)或互联网)通信),通过由BS建立的无线电接入网络(RAN)。
需要说明的是,在本发明中,UE可以包括但不限于移动台、移动终端或设备、用户通信无线电终端。例如,UE可以是便携式无线电设备,包括但不限于移动电话、平板计算机、可穿戴设备、传感器或具有无线通信能力的个人数字助理(PDA)。UE被配置为通过空中接口向RAN中的一个或多个小区接收和发送信号。
BS可以包括但不限于如通用移动电信系统(UMTS)中的节点B(NB)、如LTE-A中的演进节点B(eNB)、无线电网络控制器(RNC))如UMTS中的基站控制器(BSC),如全球移动通信系统(GSM)/GSM EDGE无线电接入网络(GERAN)中的基站控制器(BSC),与5GC相关的E-UTRA BS中的ng-eNB、5G接入网(5G-AN)中的下一代节点B(gNB)以及能够控制无线通信和管理小区内无线资源的任何其他设备。BS可以通过到网络的无线电接口连接以服务一个或多个UE。
BS可以被配置为根据以下无线电接入技术(RAT)中的至少一种提供通信服务:微波接入全球互通(WiMAX)、GSM(通常称为2G)、GERAN、通用分组无线电服务(GPRS)、基于基本宽带码分多址(W-CDMA)、高速分组接入(HSPA)、LTE、LTE-A、eLTE、NR(通常称为3G)的UMTS(通常称为3G)作为5G)和LTE-APro。然而,本发明的范围不应限于上述协议。
BS可以用于使用包括在RAN中的多个小区向特定地理区域提供无线电覆盖。BS可以支持小区的操作。每个小区可操作以向其无线电覆盖范围内的至少一个UE提供服务。在一些实现中,每个小区(通常称为服务小区)可以提供服务以在其无线电覆盖范围内服务一个或多个UE,(例如,每个小区将下行链路(DL)和可选的上行链路(UL)资源调度到至少一个UE在其无线电覆盖范围内进行DL和可选的UL分组传输)。BS可以通过多个小区与无线电通信系统中的一个或多个UE进行通信。小区可以分配侧链路(SL)资源以支持邻近服务(ProSe)。每个小区可能具有与其他小区重迭的覆盖区域。在多RAT双连接(MR-DC)情况下,主小区组(MCG)或次小区组(SCG)的主小区可以称为SpCell。主小区(PCell)可以指MCG的SpCell。主次小区(PSCell)可以指SCG的SpCell。MCG表示与主节点(MN)相关联的一组服务小区,包括SpCell和可选的一个或多个SCell。
SCG表示与辅助节点(SN)相关联的一组服务小区,包括SpCell和可选的一个或多个SCell。
BS可以被配置为根据以下无线电接入技术(RAT)中的至少一种提供通信服务:微波接入全球互通(WiMAX)、GSM(通常称为2G)、GERAN、通用分组无线电服务(GPRS))、基于基本宽带码分多址(W-CDMA)、高速分组接入(HSPA)、LTE、LTE-A、eLTE、NR(通常称为5G)的UMTS(通常称为3G),和LTE-APro。然而,本发明的范围不应限于上述协议。
如上所述,NR的帧结构是为了支持灵活的配置以适应各种下一代(例如,5G)通信要求,例如eMBB、mMTC和URLLC,同时满足高可靠性、高数据速率和低延迟要求.在第三代合作伙伴计划(3GPP)中同意的正交频分复用(OFDM)技术可以作为NR波形的基线。也可以使用诸如自适应子载波间隔、信道带宽和循环前缀(CP)之类的可伸缩OFDM参数集。此外,NR考虑了两种编码方案:(1)低密度奇偶校验(LDPC)码和(2)极性码。可以基于信道条件和/或服务应用来配置编码方案适配。
此外,还认为在单个NR帧的传输时间间隔中,至少应包括DL传输数据、保护周期和UL传输数据,其中DL传输数据的各个部分、保护期,上行传输数据也应是可配置的,例如基于NR的网络动态。此外,还可以在NR帧中提供sidelink资源来支持ProSe业务。
新RAT上的5G的一个目标是识别和开发NR系统所需的技术组件,系统能够使用范围高达至少100GHz的任何频谱带。支持高达100GHz的载波频率给无线电传播领域带来了许多挑战。随着载波频率的增加,路径损耗也增加。
在较低频带(例如,<6GHz)中,可以通过形成用于传输DL公共信道的宽扇区波束来提供所需的小区覆盖。然而,当使用更高频率(例如,>6GHz)上的宽扇形波束时,在相同的天线增益下可能会降低小区覆盖范围。因此,可能需要更高的天线增益来补偿增加的路径损耗,以在更高的频带上提供所需的小区覆盖。
波束成形是一种在天线数组中使用的信号处理技术,用于定向信号传输/接收。对于波束成形,波束可以通过组合相控天线数组中的组件以使得特定角度的信号经历相长干扰而其他角度经历相消干扰的方式形成。可以使用多个天线数组同时利用不同的波束。为了在宽扇形波束上增加天线增益,可以使用更大的天线数组(例如,天线单元的数量从几十到几百不等)来形成高增益波束。
尽管如此,与宽扇形波束相比,高增益波束的波束宽度可能较窄,因此可能需要用于传输DL公共信道的多个波束来覆盖所需的小区区域。接入点能够形成的并发高增益波束的数量可能受到所用收发器架构的成本和复杂性的限制。实际上,在更高频率上,并发高增益波束的数量可能远少于覆盖小区区域所需的波束总数。换言之,接入点能够在任何给定时间通过使用波束子集仅覆盖小区区域的一部分。
因此,BS(例如,gNB)可以利用多个波束来覆盖整个覆盖区域并且每个UE可以与那些波束之一相关联。当UE移动和/或环境变化时,UE的最佳波束可能会改变。第1层(L1)/第2层(L2)波束管理过程(或L1/L2波束间移动性管理过程)可以用于将UE的当前波束切换到新的波束。波束可以用在DL控制信道上。波束设计可能与覆盖距离和对UE移动性的鲁棒性有关。考虑到对控制信道的低数据速率要求和高可靠性要求,波束可能需要足够宽以允许合理的UE移动性和潜在的阻塞。选择窄波束可能会在控制信道上产生不必要的频繁波束切换和潜在的频繁连接丢失。
然而,波束上的未对准可能导致控制信道的正在进行的链路的丢失(这可以被称为“波束故障(事件)”)。在这种情况下,gNB可能无法使用相同的波束管理程序切换到新的波束。因此,可以利用BFR机制。BFR机制可以由UE应用。
UE可以通过测量某些DL参考信号(RS)、控制信道和/或数据信道来检测波束故障事件。例如,在波束故障检测期间,基于用于波束管理的DLRS的测量,UE可以检测到当前服务波束的非常低的参考信号接收功率(RSRP)。如果检测到波束失败,UE可以通过某些UL传输将波束失败事件通知给gNB。然后gNB可以相应地采取行动(例如,改变服务波束)。
UE可以配置有BFR过程,在该过程期间,当在服务gNB上检测到波束故障时,UE可以向服务gNB通知新的同步信号块(SSB)或信道状态信息参考信号(CSI-RS)。SSB/CSI-RS。对于波束失败检测(BFD),gNB可以为UE配置BFD RS(例如,SSB或CSI-RS),并且当波束数量达到来自物理(PHY)层的故障实例指示在配置的定时器到期之前达到配置的阈值。基于SSB的BFD过程可以基于与初始DL带宽部分(BWP)相关联的SSB执行,并且可以仅被配置用于初始DLBWP和包含与初始DL BWP相关联的SSB的DL BWP.对于其他DLBWP,BFD过程只能基于CSI-RS来执行。
在一些实施方式中,当检测到波束故障时(例如,在SpCell上),UE可以执行基于随机接入信道(RACH)的BFR过程,包括:
-通过在SpCell上发起随机接入过程来触发BFR过程;以及
-选择合适的波束来执行BFR过程(例如,如果gNB已经为UE提供了用于某些波束的专用随机接入资源,则这些波束可以优先被UE选择)。
在完成随机接入过程之后,可以认为BFR过程已经完成。
在3GPP Release 15(Rel-15)中,基于RACH的BFR机制可以仅应用于SpCell(例如,PCell和/或PSCell)。在这种情况下,如果SCell上发生波束阻塞和/或波束故障,UE可以依靠网络(NW)来处理它。
例如,NW可以基于SCell中调度的DL传输的确认(ACK)/否定确认(NACK)反馈的缺失,或取决于信道质量指示符,确定在SCell上检测到波束故障(CQI)报告SCell。如果出现波束故障,NW可以释放这个SCell并重新调度数据传输。然而,该方法可能会降低调度效率并增加较高层(例如,无线电资源控制(RRC)层)的信令传播延迟。在一些实施方式中,为了从SCell上的波束故障中快速恢复波束(例如,改变服务波束),可以提供信令配置和/或波束故障恢复过程以支持SCell上的BFR。
图1图示了根据本发明的实施方式的针对SCell触发的BFR过程。如图1所示,为SCell触发的BFR过程包括动作102、104、106和108。在一些实现中,动作102、104、106和108中的一个或多个可以从为SCell触发的BFR过程中省略。
在动作102中,可以执行BFD操作。在BFD操作期间,BS 184可以显式或隐式地配置BFD RS(例如,SSB和/或CSI-RS),用于UE 182检测波束故障事件。例如,UE 182的PHY层可以根据BFD RS测量无线电链路质量。当无线电链路质量在特定时间段内低于阈值时,UE 182的PHY层可以向更高层(例如,媒体访问控制(MAC)实体)提供波束故障实例指示。
从UE 182的MAC实体的角度来看,如果(连续)检测到的波束故障实例的数量超过配置的最大数量(例如,beamfailureInstanceMaxCount),则可以检测到波束故障事件。在一些实现中,beamfailureInstanceMaxCount可以基于BWP/cell/cell group/cell group的子集来配置。另一方面,UE 182可以使用计数器来计算来自PHY层的波束失败实例的数量(例如,BFI_COUNTER)。在一些实现中,可以基于BWP/小区/小区组/小区组的子集来应用BFI_COUNTER。在一种实现方式中,当在UE 182处维护的BFD定时器(例如,beamFailureDetectionTimer)期满时,可以重置BFI_COUNTER的值。在一些实现中,beamFailureDetectionTimer可以基于BWP/小区/小区组/小区组的子集来配置。
在一些实现方式中,当在一个或多个SCell上检测到波束故障事件时,UE 182可以触发用于该SCell的BFR过程和/或触发用于BFR的SR过程。
在动作104中,可以执行新波束识别(NBI)程序。在NBI过程期间,UE 182可以基于NBI RS的测量结果为SCell(在其上检测到波束故障事件)搜索并选择新波束(或“候选波束”)。例如,UE 182可以选择L1-RSRP测量结果高于阈值的波束作为SCell的候选波束。
在动作106中,可执行波束故障恢复请求(BFRQ)操作。在BFRQ操作期间,UE 182可以通过PCell、PSCell和/或SCell(在图1中表示为动作“1A”)发送BFR调度请求(SR)。BFR-调度请求(BFR-SR)可以是用于BFR的SR(例如,由信息元素(IE)调度请求ID-BFR-SCell指示的特定SR),其可以用于通知BS 184波束失败在SCell上检测到的事件和/或请求UL资源(例如,发送有关波束故障事件的更多信息)。在一些实施方式中,UE 182是否传送BFR-SR可以取决于是否存在可用的UL资源(用于传送BFR报告)。例如,如果存在可供UE使用的可用UL资源和/或如果存在可用于BFR报告传输的UL资源(例如,UL资源可以容纳BFR报告)。
在一些实施方式中,如果存在可用于BFR报告传输的UL资源(例如,UL资源可以容纳BFR报告),则UE 182可以(直接)传输BFR报告(例如,基于MAC CE)到BS 184(在图1中表示为“2A”)。BFR报告可以通过小区索引包括关于波束失败CC和/或波束失败服务小区(例如,SpCell和/或SCell)的信息中的至少一个,关于新波束/候选波束(例如,UE 182可以通过测量NBI RS来选择新波束/候选波束)和无新波束信息。在一种实现方式中,无新波束信息可用于指示UE 182未找到任何(合格的)新波束/候选波束(例如,UE 182未找到任何具有对应的新波束/候选波束)L1-RSRP高于阈值)。在一种实施方式中,BFR报告可以指示新波束/候选波束的存在。此外,在一些实施方式中,BFR报告可以(仅)经由BFR-SR请求的UL授权来传送。在一些实现中,BFR报告可以通过任意的UL授权(例如,随机接入响应(RAR)中提供的UL授权、通过物理下行链路控制信道(PDCCH)提供的动态UL授权,和/或配置的授权)。
在动作108中,可以执行BFR响应操作。在BFR响应操作期间,UE可以在发送BFRQ(例如,BFR-SR和/或BFR报告)之后尝试监视来自BS 184的BFR响应(例如,经由PDCCH监视)。在一些实现中,BFR响应可以在PCell、PSCell和/或SCell上传输。在一些实施方式中,BFR响应可以在UE 182在其上传送BFRQ的CC和/或服务小区上传送(例如,检测到波束故障事件上的SCell)。在接收到BFR响应时,UE 182可以认为针对SCell触发的BFR过程已经完成。
UL资源的重迭
在单个小区(的BWP)中,用于传输的两个或更多个UL资源在时域中可能重迭/冲突,其中每个重迭的UL资源例如可以是物理随机接入信道(PRACH))资源、物理上行链路控制信道(PUCCH)资源或物理上行链路共享信道(PUSCH)资源。由于UE能力有限,UE在一个时间点可以仅选择UL资源中的一个进行传输。例如,在当前的SR机制中,如果PUCCH资源为SR的有效PUCCH资源(例如,对SR传输有效的PUCCH资源)用于SR传输的(场合)与上行链路共享信道(UL-SCH)资源(场合)(例如,动态调度的PUSCH资源和/或配置的PUSCH资源)重迭。如果用于SR传输的PUCCH资源(场合)与UL-SCH资源(场合)重迭,则UE可以仅执行PUSCH传输。
版本15中UE行为的示例文本提议(TP)在表1中。
表1
此外,用于BFR-SR传输的UL资源(例如,PUCCH资源)可以在时域中(例如,在一个或多个符号/插槽)。但是,SR传输和BFR-SR传输的目的可能不同。例如,SR传输的目的可以是请求用于数据传输的UL资源(例如,在没有分配给UE的可用PUSCH资源的情况下)。因此,如果用于SR传输的PUCCH资源与PUSCH资源重迭,则UE可能不需要传输SR,因为UE已经接收到PUSCH资源。例如,UE可以通过PUSCH资源发送BSR,以进一步请求更多的UL资源用于数据传输。
另一方面,BFR-SR传输的目的可以包括通知NW波束故障发生在服务小区上(例如,在服务小区上检测到波束故障事件),以及/或请求用于传输BFR报告(例如,MAC CE)的(特定)UL资源。当服务小区发生波束故障时,由于无线链路问题,UE可能无法在服务小区上成功地进行DL和/或UL传输。例如,UE可能不会在服务小区上接收任何调度(例如,从PDCCH)。此外,NW和UE之间的波束对链路未对准可能会导致一些负面影响(例如,传输失败、资源效率差、不必要的功耗等)。因此,与其他传输相比,波束故障恢复可能是紧急且关键的。在这个意义上,在本发明的一些实现方式中,UE可以将用于BFR-SR传输的BFR-SR资源(或“用于BFR的SR资源”)优先于一些其他UL资源(例如,用于数据传输的PUSCH)和/或用于(正常)SR传输的PUCCH),如果用于传输的BFR-SR资源(场合)与时域中的其他UL资源发生冲突。
值得注意的是,与BFR-SR过程(其是BFR过程的触发)相比,可以为BSR过程触发常规SR过程。例如,当逻辑信道(LCH)的UL数据变得可用时,UE可以触发BSR过程。在BSR过程中,当UE需要请求用于传输BSR MAC CE的UL-SCH资源时,UE可以触发常规SR过程。在常规SR过程期间,当存在用于发送常规SR的有效PUCCH资源时,UE可以尝试发送常规SR。
此外,UE可以配置有SR禁止定时器(例如,sr-ProhibitTimer)。当SR禁止定时器正在运行时,即使相应的常规SR过程未决,UE也可能被禁止发送(常规)SR。例如,UE的MAC实体可以不指示UE的物理(PHY)层在用于SR的有效PUCCH资源上发送SR。此外,UE可以配置有用于BFR-SR的BFR-SR禁止定时器。当BFR-SR禁止定时器正在运行时,即使相应的BFR-SR未决,UE也可能被禁止发送BFR-SR。因此,在一些实现中,如果常规SR过程和BFR-SR过程都在UE上等待,则UE可以根据SR是否禁止来确定是否发送BFR-SR(对应于BFR-SR过程)BFR-SR的定时器和/或禁止定时器正在运行。
例如,如果BFR-SR过程和常规SR过程未决,则即使SR禁止定时器仍在运行,UE也可以发送BFR-SR。
在一些实施方式中,如果BFR-SR过程和常规SR过程未决,则当SR禁止定时器没有运行时,UE可以发送BFR-SR。
在一些实施方式中,如果BFR-SR过程和常规SR过程未决,则无论SR禁止定时器是否正在运行,UE都可以发送BFR-SR。
在一些实现方式中,UE可以配置有用于BFR-SR的BFR-SR禁止定时器。当BFR-SR禁止定时器正在运行时,即使BFR-SR未决,UE也可能被禁止发送BFR-SR。例如,UE的MAC实体可以不指示PHY层在用于BFR-SR的有效PUCCH资源上发送BFR-SR。因此,如果常规SR过程和BFR-SR过程都在UE上未决,则UE可以根据SR禁止定时器和/或BFR-SR禁止定时器正在运行。
例如,如果BFR-SR过程和常规SR过程未决,则当BFR-SR禁止定时器正在运行时,UE可以发送(常规)SR。
例如,当BFR-SR禁止定时器正在运行时,即使相应的BFR-SR过程(在此期间BFR-SRSR可能会生成和传输)正在等待中。当BFR-SR禁止定时器没有运行时,UE可以发送BFR-SR。
在一些实现方式中,BFR-SR禁止定时器可以基于BFR-SR(过程)来配置。例如,如果UE配置了第一BFR-SR配置和第二BFR-SR配置,则UE可以配置第一BFR-SR配置的第一BFR-SR禁止定时器,并且可以配置第二BFR-SR配置。用于第二个BFR-SR配置的BFR-SR禁止定时器。
在一些实现中,如果参数“logicalChannelSR-Mask”对于SR被设置为真,则UE可以不触发SR过程(例如,常规SR过程或BFR-SR过程)。在一些实现中,BFR-SR传输可能不受“logicalChannelSR-Mask”的限制(例如,可能没有用于BFR-SR传输的logicalChannelSR-Mask的配置,并且UE可以假设存在NW错误,如果UE已经接收到用于BFR-SR传输的相应配置(例如,BFR-SR配置))。例如,可能不会期望UE配置有“logicalChannelSR-Mask”,或者可能不会预期会配置针对BFR-SR传输设置为true的“logicalChannelSR-Mask”。例如,对于BFR-SR传输,NW可以不为UE配置“logicalChannelSR-Mask”,或者不可以将“logicalChannelSR-Mask”设置为true。
在一些实现方式中,当至少一个BFR-SR过程在UE上未决时,对于每个未决BFR-SR,UE可以在对BFR-SR传输有效的UL资源上发送BFR-SR,即使这UL资源(例如,PUCCH资源)在时域中与UL-SCH资源(例如,PUSCH资源)重迭。
在一些实现中,如果用于BFR-SR传输的UL资源(例如,PUCCH资源)在时域中与UL-SCH资源(例如,PUSCH资源)重迭,则UE可以将UL资源优先用于在用于BFR-SR传输的UL资源与UL-SCH资源重迭的时间时机期间通过UL-SCH资源的BFR-SR传输。
在一些实现方式中,用于BFR-SR传输的UL资源的优先级可以高于UL-SCH资源的优先级。
在一些实现中,如果用于BFR-SR传输的UL资源(例如,PUCCH资源)与UL-SCH资源(例如,PUSCH资源)重迭,则UE可以仅在BFR-SR传输的UL资源与UL-SCH资源重迭的时间。
在一些实现方式中,在用于BFR-SR传输的UL资源与UL-SCH资源重迭的时间时机期间,UE可以不发送UL-SCH。
在一些实施方式中,如果用于BFR-SR传输的UL资源(例如,PUCCH资源)与UL-SCH资源(例如,PUSCH资源)重迭,则可以防止UE开始UL的传输-SCH资源。相反,UE可以执行BFR-SR传输。
在一些实施方式中,如果用于BFR-SR传输的UL资源(例如,PUCCH资源)与UL-SCH资源(例如,PUSCH资源)重迭,则UE可以终止/停止UL-SCH资源。相反,UE可以执行BFR-SR传输。
在一些实施方式中,如果用于BFR-SR传输的UL资源(例如,PUCCH资源)不与UL-SCH资源(例如,PUSCH资源)重迭,则还包括用于BFR-SR传输的UL资源的优先级BFR-SR传输低于UL-SCH资源的优先级,UE的MAC实体可以不指示PHY层在有效的PUCCH资源事件上传输BFR-SR,如果有未决的BFR-SR在UE。相反,如果在用于BFR-SR传输的UL资源(例如,PUCCH资源)和UL-SCH资源(例如,PUSCH资源)之间存在重迭,以及用于BFR-SR传输的UL资源的优先级BFR-SR传输高于UL-SCH资源的优先级,UE的MAC实体可以指示UE的PHY层在有效的PUCCH资源上传输BFR-SR(例如对于BFR有效的PUCCH资源)-SR传输)当UE上有未决的BFR-SR过程时。
在一些实施方式中,可以基于UL-SCH资源的一些特性来确定用于BFR-SR传输的UL资源的优先级是高于(还是低于)UL-SCH资源的优先级,例如、副载波间隔(SCS)索引、PUSCH传输持续时间和/或BWP/小区信息。例如,如果PUSCH传输持续时间短于阈值,当用于BFR的UL资源(例如,PUCCH资源)时,UE可以优先进行UL-SCH传输(例如,在UL-SCH资源上的传输)SR传输与UL-SCH资源重迭。例如,当用于BFR-SR传输的UL资源(例如,PUCCH资源)与UL-SCH资源重迭时,如果激活的BWP大于带宽阈值,则UE可以优先进行UL-SCH传输。例如,如果小区是特定小区(例如,具有特定小区索引和/或与特定小区组相关),则UE可以优先进行UL-SCH传输,当UL资源(例如,PUCCH资源)用于BFR-SR传输与UL-SCH资源重迭。
在一些实现方式中,可以基于包括在PDCCH(和/或下行链路控制信息(DCI)),用于调度UL-SCH资源。例如,NW可以向UE显式或隐式指示UL-SCH资源具有用于传输的特定优先级(例如,优先级值/索引)。用于BFR-SR传输的UL资源可以由NW通过RRC配置配置为具有另一个优先级(例如,优先级值/索引)。
在一些实现中,用于BFR-SR传输的UL资源的优先级可以由NW经由DCI、DCI格式或特定无线电网络临时标识符(RNTI)的字段来指示。
在一些实现中,用于BFR-SR传输的UL资源的优先级可以基于调度UL-SCH资源的UL授权的类型(例如,动态授权、类型1配置的授权、类型2配置的授权、由RAR调度的UL授权等)。
在一些实现方式中,优先级可以由RRC配置预先配置。
在一些实施方式中,用于BFR-SR传输的UL资源的优先级是高于还是低于UL-SCH资源的优先级可以基于要在其上传输的MAC协议数据单元(PDU)的内容来确定。这个UL-SCH资源。例如,如果MAC PDU包括来自特定MAC CE和/或特定LCH的MAC subPDU,则用于传输MACPDU的UL-SCH资源的优先级可能高于用于BFR-SR传输的UL资源。在另一示例中,如果MACPDU仅包括包含MAC SDU的MAC subPDU,或者如果MAC PDU仅包括包含MAC CE的MAC subPDU,则用于传输MAC的UL-SCH资源PDU可以被赋予特定的传输优先级。在另一个例子中,UL-SCH资源的优先级可以取决于特定MAC CE的最高优先级和/或来自配置的LCH的数据(满足UL-SCH资源的映像限制并且有可供传输的数据)。
在一些实施方式中,可以基于小区组上的分量载波(CC)激活/去激活状态来确定用于BFR-SR传输的UL资源的优先级是高于还是低于UL-SCH资源。例如,如果多于特定数量的CC被激活,则UE可以将UL-SCH传输优先用于与UL-SCH资源重迭的BFR-SR传输(例如,数据可以通过UL-SCH在UL-SCH上传输在时域中未检测到波束故障的CC)。
在一些实施方式中,UE是否执行优先化(例如,将BFR-SR传输优先于UL-SCH传输)可以取决于MAC实体是否已经将对应的MAC PDU发送到PHY层以用于UL-SCH传输。例如,如果UE没有将对应的MAC PDU发送到PHY层用于UL-SCH传输,则如果满足某些优先级标准,则UE可以将BFR-SR传输优先于UL-SCH传输。另一方面,如果UE已经将相应的MAC PDU发送到PHY层用于UL-SCH传输,则UE可能(或可能不)将BFR-SR传输优先于UL-SCH传输(例如,即使满足优先级标准)。如果在PHY层从MAC实体/层接收到相应的MAC PDU之后UE确定将BFR-SR传输优先于UL-SCH传输,则UE可以丢弃相应的MAC PDU。
在一些实施方式中,本发明中提到的特定MAC CE可以是Configured GrantConfirmation MACCE、BFR report MAC CE、BSR MAC CE和Power Headroom中的一个或多个或任意组合报告(PHR)MAC CE。在一些实施方式中,特定MAC CE可以是配置有特定映像限制的MAC CE。在一些实施方式中,特定MAC CE可以指向由NW配置的特定优先级,或者在不接收来自NW的信令的情况下预配置/预定义/预存储在UE中。
在一些实施方式中,本发明中提到的特定LCH可以是配置有特定映像限制的LCH。例如,特定映像限制可以限制MAC CE在具有某些特性的UL资源上传输,例如具有特定子载波间隔索引、特定PUSCH传输持续时间和/或特定小区信息。在一些实施方式中,特定LCH可以是配置有特定优先级值的LCH。例如,LCH配置的优先级值低意味着该LCH具有高优先级。在这种情况下,当用于BFR-SR传输的UL资源(例如,PUCCH资源)和UL-SCH资源(例如,PUSCH资源)之间存在重迭,并且该UL-SCH资源用于对于包含来自LCH的具有低优先级值(例如,低于BFR-SR传输的优先级值)的数据的MAC PDU的传输,UE可以仅在UL-SCH上执行传输。优先级值可以由NW在LCH配置(例如,LogicalChannelConfig)中配置。在另一个例子中,优先级值可以指相反的情况,LCH配置了低优先级值意味着该LCH具有低优先级。在这种情况下,当用于BFR-SR传输的UL资源(例如,PUCCH资源)和UL-SCH资源(例如,PUSCH资源)之间存在重迭,并且该UL-SCH资源用于在传输包含来自具有低优先级值(例如,低于用于BFR-SR传输的优先级值)的LCH的数据的MAC PDU时,UE可以仅执行BFR-SR传输。
在一些实现方式中,BFR-SR传输的优先级可以高达用于BFR-SR传输的UL资源(例如,PUCCH资源)的周期性。例如,如果BFR-SR传输具有低于阈值的周期性,则BFR-SR传输的优先级可以高于UL-SCH传输。
在一些实施方式中,如果用于BFR-SR传输的UL资源(例如,PUCCH资源)与UL-SCH资源重迭,则UE可以在该时间的BFR-SR传输时机期间暂停UL-SCH传输领域。在一些实施方式中,UE可以在执行BFR-SR传输之后恢复UL-SCH传输。在一些实施方式中,当资源(例如,用于BFR-SR传输的UL资源和UL-SCH资源)彼此不重迭时,UE可以恢复UL-SCH传输。
在一些实施方式中,如果用于BFR-SR传输的UL资源(例如,PUCCH资源)与UL-SCH资源上的正在进行的传输重迭,则UE可以终止UL-SCH资源上的正在进行的传输。此外,UE可以执行BFR-SR传输。
在一些实施方式中,如果用于BFR-SR传输的UL资源(例如,PUCCH资源)与UL-SCH资源重迭,则UE可以在时域中的BFR-SR传输时机期间跳过UL-SCH传输.另外,UE可以执行BFR-SR传输。
在一些实现方式中,如果用于BFR-SR传输的第一UL资源与第二UL资源(例如,PUSCH)重迭,则UE可以将BFR-SR的信息复用到在第二个UL资源上传输的数据中。UL资源。例如,UE可以在第二UL资源上发送包括BFR-SR的数据。例如,UE可以通过第二UL资源发送BFR-SR。
在一些实现中,UL-SCH资源可以是由PDCCH或DCI调度的动态资源。在一些实现中,UL-SCH资源可以是配置的UL资源(例如,类型1/类型2配置的UL授权、自主UL传输(AUL)等)。UL-SCH资源可以由RAR调度。
在一些实施方式中,如果用于BFR-SR传输的UL资源(例如,PUCCH资源)与RAR调度的UL-SCH资源重迭,则UE可以仅传输RAR调度的UL-SCH资源(例如,在不进行BFR-SR传输的情况下传输RAR调度的UL-SCH资源,其中BFR-SR传输可能被UE丢弃/跳过)。具体地,由于RAR调度的UL-SCH资源的传输是RA过程的一部分,通常触发RA过程以响应对主小区(PCell)的影响,由RAR调度的UL-SCH资源在一些实现中,对于BFR-SR传输,RAR可以优先于UL资源。
在一些实现中,如果用于BFR-SR传输的第一PUCCH资源与第二PUCCH资源(例如,其用于特定的UL控制信息(UCI)传输)冲突(或“重迭”),则(常规)SR传输(例如,用于传输常规SR)、混合自动重传请求(HARQ)反馈传输、探测参考信号(SRS)传输或信道状态信息(CSI)报告传输,但不适用于BFR-SR传输)在时域中,UE可以将用于BFR-SR传输的第一PUCCH资源优先于第二PUCCH资源。具体地,用于BFR-SR传输的第一PUCCH资源的优先级可以高于第二PUCCH资源。此外,UE可以基于优先化结果执行传输。在一些实现中,UE可以在与第一PUCCH资源重迭的时间时机(或BFR-SR传输时机)上不传送第二PUCCH。在一些实现中,UE可以仅在与第二PUCCH资源重迭的第一PUCCH资源上发送BFR-SR。在这种情况下,UE可以不在第二PUCCH资源上进行传输。在一些实现中,UE可以在与BFR-SR传输时机重迭的时间时机(例如,第一PUCCH资源)丢弃在第二PUCCH资源上的传输。在一些实施方式中,UE可以在时域中的BFR-SR传输时机(例如,第一PUCCH资源)期间暂停在第二PUCCH资源上的传输。在一些实现中,UE可以在执行BFR-SR传输之后恢复在第二PUCCH资源上的传输。在一些实施方式中,如果暂停在第二PUCCH资源上的传输导致不可行的时间延迟(例如,需要长时间等待下一个PUCCH资源),则UE可以丢弃在第二PUCCH资源上的传输。在一些实现中,UE可以在与BFR-SR传输时机(例如,第一PUCCH资源)重迭的时间时机跳过在第二PUCCH资源上的传输在一些实现中,UE可以将BFR-SR与第二PUCCH资源复用PUCCH资源。例如,UE可以经由第二PUCCH资源(例如,其可以用于发送UCI、SR、HARQ反馈、SRS、CSI报告等)来发送BFR-SR。
在一些实现方式中,如果用于BFR-SR传输的UL资源(例如,第一PUCCH资源)与第二PUCCH资源上的正在进行的传输重迭,则UE可以终止在第二PUCCH资源上的正在进行的传输。
在一些实施方式中,用于BFR-SR传输的第一PUCCH资源的优先级是高于还是低于第二PUCCH资源(例如,对于特定UCI传输、(常规)SR传输、HARQ反馈传输)、SRS传输和/或CSI报告传输,但不适用于BFR-SR传输)可能取决于来自NW的配置。例如,UE可以为BFR-SR传输配置第一优先级,并且为SR传输配置第二优先级。根据配置的内容,第一优先级可以高于(或低于)第二优先级。
在一些实施方式中,用于BFR-SR传输的第一PUCCH资源的优先级是高于还是低于第二PUCCH资源(例如,对于特定的UCI传输、SR传输、HARQ反馈传输、SRS 3GPP技术规范中可以定义传输或CSI报告传输,但不适用于BFR-SR传输)。
在一些实施方式中,BFR-SR传输的优先级是高于还是低于(常规)SR传输可以取决于BFR-SR和SR的特性或配置。在一种实现方式中,优先级可以基于用于传输BFR-SR的资源的周期和用于传输SR的资源的周期。例如,周期越短,优先级越高。在一种实现方式中,优先级可以基于BFR-SR配置的索引和SR配置的索引。例如,与较低索引值相关联的配置可能具有较高优先级。
在一些实现方式中,如果用于BFR-SR传输的UL资源(例如,PUCCH资源)与(常规)SR传输时机重迭,则是传输BFR-SR还是SR可以取决于触发SR的LCH。例如,如果SR传输由具有高优先级的LCH触发(例如,为LCH配置的优先级参数低于阈值或具有特定优先级值),则UE可以将SR传输优先于BFR-SR传输。如果SR传输由具有低优先级的LCH触发(例如,为LCH配置的优先级参数高于阈值或具有特定优先级值),则UE可以将BFR-SR传输优先于SR传输。在另一示例中,如果SR传输在属于检测到波束失败事件的小区(例如,触发BFR-SR过程的小区)的PUCCH资源上,并且也是用于SR传输的UL资源如果与用于BFR-SR传输的UL资源重迭,则UE可以将BFR-SR传输优先于SR传输。在一些实施方式中,优先级可以由NW在LCH配置(例如,LogicalChannelConfig)中配置。在一些实施方式中,SR配置可以包括用于跨越不同BWP和小区的SR的一组PUCCH资源。对于LCH或(SCell)BFR。在一些实现中,每个BWP最多配置一个用于SR的PUCCH资源。
在一些实现方式中,BSR过程用于向BS提供关于MAC实体中的UL数据量的信息。在一些实现中,BSR MAC CE可以指示为UE中的逻辑信道组(LCG)缓冲的数据量。在一些实施方式中,BSR MAC CE的字段(例如,缓冲区大小)可以指示在建立了MAC PDU之后跨LCG的所有LCH的可用数据总量。需要注意的是,当BSR过程被触发时(例如,当新数据到达UE的传输缓冲区时),当没有可用的UL资源时,可以触发常规SR过程并且由UE发送(常规)SR传输BSR。
在一些实施方式中,每个SR配置对应于一个或多个LCH或(SCell)BFR过程。每个LCH可以映射到零个或一个SR配置,这可以由RRC配置。触发BSR过程或(SCell)BFR过程的LCH的SR配置被认为是触发的SR过程的对应SR配置。
在一些实现方式中,触发BSR过程(例如,常规BSR过程)的LCH的SR配置可以被认为是用于触发的BSR过程的SR配置。另一方面,对于由BSR重传定时器(例如retxBSR-Timer)到期触发的BSR过程,UE可以认为触发BSR过程的LCH是具有可用于传输的数据的最高优先级LCH在BSR程序被触发时。因此,触发BSR过程的SR配置可以对应于由最高优先级LCH触发的BSR过程触发的SR过程。此外,如果LCH没有映像到任何SR配置,UE可以发起RA过程来请求UL资源。
在一些实施方式中,如果BFR-SR传输优先于(常规)SR传输(例如,在UE的MAC实体中确定),则UE的MAC实体可以不指示UE的PHY层在用于SR传输的有效PUCCH资源上传输(常规)SR。相反,UE的MAC实体可以指示UE的PHY在用于BFR-SR传输的有效PUCCH资源上传输BFR-SR。
对于PRACH传输,RA过程可以由几个事件触发(例如,从RRC_IDLE状态的初始接入、RRC连接重建过程、在RRC_CONNECTED状态期间当UL同步时DL/UL数据到达状态为“异步”,RRC_CONNECTED状态期间的UL数据到达,此时没有可用于SR传输的PUCCH资源,SR失败,UE的RRC在同步重配置(例如切换)时的请求,从RRC_INACTIVE状态转换,以在SCell添加、请求其他系统信息(OSI)和/或BFR过程中建立时间对齐。在某些实现中,由于某些事件可能会被触发以响应对PCell(例如,RRC连接重建、切换、BFR过程等),这些事件可能比在SCell上执行BFR过程更重要。在这种情况下,如果BFR-SR传输场合与(例如,重迭)一个PRACH传输时机,UE可以优先考虑PRACH传输。
在一些实现中,如果用于BFR-SR传输的UL资源与时域中的有效PRACH时机(例如,在进行中的RA过程期间)发生冲突,则UE可以将PRACH传输优先于BFR-SR传输.
在一些实现方式中,PRACH资源的优先级可以高于用于BFR-SR传输的UL资源。
在一些实现方式中,UE可以不在与有效PRACH时机重迭的时间时机(在进行中的RA过程期间)传送BFR-SR。
在一些实现方式中,UE可以仅在与用于BFR-SR传输的UL资源重迭的时间时机执行PRACH传输(在进行中的RA过程期间)。在重迭时间时机期间,UE可能不执行BFR-SR传输。
在一些实施方式中,UE可以在与有效PRACH时机重迭的时间时机(在进行中的RA过程期间)暂停/跳过/忽略/停止传送BFR-SR。
在一些实施方式中,UE可以基于RA触发事件来确定是否将PRACH传输(在进行中的RA过程期间)优先于BFR-SR传输。例如,如果RA过程由第一RA事件(例如,切换或BFR过程)触发,则UE可以将PRACH传输优先于BFR-SR传输。如果RA过程由第二个RA事件(例如,系统信息(SI)请求)触发,则UE可能不会将PRACH传输(在进行中的RA过程期间)优先于BFR-SR传输。在这种情况下,BFR-SR传输可能比PRACH传输具有更高的优先级。在一些实现中,第一RA事件可以是以下RA触发事件之一:从RRC_IDLE状态的初始接入、RRC连接重建过程、当UL同步状态为“时RRC_CONNECTED状态期间的DL/UL数据到达”异步”,UL数据到达(例如,来自较高层(例如,RRC层、分组数据会聚协议(PDCP)层和/或无线电链路控制(RLC)层)的数据到达UE的MAC实体)在RRC_CONNECTED状态期间,当没有可用于SR传输的PUCCH资源时,SR传输失败(例如,SR传输的数量超过配置的最大数量),同步重配置时RRC的请求(例如切换),从RRC_INACTIVE状态的转换,以在SCell添加、OSI请求和/或BFR过程中建立时间对齐。
在一些实施方式中,第二RA事件可以是以下RA触发事件之一:从RRC_IDLE状态的初始接入、RRC连接重建过程、当UL同步时RRC_CONNECTED状态期间的DL/UL数据到达状态为“异步”,在RRC_CONNECTED状态期间,当没有可用于SR配置的PUCCH资源时,UL数据到达,SR传输失败(例如,SR传输的数量超过配置的最大数量),RRC的请求在同步重新配置(例如切换)时,从RRC_INACTIVE的转换,以在SCell添加、OSI请求和BFR过程中建立时间对齐。
在一些实施方式中,第一和/或第二RA事件可以是以下RA事件之一:
-从RRC_IDLE初始访问;
-RRC连接重建程序;
-当上行同步状态为“异步”时,RRC_CONNECTED期间下行或上行数据到达;
-当没有可用于SR的PUCCH资源时,RRC_CONNECTED期间的UL数据到达;
-SR失败;
-RRC在同步重配置(例如切换)时的请求;
-从RRC_INACTIVE转换;
-为二级时序对齐组(TAG)建立时间对齐;
-请求其他SI;
-波束故障恢复;
-SpCell上一致的UL先听后听(LBT)失败。
在一些实施方式中,当具有未决SR的SR配置没有PUCCH资源时,可以触发RA过程,并且该SR由特定优先级LCH触发。例如,特定优先级LCH可以是配置有特定优先级值或特定映射限制(例如allowedSCS-List、maxPUSCH-Duration、configuredGrantType1Allowed、allowedServingCells等)或配置的其他参数的LCH每个LCH。
在一些实施方式中,第一和/或第二RA事件可以是以下RA事件之一:
-从RRC_IDLE初始访问;
-RRC连接重建程序;
-当上行同步状态为“异步”时,RRC_CONNECTED期间下行或上行数据到达;
-当没有可用于SR的PUCCH资源时,RRC_CONNECTED期间的UL数据到达;
-SR失败;
-RRC在同步重配置(例如切换)时的请求;
-从RRC_INACTIVE转换;
-为二级TAG建立时间校准;
-请求现场视察;
-波束故障恢复;
-SpCell上一致的ULLBT故障。
在一些实施方式中,RA过程可以由于在RRC_CONNECTED期间的UL数据到达而被触发,其中当对于具有未决SR的特定SR配置没有PUCCH资源时可以触发RA过程。特定SR配置可以是具有特定SR标识(ID)(例如,schedulingRequestId)、SR资源ID(例如,schedulingRequestResourceId)或每个SR配置配置的任何其他参数(例如,周期性)的配置。
在一些实现方式中,可以支持两种类型的随机接入过程:具有MSG1的4步RA类型和具有MSGA的2步RA类型。两种类型的RA过程都支持基于竞争的随机接入(CBRA)和无竞争的随机接入(CFRA)。
在一些实现方式中,UE可以基于网络配置在随机接入过程开始时选择随机接入的类型:
-当未配置CFRA资源时,UE使用RSRP阈值在2-step RA类型(或过程)和4-step RA类型(或过程)之间进行选择;
-当配置了4-step RA类型的CFRA资源时,UE执行4-step RA类型的随机接入;
-当配置了2-step RA类型的CFRA资源时,UE执行2-step RA类型的随机接入。
在一些实现方式中,两步RA类型的消息A(MSGA)包括PRACH上的前导和PUSCH上的有效载荷。在MSGA传输之后,UE在配置的窗口内监视来自网络的响应。对于CFRA,在收到网络响应后,UE结束随机接入过程。对于CBRA,如果在收到网络响应后竞争解决成功,则UE结束随机接入过程;而如果在消息B(MSGB)中收到回退指示,则UE执行MSG3传输并监视竞争解决。如果在MSG3(重)传输后争用解决不成功,则UE返回到MSGA传输。
在一些实施方式中,UE可以基于RA过程在哪个小区上发起,来确定是否将PRACH传输(在进行中的RA过程期间)优先于BFR-SR传输。例如,如果在SpCell上发起RA过程,则对于该RA过程,BFR-SR传输的优先级可能低于PRACH传输。例如,如果在SCell上发起RA过程,则对于该RA过程,BFR-SR传输的优先级可能高于PRACH传输。例如,如果在发起BFR过程的小区上发起RA过程,则BFR-SR传输的优先级可以高于RA过程中的PRACH传输。
在一些实现方式中,UE可以被配置有服务小区上的测量间隙(例如,经由测量间隙配置(measGapConfig))。在服务小区的测量间隙期间,由于UE可能需要在这段时间(测量间隙)进行测量,因此UE可能不进行某些DL接收(例如,PDCCH监测、DL-SCH)接收)和/或某些UL传输(例如,HARQ反馈传输、SR传输、CSI传输、SRS报告传输、UL-SCH传输)。在这种情况下,UE基于BFR-SR传输和测量(将在测量间隙中执行)之间的优先级确定是否在测量间隙期间执行BFR-SR传输。
在一些实施方式中,测量是非间隙辅助的还是间隙辅助的可以取决于UE的能力、UE的活动BWP和当前工作频率。
例如,对于基于SSB的异频,可以在以下情况(a1)和(a2)下提供测量间隙配置:
(a1)如果UE仅支持per-UE测量间隙;和
(a2)如果UE支持按频率范围(FR)测量间隙并且任何服务小区的任何配置的BWP频率在测量对象的相同FR中。
例如,对于基于SSB的同频测量,可以在以下情况(b1)下提供测量间隙配置:
(b1)除了初始BWP之外,如果任何UE配置的BWP不包含与初始DL BWP相关联的SSB的频域资源。
在一些实现方式中,在非间隙辅助场景中,UE可能能够在没有测量间隙的情况下执行这样的测量。在间隙辅助场景中,UE可能无法在没有测量间隙的情况下执行此类测量。
在一些实施方式中,在测量间隙期间,UE可以不在measGapConfig配置的测量间隙的对应FR中的服务小区上执行BFR-SR传输。在一些实施方式中,如果用于BFR-SR传输时机的UL资源不与测量间隙重迭,则UE可以仅执行BFR-SR传输。
在一些实施方式中,如果满足以下条件(dl)-(d6)中的至少一个,则UE可以在measGapConfig配置的测量间隙的相应FR中监测服务小区上的PDCCH:
(d1)如果BFR-SR程序未决;
(d2)如果BFR-SR定时器正在运行;
(d3)如果BFR-SR计数器的值不为零;
(d4)如果在一个或多个小区(例如,PCell、PSCell、SCell)上检测到波束故障事件;
(d5)如果SpCell或SCell的BFR程序正在进行;和
(d6)如果BFR-SR已被发送(或在PUCCH上发送)。
在一些实现方式中,UE可以配置有RRC配置,RRC配置具有控制UE的PDCCH监视行为的不连续接收(DRX)功能。当UE处于RRC_CONNECTED状态时,如果配置了DRX功能,对于所有激活的服务小区,UE可以使用DRX操作(例如,在3GPP TS 38.321中提供)不连续地监视PDCCH。否则,UE可以监视PDCCH。
在一些实施方式中,当UE配置有DRX功能时,UE可能需要在Active Time监视PDCCH。例如,以下条件(e1)-(e6)中的至少一个可以包括在活动时间中。
(e1)如果BFR-SR已经发送(或在PUCCH上发送);
(e2)如果BFR-SR程序未决;
(e3)如果BFR-SR定时器正在运行;
(e4)如果BFR-SR计数器的值不为零;
(e5)如果在一个或多个小区(例如,PCell、PSCell、SCell)上检测到波束故障事件;和
(e6)如果用于SpCell或SCell的BFR过程正在进行。
表2列出一示例的TP。
用语“在一个实施方式中”或“在一些实施方式中”可以各自指代一个或多个相同或不同的实施方式。术语“耦合”定义为通过中间组件直接或间接连接,不一定限于物理连接。术语“包括”是指“包括但不一定限于”并且具体表示在上述组合、组、系列或等效物中的开放式包含或成员资格。表述“A、B和C中的至少一个”或“以下中的至少一个:A、B和C”是指“仅A,或仅B,或仅C,或A、B和C的任何组合。”
在一些实施方式中,BFR-SR定时器可以用于控制BFR-SR传输。例如,当BFR-SR定时器运行时,UE可以在用于BFR-SR传输的有效PUCCH资源上传输BFR-SR。当BFR-SR定时器没有运行时,UE可能不会发送BFR-SR(即使相应的BFR-SR过程在UE上未决)。在一些实现中,当BFR-SR定时器正在运行时,相应的BFR-SR过程可以被认为是未决的。在一些实现中,BFR-SR定时器可以由来自NW的RRC配置来配置。例如,BFR-SR定时器可以包括在BFR-SR配置(例如,BFR-SR过程的配置)或SCell的BFR的配置中。在一些实施方式中,BFR-SR定时器的单位可以是毫秒、时隙、符号、BFR-SR传输的周期或者BFR-SR传输的资源的周期。
在一些实施方式中,当BFR-SR过程被触发时,BFR-SR过程可以被认为是“未决”直到它被取消。
在一些实施方式中,BFR-SR计数器可用于控制BFR-SR传输。例如,UE可以使用BFR-SR计数器来计算BFR-SR已经被传送了多少次。例如,NW可以为UE配置BFR-SR计数器的最大数目。当UE发送BFR-SR时,UE可以将BFR-SR计数器的值加1。
BFR程序的重迭
在一些实施方式中,UE可以使用用于SpCell BFR的RA过程来从在SpCell上检测到的波束故障事件中恢复,并且使用SCell BFR过程来从在一个或多个SCell上检测到的波束故障事件中恢复。在某些情况下,用于SpCell BFR的RA过程和用于SCell的SCell BFR过程可以由UE单独执行。此外,SpCell上的波束故障事件和SCell上的波束故障事件可能同时发生(例如,发生在同一符号/时隙/子帧/帧中)。在这种情况下,例如,用于SpCell BFR的RA过程和SCell BFR过程可以由UE同时发起/触发(例如,在相同的符号/时隙/子帧/帧中)。在另一示例中,UE可以发起/触发针对SpCell BFR的RA过程,然后当针对SpCell BFR的RA过程正在进行时发起/触发SCell BFR过程。在另一示例中,UE可以发起/触发SCell BFR过程,然后当SCell BFR过程正在进行时发起/触发针对SpCell BFR的RA过程。基于上述示例,UE可能需要确定是否同时发起/执行多个BFR过程,和/或确定不同BFR过程的优先级。
同时检测SpCell上的波束故障事件和SCell上的波束故障事件
在SCell BFR过程期间,如果BFR-SR过程未决,则UE可以在用于BFR-SR传输的有效PUCCH资源上传输BFR-SR。在一些实现中,用于BFR-SR传输的PUCCH资源可以仅在SpCell上配置,而不在SCell上配置。当在SpCell上检测到波束故障事件时(例如,基于SpCell BFR的RA过程),SpCell的信道质量对于DL和/或UL传输可能不够好。因此,UE可以优先考虑SpCellBFR的RA过程。
在一些实施方式中,如果同时检测到SpCell上的波束失败事件和SCell上的波束失败事件,则UE可以将针对SpCell上的波束失败事件的SpCell BFR的RA过程优先化。
在一些实施方式中,如果同时检测到SpCell上的波束故障事件和SCell上的波束故障事件,则UE可以仅针对SpCell上的波束故障事件发起针对SpCell BFR的RA过程。例如,对于SCell上的波束失败事件,UE可以不发起SCell BFR过程。例如,如果同时检测到SpCell上的波束失败事件和SCell上的波束失败事件,则UE可以取消SCell BFR过程。例如,UE可以重置在SCell BFR过程的BFD操作中使用的定时器和/或计数器。
在一些实施方式中,如果同时检测到SpCell上的波束失败事件和SCell上的波束失败事件,则UE可以发起针对SpCell BFR的RA过程。此外,UE通过用于SpCell BFR的RA过程将波束失败信息(例如,指示SCell上的波束失败事件)通知给NW。例如,UE可以通过RAR提供的UL授权或者通过针对SpCell BFR的RA过程的RAR/BFR响应提供的UL授权来发送BFRQ MACCE。在一些实施方式中,如果同时检测到SpCell上的波束失败事件和SCell上的波束失败事件,则UE可以仅发起针对SpCell BFR的RA过程。在这种情况下,可以暂停基于PUCCH的BFR,直到SpCell从波束故障事件中恢复。在一些实现中,可以取消基于PUCCH的BFR。
在一些实施方式中,如果同时检测到SpCell上的波束失败事件和SCell上的波束失败事件,则UE可以暂停SCell BFR过程的启动。当用于SpCell BFR的RA过程完成时,UE可以恢复SCell BFR过程的启动。
在一些实施方式中,如果同时检测到SpCell上的波束失败事件和SCell上的波束失败事件,则UE可以在完成用于SpCell BFR的RA过程之后发起SCell BFR过程。
在一些实施方式中,如果同时检测到SpCell上的波束失败事件和SCell上的波束失败事件,则UE可以发起针对SpCell BFR的RA过程和SCell BFR过程。UE可以经由来自RAR的UL授权发送BFR报告(例如,包括BFR MAC CE和BFR MAC CE的子报头)。在一些实现中,UE在SCell BFR过程期间可以不传送任何BFR-SR。
在一些实施方式中,同时检测SpCell上的波束故障事件和SCell上的波束故障事件可以指第一波束故障指示(BFI)计数器(例如,配置在SpCell上)的情况在用于SpCellBFR达到第一个最大数量的RA过程中使用,同时(例如,在相同的符号/时隙/子帧/帧中),第二个BFI计数器(例如,配置在SCell/一组SCell)在SCell BFR程序中使用,达到第二个最大数量。
检测到SpCell上的波束故障事件,并且当针对SpCell上的波束故障事件的SpCellBFR的RA过程正在进行时,检测到SCell上的波束故障事件
图2图示了根据本发明的实施方式的信令过程,在信令过程期间当针对SpCellBFR的RA过程正在进行时检测到波束故障事件。
在动作202中,UE 282可以基于SpCell 284的BFD RS检测SpCell 284上的第一波束故障事件。第一波束故障事件可以是SpCell上的波束故障事件。
在动作204中,响应于在SpCell 284上检测到第一波束故障事件,UE 282可以发起/触发用于SpCell BFR的RA过程以尝试从第一波束故障事件中恢复。例如,UE 282可以在用于SpCell BFR的RA过程期间执行2步/4步RA过程。在两步RA过程中,消息可以被标识为msgA(例如,RA前导码和PUSCH有效载荷)和msgB(例如,RAR)。在4步RACH过程中,消息可以被标识为msg1(例如,RA前导码)、msg2(例如,RAR)、msg3(例如,RRC连接请求)和msg4(例如,RRC竞争设置/解决消息)。
在RA过程完成时(例如,在接收到msgB或msg4时),可以认为SpCell BFR的RA过程已经完成。此外,当发起针对SpCell BFR的RA过程时,可以认为针对SpCell BFR的RA过程正在进行直到针对SpCell BFR的RA过程被停止/取消或被认为完成。
在动作206中,当针对SpCell BFR的RA过程正在进行时,UE 282可以基于针对SCell 286的BFD RS检测SCell 286上的第二波束失败事件。第二波束故障事件可以是SCell上的波束故障事件。
当用于SpCell BFR的RA过程正在进行时,响应于在SCell 286上检测到第二波束失败事件,UE可以不发起针对第二波束失败事件的SCell BFR过程。例如,UE可以继续为SpCell BFR执行正在进行的RA过程(没有被SCell BFR过程中断)。例如,UE可以取消SCellBFR过程。例如,UE可以重置相应的定时器和/或可以在SCell BFR过程的BFR操作中使用的计数器。
在一些实施方式中,响应于在用于SpCell BFR的RA过程正在进行时在SCell 286上检测到第二波束失败事件,UE可以暂停正在进行的SCell BFR过程(如果存在),或者发起SCell BFR过程在SpCell BFR的RA程序完成后。
在一些实施方式中,响应于在用于SpCell BFR的RA过程正在进行时在SCell 286上检测到第二波束失败事件,UE可以发起针对第二波束失败事件的SCell BFR过程并经由由RAR提供的赠款。
在一些实施方式中,响应于在用于SpCell BFR的RA过程正在进行时在SCell 286上检测到第二波束失败事件,UE可以发起针对第二波束失败事件的SCell BFR过程并经由由msg4(4步RA过程)或msgB(2步RA过程)提供的UL授权。
在一些实现方式中,UE在SCell BFR过程期间可以不发送BFR-SR。在一些实现中,当RA过程正在进行时,UE可能不传送BFR-SR。
在一些实施方式中,当针对SpCell BFR的RA过程正在进行时,UE可以不传送BFR-SR。
检测到SCell上的波束故障事件,并且当针对SCell上的波束故障事件的SCellBFR程序正在进行时,检测到SpCell上的波束故障事件
图3图示了根据本发明的实施方式的信令过程,在信令过程期间当SCell BFR过程正在进行时检测到波束故障事件。
在动作302中,UE 382可以基于SCell 386的BFD RS检测SCell 386上的第一波束故障事件。第一波束故障事件可以是SCell上的波束故障事件。
在动作304中,响应于在SCell 386上检测到第一波束失败事件,UE 382可以发起/触发SCell BFR过程以尝试从第一波束失败事件中恢复。当SCell BFR程序被触发时,SCellBFR程序被视为正在进行或未决,直到SCell BFR程序被停止/取消或被视为已完成。
在一些实施方式中,SCell BFR过程可以包括用于SCell的BFD操作(例如,图1中所示的动作102)、用于SCell的NBI操作(例如,图1中所示的动作104)中的至少一个例如,用于SCell的BFRQ操作(例如,图1中所示的动作106)和用于SCell的BFR操作(例如,图1中所示的动作108)。
在动作306中,当SCell BFR过程正在进行时,UE 382可以基于SpCell 384的BFDRS检测SpCell384上的第二波束失败事件。第二波束故障事件可以是SpCell上的波束故障事件。
在一些实施方式中,响应于在SCell BFR过程正在进行时检测到SpCell 384上的第二波束失败事件,UE可以针对第二波束失败事件发起针对SpCell BFR的RA过程,并优先考虑RA过程SCell BFR程序上的SpCell BFR。例如,UE可以停止/取消SCell BFR过程和/或发起针对SpCell BFR的RA过程。例如,UE可以重置可以在SCell BFR过程的BFD操作中使用的相应定时器和/或计数器。
在一些实施方式中,响应于在SCell BFR过程正在进行时检测到SpCell 384上的第二波束失败事件,UE可以针对第二波束失败事件发起针对SpCell BFR的RA过程。此外,UE可以暂停SCell BFR程序。在用于SpCell BFR的RA过程完成之后,UE可以恢复SCell BFR过程。
在一些实施方式中,响应于在SCell BFR过程正在进行时在SpCell 384上检测到第二波束失败事件,UE可以针对第二波束失败事件发起针对SpCell BFR的RA过程,并且发送BFR报告(由SCell BFR过程生成)通过RAR提供的UL授权。在一些实现中,UE在用于SpCellBFR的RA过程期间可以不传送BFR-SR。
在一些实现方式中,响应于在SCell BFR过程正在进行时检测到SpCell 384上的第二波束失败事件,UE可以发起针对SpCell BFR的RA过程并发送BFR报告(由SCell BFR过程生成))通过由用于SpCell BFR的RA过程的Msg3和/或msg4提供的UL许可(例如,在SCellBFR过程期间触发)。
在一些实现方式中,如果用于SpCell BFR的RA过程正在进行,则UE可以不在SCellBFR过程期间传送BFR-SR。在一些实现中,当RA过程正在进行时,UE可能不传送BFR-SR。
在一些实现方式中,当针对SpCell BFR的RA过程正在进行时,UE可以不传送BFR-SR。
在一些实现方式中,NW可以为不同的SCell配置不同的BFD-RS集合。例如,每组BFD-RS可以与一个SCell或一组/一组SCell相关联。UE可以检测每组BFD-RS的波束失败事件。例如,UE可以配置有与第一SCell相关联的第一组BFD-RS,并且UE可以配置有与第二SCell相关联的BFR-RS的第二组)。UE可以基于第一组BFD-RS对第一SCell执行第一BFD,并基于第二组BFD-RS对第二SCell执行第二BFD。由于SCell BFR过程的每个BFD操作可以独立执行,所以可以同时检测到SCell上的不止一个波束故障事件(例如,在相同的符号/时隙/子帧/帧中)。在这个意义上,UE可能需要确定是否同时触发/执行多个SCell BFR过程,和/或确定不同SCell BFR过程的优先级。
同时检测到SCell上的第一个波束故障事件和SCell上的第二个波束故障事件
在一些实施方式中,如果同时检测到第一SCell的SCell上的第一波束故障事件和第二SCell的SCell上的第二波束故障事件(例如,在相同的符号/时隙/子帧/帧),响应于检测到SCell上的第一个波束失败事件和SCell上的第二个波束失败事件,UE可以仅发起一个SCell BFR过程。
在一些实现方式中,UE的每个MAC实体可以仅配置有一个BFR-SR配置,BFR-SR配置包括用于BFR-SR过程的配置参数。UE可以基于BFR-SR配置执行BFR-SR过程。
在一些实现方式中,对于每个BFR-SR配置的BFR-SR传输,UE可以仅被配置有一个PUCCH资源分配。
在一些实施方式中,UE可以生成BFR报告(例如,包括BFR MAC CE和BFR MAC CE的子头)以报告第一SCell和第二SCell的波束失败信息(s).
例如,当UE同时检测到第一SCell上的第一波束失败事件和第二SCell上的第二波束失败事件时,UE可以仅发起一个SCell BFR过程响应检测第一和第二波束故障事件。例如,UE可以只触发一个BFR-SR过程。UE可以生成BFR报告,报告包括第一SCell和第二SCell的波束失败信息以及第一和第二SCell的对应候选波束信息(或新波束信息)。
在一些实施方式中,如果同时检测到SCell上的第一波束失败事件和SCell上的第二波束失败事件,则UE可以针对SCell上的第一波束失败事件发起第一SCell BFR过程并针对SCell上的第二个波束故障事件启动第二个SCell BFR程序。
在一些实现方式中,UE的每个MAC实体可以被配置多个BFR-SR配置。
在一些实现方式中,UE可以被配置有针对每个UE的MAC实体的BFR-SR传输的仅一个PUCCH资源分配。例如,多个BFR SR配置可以共享用于BFR-SR传输的公共PUCCH资源分配。在一些实现方式中,在某个时间点可能只有一个BFR-SR过程在UE上未决(例如,无论启动或正在进行多少个SCell BFR过程)。在一些实现中,UE可以生成第一BFR报告(例如,包括第一BFRMAC CE)以报告第一SCell的波束失败信息,并且生成第二BFR报告(例如,包括第二BFRMAC CE)CE)上报第二个SCell的波束故障信息。在一些实现中,UE可以利用相同的UL资源来传送第一BFR报告和第二BFR报告。
在一些实施方式中,当UE在第一SCell上检测到第一波束失败事件并且同时在第二SCell上检测到第二波束失败事件时,UE可以发起第一SCell BFR程序并启动第二个SCell BFR程序。响应于第一SCell BFR过程和第二SCell BFR过程,UE可以仅发起一个BFR-SR过程。例如,UE可以生成第一BFR报告(例如,第一BFR MAC CE加上第一BFR MAC CE的子头),其包括第一SCell的波束失败信息和对应的候选波束信息(或新的波束信息),并生成第二个BFR报告(例如,第二个BFR MAC CE加上第二个BFR MAC CE的子头),其中包括第二个SCell的波束失败信息(s)和第二个SCell的相应候选波束信息(或新波束信息)。
在一些实现中,BFR MAC CE可以指示在组装包括BFR MAC CE的MAC PDU之前发起SCell BFR过程的所有服务小区。
在一些实施方式中,检测第一SCell上的第一波束故障事件和同时检测第二SCell上的第二波束故障事件可以指在以下情况中使用的第一BFI计数器的情况第一SCell BFR过程达到第一最大数目,同时(例如,在相同符号/时隙/子帧/帧中),第二SCell BFR过程中使用的第二BFI计数器达到第二最大数目。第一最大数量和第二最大数量可以由NW配置或预先存储在UE中。
在一些实施方式中,当UE在第一SCell上检测到第一波束失败事件并且同时在第二SCell上检测到第二波束失败事件时,UE可以优先考虑第一SCell中的一个第一个波束故障事件的SCell BFR程序和另一个波束故障事件的第二个SCell BFR程序。
在一些实现方式中,每个SCell BFR过程(例如,第一SCell BFR过程和第二SCellBFR过程)可以由NW配置有优先级(值/索引)。UE可以基于各个SCell BFR过程的优先级来确定哪个SCell BFR过程具有更高的优先级。
在一些实现方式中,UE可以基于与在SCell BFR过程的BFD操作中使用的BFD RS相关联的SCell来确定SCell BFR过程是否具有比另一个SCell BFR过程更高的优先级。
在一些实现方式中,UE可以基于检测到波束故障事件的服务小区来确定SCellBFR过程是否具有比另一个SCell BFR过程更高的优先级。
当针对SCell上的第一波束故障事件的第一SCell BFR程序正在进行时,在第一SCell上检测到SCell上的第一波束故障事件,并且在第二SCell上检测到SCell上的第二波束故障事件
图4示出了根据本发明的实施方式的信令过程,在过程中当SCell BFR过程正在进行时检测到波束故障事件。
在动作402中,UE 482可以基于第一SCell 486的BFD RS检测第一SCell(SCell#1)486上的第一波束故障事件。第一波束故障事件可以是波束故障事件SCell上的故障事件。
在动作404中,响应于在第一SCell 486上检测到第一波束失败事件,UE 482可以发起/触发第一SCell BFR过程(例如,使用SpCell 484)以尝试从第一波束恢复故障事件。在第一次SCell BFR程序被触发后,第一次SCell BFR程序可被视为正在进行或未决,直到SCell BFR程序被停止/取消或被视为完成。
在一些实施方式中,第一SCell BFR过程可以包括用于SCell的BFD操作(例如,图1中所示的动作102)、用于SCell的NBI操作(例如,图1中所示的动作104)中的至少一个。SCell、用于SCell的BFRQ操作(例如,图1中所示的动作106)和用于SCell的BFR操作(例如,图1中所示的动作108)。
在动作406中,当针对第一波束触发第一SCell BFR过程时,UE 482可以基于针对SCell 488的BFD RS检测第二SCell(SCell#2)488上的第二波束失败事件故障事件正在进行中。
在一些实施方式中,响应于在第一SCell BFR过程正在进行时在第二SCell 488上检测到第二波束失败事件,UE可以不针对第二波束失败事件发起第二SCell BFR过程。
在一些实现方式中,UE的每个MAC实体或UE的小区组可以仅配置有具有索引的单个BFR-SR配置(例如,经由IE调度请求ID-BFR-SCell)。
在一些实现方式中,UE可以仅被配置为具有针对每个BFR-SR配置的BFR-SR传输的索引(例如,经由IE SchedulingRequestResourceId)的单个PUCCH资源分配。
在一些实现方式中,UE可以在一个时间点仅处理/执行/发起一个SCell BFR过程。
在一些实现方式中,UE可以跳过/取消/停止/终止第二SCell BFR过程。
在一些实施方式中,UE可以生成BFR报告(例如,BFRMAC CE和BFR MAC CE的子报头)以报告第一SCell和第二SCell的波束失败信息(s)通过第一个SCell BFR程序。
在一些实现中,UE可以在第一SCell BFR过程期间生成第一BFR报告(例如,第一BFR MAC CE和第一BFR MAC CE的子报头)以向NW报告波束第一SCell的失败信息,并生成第二BFR报告(例如,第二BFR MAC CE和第二BFR MAC CE的子头)向NW报告第二SCell的波束失败信息(s)。
在一些实现方式中,UE可以暂停第二SCell BFR过程。在第一次SCell BFR程序完成后,UE可以恢复/发起第二次SCell BFR程序。
在一些实现中,响应于在第一SCell BFR过程正在进行时检测到第二SCell 488上的第二波束失败事件,UE可以将第一SCell BFR过程和第二SCell BFR过程中的一个优先于另一个。
在一些实现中,每个SCell BFR过程(例如,第一SCell BFR过程和第二SCell BFR过程)可以由NW配置有优先级(值/索引)。UE可以基于各个SCell BFR过程的优先级来确定哪个SCell BFR过程具有更高的优先级。
在一些实现方式中,UE可以基于与在SCell BFR过程的BFD操作中使用的BFD RS相关联的SCell来确定SCell BFR过程是否具有比另一个SCell BFR过程更高的优先级。
在一些实现方式中,UE可以基于检测到波束故障事件的服务小区来确定SCellBFR过程是否具有比另一个SCell BFR过程更高的优先级。
在一些实现方式中,如果UE将第二SCell BFR过程优先于第一SCell BFR过程,则UE可以取消/停止/暂停/终止第一SCell BFR过程。相反,如果UE将第一SCell BFR过程优先于第二SCell BFR过程,则UE可以取消/停止/暂停/终止第二SCell BFR过程。
在一些实施方式中,可以使用特定定时器(例如,BFR-SR定时器)来控制BFR-SR传输。例如,当BFR-SR定时器运行时,UE可以在用于BFR-SR传输的有效PUCCH资源上传输BFR-SR。当BFR-SR定时器没有运行时,UE可以不传输BFR-SR(即使与BFR-SR传输对应的BFR-SR过程未决)。此外,当BFR-SR定时器正在运行时,相应的BFR-SR过程可以被认为是未决的。当BFR-SR定时器期满时,可以取消相应的BFR-SR过程。
在一些实施方式中,可以使用另一特定定时器(例如,BFR-SR禁止定时器)以相反的方式控制BFR-SR传输。例如,当BFR-SR禁止定时器正在运行时,UE可能不会在用于BFR-SR传输的有效PUCCH资源上传输BFR-SR(即使与BFR-SR传输相对应的BFR-SR过程是待处理的))。当BFR-SR禁止定时器没有运行时,UE可以发送BFR-SR。
在一些实施方式中,可以使用特定计数器(例如,BFR-SR计数器)来控制BFR-SR传输。例如,UE可以使用BFR-SR计数器来计算BFR-SR已经发送了多少次。NW可以为UE配置BFR-SR计数器的最大数目。当UE发送BFR-SR时,UE可以将BFR-SR计数器加1。
在一些实施方式中,如果SCell BFR过程被UE挂起/停止/取消(例如,由于SCellBFR过程和其他BFR过程之间的冲突,如图3和4所示),UE可以执行下面描述的某些动作来操作BFR-SR定时器和/或BFR-SR禁止定时器。
在一些实施方式中,如果SCell BFR过程被UE挂起/停止/取消,则UE可以执行以下操作(f1)-(f4)中的至少一个:
(f1)暂停BFR-SR定时器;
(f2)停止BFR-SR定时器;
(f3)启动/重启BFR-SR禁止定时器;和
(f4)重置BFR-SR计数器。
在一些实施方式中,如果恢复SCell BFR过程,则UE可以执行以下操作(gl)-(g3)中的至少一个:
(g1)启动/重启BFR-SR定时器;
(g2)停止BFR-SR禁止定时器;和
(g3)重置BFR-SR计数器。
在一些实施方式中,当满足以下条件(h1)-(h5)中的至少一个时,可以启动或重新启动BFR-SR定时器:
(h1)BFR-SR定时器对应的BFR-SR流程被触发;
(h2)发起BFR-SR定时器对应的BFR过程(对于SCell);
(h3)检测到波束故障事件(对于SCell);
(h4)(活动的)BWP被切换/停用;和(h5)MAC实体指示PHY层执行BFR-SR传输。
在一些实施方式中,当满足以下条件(fl)-(f12)中的至少一个时,可以停止BFR-SR定时器:
(f1)BSR-SR定时器对应的触发BFR-SR流程被取消;
(f2)取消BSR-SR定时器对应的BFR过程(对于SCell);
(f3)BSR-SR定时器对应的BFR流程(针对SCell)完成;
(f4)重新配置BSR-SR定时器对应的BFR-SR配置;
(f5)BFR配置的任何配置(对于SCell)被重新配置(例如,计数器、定时器等);
(f6)重新配置BFR-SR对应的UL资源、BFD RS对应的UL资源和/或NBI RS对应的UL资源;
(f7)另一个BFR程序(针对一个SpCell或另一个SCell)被触发;
(f8)相应的SCell被去激活;
(f9)MAC PDU的传输,其中MAC PDU可以包括BFR报告(例如,MAC CE)加上其子报头(对于SCell);
(f10)MAC PDU的传输,其中MAC PDU可以包括BFR报告(例如,MAC CE),报告包括在MAC PDU组装之前检测到波束故障事件的所有SCell;
(f11)取消BFR程序;和
(f12)(活动的)BWP被切换/停用。
在一些实施方式中,当BFR-SR定时器期满时,UE可以执行以下操作(gl)-(g5)中的至少一个:
(g1)取消相应的BFR-SR程序(例如,取消未决的BFR-SR程序);
(g2)取消BFR程序(对于SCell);
(g3)启动另一个BFR程序(例如,对于一个SpCell);
(g4)启动RA程序(在SpCell上);和
(g5)去激活相应的SCell(s)。
图5图示了根据本发明的实施方式的由UE执行的方法500的流程图。应当注意,虽然动作502、504、506、508和510被描绘为在图5中被表示为独立块的单独动作,但是这些单独描绘的动作不应被解释为必然依赖于顺序。图5中执行动作的顺序并不旨在被解释为限制,并且可以以任何顺序组合任意数量的所述块以实现方法或替代方法。
此外,在一些本实施方式中,可以从方法500中省略动作502、504、506、508和510中的一个或多个。
在动作502中,UE可以从BS接收指示与第一SR资源相关联的第一SR索引的第一SR配置。例如,第一SR配置可以是BFR-SR配置。第一SR资源可以是用于BFR-SR传输的UL资源(例如,PUCCH资源)。在一个实现中,第一SR索引可以由IE调度请求ID-BFR-SCell指示。
在动作504中,UE可以从BS接收指示与第二SR资源相关联的第二SR索引的第二SR配置。例如,第二SR配置可以是常规SR配置。第二SR资源可以是用于常规SR传输的UL资源(例如,PUCCH资源)。
第二SR索引可以由IE调度请求ID指示。
在一些实现方式中,第一SR资源和第二SR资源都可以是PUCCH资源。第一SR资源和第二SR资源的不同之处在于,第一SR资源用于传输BFR-SR,而第二SR资源用于传输常规SR。
在动作506中,UE可以基于第一SR配置触发用于BFR过程的第一SR过程(例如,BFR-SR过程)。例如,当UE在BS的SCell上检测到波束失败事件时,可以由UE触发BFR过程。在一种实施方式中,BFR过程可以是SCell BFR过程。此外,BFR过程可能不是SpCell BFR的RA过程。在触发BFR流程后,如果UE发现没有分配可用的UL资源用于BFR报告传输,则UE可以进一步触发第一SR流程发送BFR-SR向BS请求可用的UL资源。用于传输BFR过程的BFR报告的UL资源。
在动作508中,UE可以基于第二SR配置触发用于BSR过程的第二SR过程(例如,常规SR过程)。例如,当UE的LCH的UL数据变得可用时,BSR过程可以由UE触发。在BSR过程中,当UE发现需要UL资源为LCH中包含的可用UL数据发送BSR MAC CE时,UE还可以触发第二SR过程。
在一些实施方式中,SR配置可以包括/指示SR索引、SR禁止定时器的值、SR计数器的值中的至少一个的信息。
如上所述,与第二SR过程相比,第一SR过程的触发原因可能不同。例如,第一SR过程可以响应于BFR过程(例如,用于恢复波束故障)而被触发,并且第二SR过程可以响应于BSR过程(例如,用于缓冲器状态报告)而被触发。此外,在第一SR过程中,UE可以尝试向BS发送BFR-SR以请求用于发送BFR过程的BFR报告的UL资源。在第二SR过程期间,UE可以尝试向BS发送常规SR以请求UL资源来发送用于包含在LCH中的可用UL数据的BSR MAC CE。
在动作510中,在第一SR过程和第二SR过程被触发并且没有被取消,并且第一SR资源在时域中与第二SR资源重迭的情况下,UE可以优先考虑第一SR资源在第二SR资源之上,并且在将第一SR资源优先于第二SR资源之后在第一SR资源(而不是第二SR资源)上发送SR(例如,BFR-SR)。例如,如果第一SR资源的优先级高于第二SR资源(例如,第一SR资源的传输优先级高于第二SR资源),则UE可以使用第一SR资源进行BFR-SR传输不使用第二SR资源进行第二SR过程的常规SR传输。
在一些实施方式中,第一SR资源可以在所有SR资源(例如,用于常规SR传输的SR资源和用于配置给UE的BFR-SR传输。
在一些实施方式中,当第一SR资源的至少一部分在时域中与第二SR资源重迭时,UE可以确定第一SR资源与第二SR资源重迭。
图6A和图6B示出了根据本发明的实施方式的第一SR资源的至少一部分在时域中与第二SR资源重迭的不同情况。
如图6A所示,第一SR资源602可以(部分地或完全地)仅在时域中与第二SR资源604重迭。如图6B所示,第一SR资源622可以(部分或完全)在时域和频域中与第二SR资源624重迭。
在一些实现方式中,UE可以确定第一SR资源是否与时域中的测量间隙重迭。当第一SR资源在时域中不与测量间隙重迭时,UE可以(仅)在第一SR资源上发送BFR-SR。
在一些实现方式中,在第一资源上发送BFR-SR之前,UE可以确定禁止定时器是否正在运行。只有当禁止定时器没有运行时,才可以在第一资源上传输BFR-SR。UE可以在第一资源上传输BFR-SR后启动禁止定时器,以避免BFR-SR传输过于频繁。在一些实现方式中,禁止定时器可以由来自BS的第一SR配置(例如,BFR-SR配置)配置。
在一些实施方式中,当第一SR过程被UE取消时或者当包括BFR MAC CE的MAC PDU从UE发送到BS时(例如,UE已经发送BFR报告,包括给BS的BFR MAC CE)。
以下提供了某些术语的非限制性描述。
在一些实现方式中,CC、小区和/或服务小区可以是SpCell、PCell、PSCell和/或SCell。
在一些实现方式中,SpCell可以包括PCell和PSCell。
在一些实现方式中,UL资源可以是RACH资源、PUCCH资源和/或PUSCH资源。UL资源可以通过动态授权(例如,通过PDCCH)、RAR和/或由RRC配置(例如,类型1/类型2配置的UL授权或在RRC配置中预配置)来调度。
在一些实施方式中,当检测到一个或多个SCell的波束失败事件时,UE可以触发一个或多个SCell的BFR过程。
在一些实施方式中,当检测到SpCell的波束失败事件时,UE可以触发SpCell的BFR过程。
在一些实施方式中,BFR过程可以用于从在SpCell和/或SCell上检测到的波束故障事件中恢复。
在一些实现方式中,可以基于无竞争RA过程和/或基于竞争的RA过程来执行用于SpCell BFR的RA过程。SpCell BFR的RA过程可以在启动相应的RA过程时启动。当相应的RA过程正在进行时,可以认为SpCell BFR的RA过程正在进行。当相应的RA程序停止时,SpCellBFR的RA程序也停止。当相应的RA程序完成时,SpCell BFR的RA程序就完成了。
在一些实现方式中,可以基于无竞争RA过程和/或基于竞争的RA过程来执行用于SpCell BFR的RA过程。SpCell BFR的RA过程可以在启动相应的RA过程时启动。当相应的RA过程正在进行时,可以认为SpCell BFR的RA过程正在进行。当相应的RA程序停止时,SpCellBFR的RA程序也停止。当相应的RA程序完成时,SpCell BFR的RA程序就完成了。
在一些实现中,MAC实体/PHY层/RRC层可以指UE。
在一些实施方式中,针对SCell触发的BFR过程的BFR-SR传输(例如,图1中所示的动作1A)可以由PRACH传输代替。例如,在BFRQ操作的BFR-SR传输中,UE可以执行PRACH传输(例如,传输前导)以请求用于BFR报告传输的UL资源。
在一些实施方式中,针对SCell触发的BFR过程的BFRQ操作(例如,图1中所示的动作2A)的BFR报告(MAC CE)传输可以通过传输UL控制信息(UCI)来代替。例如,UCI可以包括BFR相关信息,例如(1)(失败的)CC/小区信息(例如,小区索引),(2)(失败的)小区集/组(例如,set/group可以由NW预先配置),(3)(失败的)传输接收点(TRP)信息,(4)(失败的)CC的相应测量结果(例如,RSRP,SINR等),小区集/组或TRP,(5)候选波束信息/指示符(或“新波束信息”)(例如,指示基于NBI RS的测量选择的一个或多个合格波束),(6)无新波束信息(例如,指示UE无法找到任何RSRP高于(失败的)CC、小区集/组、TRP等的阈值的新波束。
在一些实现中,NW可以指NW节点、BS、gNB、eNB、TRP或小区。
在一些实现方式中,TRP可以提供网络覆盖并且直接与UE通信。TRP也可称为分布式单元(DU)。
在一些实施方式中,小区可以由一个或多个相关联的TRP组成。例如,小区的覆盖范围可以由所有相关联的TRP的覆盖范围组成。小区可以由BS控制。小区可以指TRP组(TRPG)。
在一些实现方式中,UE的服务波束可以是由NW生成的波束,其可以用于与UE通信(例如,用于传输和/或接收)。
在一些实现方式中,为了覆盖所有可能的传输和/或接收方向,可能需要多个波束。波束扫描可以是在一个时间间隔内产生波束的子集并在其他时间间隔内改变所产生的波束(例如,在时域中改变波束)的操作。这样,在几个时间间隔后可以覆盖所有可能的方向。
在一些实施方式中,NW可以具有多个TRP(例如,集中式或分布式)。每个TRP可以形成多个波束用于传输和/或接收。时/频域中波束的数量和同时波束的数量可能取决于天线阵元的数量和TRP处的射频(RF)。TRP可以将波束成形应用于数据和控制信令传输或接收。一个TRP同时产生的波束数量可能取决于TRP的能力(例如,同一小区不同TRP同时产生的最大波束数量可能相同,而不同小区不同TRP同时产生的最大波束数量可能相同)可能不同)。在一些实现中,可能需要波束扫描以在不同方向上提供控制信令。
在一些实施方式中,波束可以是DL波束或UL波束。波束可以是传输(Tx)波束和/或接收(Rx)波束。波束可以是UE波束和/或NW波束。波束可以指(或相关联)RS(例如,SSB、CSI-RS或SRS)和/或TCI状态。
在一些实现方式中,可以经由RS(例如,SSB、CSI-RS和/或SRS)和/或TCI状态向UE指示(新/候选)波束。
在一些实施方式中,术语“波束”可以由术语“空间滤波器”代替。例如,当UE报告优选的gNB Tx波束时,UE可以选择gNB使用的空间滤波器。术语“波束信息”可用于提供关于正在使用/选择哪个波束/空间滤波器的信息。在一种实施方式中,可以通过应用单独的波束(空间滤波器)来发送单独的RS。因此,波束或波束信息可以由RS资源索引来表示。
在一些实现方式中,MAC实体(或UE)可以配置有零个、一个或多个BFR-SR配置。BFR-SR配置可以由一个或一组PUCCH资源组成,用于跨不同BWP和小区的SR传输。
在一些实现方式中,BFR报告可以包括MAC CE和MAC CE的子报头。
在一些实现方式中,UE可以仅使用特定UL资源来发送BFR报告。特定UL资源可以由特定UL授权提供。例如,特定UL授权可以包括特定指示符以指示UL授权用于传输BFR报告。特定UL许可可以具有特定大小。例如,具体大小可以与BFR报告的大小相同(例如,包括BFRMAC CE和BFR MAC CE的子头)。UL授权的调度(例如,PDCCH)可以在特定定时发送。例如。具体时间可以在BFR-SR传输之后,在特定窗口内,或者在特定定时器运行时(特定定时器可以在BFR-SR传输时启动)。例如,特定时序可以是在UE触发BFR-SR过程之后或者在UE发送BFR-SR之后接收到的第一个UL授权。特定UL资源在时域中可具有特定PUSCH持续时间。例如,特定UL资源的PUSCH持续时间可以低于阈值。特定UL资源可以映像到特定小区(例如,特定UL资源可以分配在特定小区上)。在一些实现中,特定的UL资源可以由NW/BS为了BFR报告目的而隐式地或显式地指示。在这种情况下,特定的UL资源可以仅用于传输BFR报告。在一些实施方式中,特定UL资源可以经由特定UL授权来调度,其中特定UL授权可以指示UL资源用于BFR(目的)的信息。例如,可以通过用特定类型的RNTI加扰的DCI来调度UL许可。例如,UL许可可以由具有特定DCI格式的DCI调度。例如,UL许可可以由DCI调度,具有特定字段以指示特定信息,例如,用于BFR目的。
在一些实施方式中,用于BFR报告传输的UL资源可以满足以下特定条件中的一个或多个:允许的SCS列表(allowedSCS-List)、最大PUSCH持续时间(maxPUSCH-Duration)、允许的SCS配置的授权类型(configuredGrantType1Allowed)和允许的服务小区(allowedServingCells)。如果UL资源满足特定条件,则UE可以生成BFR报告并通过UL资源发送BFR报告。相反,如果UL资源不满足任何特定条件,则UE可能不生成BFR报告。具体条件可以在BFR-SR过程的配置(例如,参考图5描述的第一SR过程)或为SCell触发的BFR过程的配置中进行配置。
在一些实现方式中,特定UL资源可以与特定UL配置的授权配置(例如,配置ID或类型1/类型2)相关联。例如,可以为BFR报告传输配置特定的UL配置的授权配置。如果可用的UL资源是映像到特定配置的授权配置的配置授权,则UE可以生成BFR报告并通过UL资源发送BFR报告。BS(例如,gNB)可以经由RRC或DCI信令向UE指示配置的授权配置是特定配置的授权配置。
在一些实施方式中,两个资源之间的重迭可以意味着这两个资源在时域和/或频域中彼此部分或完全重迭。
在一些实现方式中,(常规)SR(例如,在常规SR过程中使用)可以用于请求用于新传输的UL-SCH资源(例如,PUSCH资源)。UE可以配置有零个、一个或多个SR配置。SR配置可以包括用于跨不同BWP和小区的SR的一组PUCCH资源。对于一个LCH,每个BWP最多可以配置一个用于SR的PUCCH资源。每个SR配置可以对应一个或多个LCH。每个LCH可以映射到零个或一个SR配置。触发BSR的LCH的SR配置(如果存在这样的配置)被认为是被触发的SR对应的SR配置。当SR程序(例如,常规SR程序或BFR-SR程序)被触发时,它可以被认为是未决的,直到它被取消。
在一些实施方式中,BFR-SR可以在BFRQ操作的BFR-SR传输(例如,图1中所示的动作1A)中传输。BFR-SR可以在用于BFR的专用的类似SR的PUCCH资源上传输。BFR-SR可以用于向NW通知波束失败事件和/或用于请求用于BFR报告传输的UL-SCH资源。BFR-SR所需的UL资源可以(仅)用于BFR(报告传输)。UE可以配置有零个、一个或多个BFR-SR配置。BFR-SR的PUCCH资源可以按BWP、按TRP、按CC、按CC组、按小区组(CG)和/或按UE配置。BFR-SR的PUCCH资源可以配置在PCell、PSCell和/或(PUCCH)SCell上。BFR-SR可以相应地在PCell、PSCell和/或SCell上传输。在一些实施方式中,BFR-SR可以通过跨小区传输来传输(例如,波束故障事件发生在SCell上,而与波束故障事件对应的BFR-SR在PCell上传输)。在一些实现中,BFR-SR配置可以是不是SR配置之一的特定配置(例如,BFR-SR配置的ID不与参数schedulingRequestid共享。)在一些实现中,BFR-SR配置可以是SR配置之一(例如,BFR-SR配置的ID与调度请求id共享)。在一些实现中,BFR-SR可以在配置给UE的所有SR配置中具有最高优先级。在一些实现中,BFR-SR配置可以按BWP、按TRP、按CC、按CC组、按CG和/或按UE配置。
在一些实现方式中,BFR报告可以经由BFRQ操作的BFR报告(MAC CE)传输(例如,图1中所示的动作2A)来传输。BFR报告可以在任何可以容纳BFR报告的可用UL授权上传输。在一些实现中,BFR报告可以(仅)在BFR-SR请求的特定UL许可上传输。在一些实现中,可以基于一些隐式或显式方法来指示特定UL许可是否由BFR-SR请求。在一些实现中,术语“BFRMAC CE”可用于描述由MAC CE传送的BFR报告。在一些实现中,BFR报告可以由MAC CE传送。在一些实现中,BFR报告可以在PUSCH上传输。在一些实施方式中,BFR报告可以包括以下项目(h1)-(h6)中的至少一项:
(h1)(失败的)CC(或小区)信息(例如,小区索引/ID);
(h2)(失败的)小区集/组(例如,该组/组可以由NW预先配置);
(h3)(失败的)TRP信息;(h4)(失败的)CC(或小区集/组、TRP等)的相应测量结果(例如RSRP、SINR等);
(h5)候选波束信息/指示符(或“新波束信息”)(例如,可以基于对NBI RS的测量来选择一个或多个合格波束);和
(h6)无新波束信息(例如,波束存在指示符,如果UE找不到其RSRP高于(失败的)
CC的阈值的任何新波束(或细胞、TRP等))。
在一些实现方式中,BFD RS可以是可以用于波束故障检测的一组RS(例如,SSB和/或CSI-RS)。不同的BFD RS集可以与不同的CC(或小区)、不同的小区集/组或不同的TRP相关联。例如,如果第一组BFD RS关联第一CC,并且UE检测到第一组BFD RS的质量低于阈值一段时间,则UE可以确定第一组BFD RS CC失败(或检测到波束故障事件)。另一方面,如果没有为CC(或小区)提供用于波束故障检测的BFD RS,则UE可以基于CC(或小区)的PDCCH的激活的TCI状态来执行波束监测。BFD RS可以在当前CC或另一个CC(例如,在相同频带内)(的活动BWP)中传输。在一些实现中,BFD RS和BFR-SR可以配置在相同的配置中。
在一些实现中,NBI RS可以是可以用于新波束识别的一组RS(例如,SSB和/或CSI-RS)。可以为不同的CC(或小区)、小区的组/组或TRP配置不同的NBI RS组。例如,如果为第一个CC(或小区)配置了第一组NBI RS,并且UE在第一个CC(或小区)上检测到波束失败事件,则UE可以基于选择新的波束/候选波束关于第一组NBI RS的测量结果。例如,UE可以选择NBI RS的第一集合内具有最高RSRP(或具有大于阈值的RSRP)的波束作为用于BFR的新波束。UE可以在BFR报告中包含NBI RS的信息。NBI RS(例如,SSB和/或CSI-RS)可以在配置有波束故障恢复机制的CC(的活动BWP)或相同频带内的另一个CC中传输。
图7示出了根据本发明的各个方面的用于无线通信的节点的框图。如图7所示,节点700可以包括收发器706、处理器708、存储器702、一个或多个呈现组件704和至少一个天线710。节点700还可以包括RF频谱带模块、BS通信模块、网络通信模块和系统通信管理模块、输入/输出(I/O)端口、I/O组件和电源(图7中未明确说明)。这些组件中的每一个可以通过一个或多个总线724直接或间接地彼此通信。在一个实现中,节点700可以是执行这里描述的各种功能的UE或BS,例如,参考图1到6。
具有发射器716(例如,发射/发射电路)和接收器718(例如,接收/接收电路)的收发器706可以被配置为发射和/或接收时间和/或频率资源划分信息。在一些实现中,收发器706可以被配置为在不同类型的子帧和时隙中进行传输,包括但不限于可用、不可用和灵活可用的子帧和时隙格式。收发器706可以被配置为接收数据和控制信道。
节点700可以包括多种计算器可读介质。计算器可读介质可以是节点700可以访问的任何可用介质并且包括易失性(和非易失性)介质和可移动(和不可移动)介质。作为示例而非限制,计算器可读介质可以包括计算器存储介质和通信介质。计算器存储介质可以包括根据用于存储诸如计算器可读的信息的任何方法或技术实现的易失性(和非易失性)和可移动(和不可移动)介质。
计算器存储介质包括RAM、ROM、EEPROM、闪存(或其他存储技术)、CD-ROM、数字多功能盘(DVD)(或其他光盘存储)、磁带、磁带、磁盘存储(或其他磁存储设备)等。计算器存储介质不包括传播的数据信号。通信介质通常可以在诸如载波或其他传输机制的调制数据信号中包含计算器可读指令、数据结构、程序模块或其他数据,并且包括任何信息传递介质。术语“调制数据信号”可以表示具有以在信号中编码信息的方式设置或改变其特征中的一个或多个的信号。作为示例而非限制,通信介质可以包括诸如有线网络或直接有线连接之类的有线介质,以及诸如声学、RF、红外线和其他无线介质之类的无线介质。上述任何一种的组合也应包括在计算器可读介质的范围内。
存储器702可以包括易失性和/或非易失性存储器形式的计算器存储介质。存储器702可以是可移除的、不可移除的或其组合。例如,存储器702可以包括固态存储器、硬盘驱动器、光盘驱动器等。如图7所示,存储器702可以存储计算器可读和/或可执行指令714(例如,软件代码)被配置为在被执行时使处理器708执行这里描述的各种功能,例如,参考图1至图6。或者,指令714可能不能由处理器708直接执行,但可以被配置为导致节点700(例如,当编译和执行时)以执行这里描述的各种功能。
处理器708(例如,具有处理电路)可以包括智能硬件设备、中央处理单元(CPU)、微控制器、ASIC等。处理器708可以包括存储器。处理器708可以处理从存储器702接收的数据712和指令714,以及通过收发器706、基带通信模块和/或网络通信模块的信息。处理器708还可以处理要发送到收发器706以通过天线710传输到网络通信模块以传输到核心网络的信息。
一个或多个呈现组件704可以向人或其他设备呈现数据指示。呈现组件704的示例可以包括显示设备、扬声器、打印组件、振动组件等。
从以上描述中明显看出,在不背离在本申请中描述的概念的范围的情况下,可以使用各种技术来实施所述概念。而且,虽然已经具体参考某些实施方式来描述了这些概念,但是本领域技术人员可以认识到,在不背离那些概念的范围的情况下,可以作出形式和细节上的改变。由此,所描述的实施方式在所有方面都将视为说明性的而非限制性的。还应该理解,本申请不限于上文描述的特定实施方式,而是在不背离本发明的范围的情况下,许多重新布置、修改和替换都是可能的。
Claims (1)
1.一种由用户设备(UE)执行的用于发送用于多个辅助小区(SCell)波束故障恢复(BFR)程序的调度请求(SR)的方法,包括:
从基站(BS)接收指示与调度请求资源相关联的调度请求索引的调度请求配置;
触发用于第一辅助小区的第一波束故障恢复程序的第一调度请求程序,第一调度请求程序,包括:
发送第一个调度请求,以及
启动调度请求资源对应的禁止定时器;
当第一辅助小区和第二辅助小区属于同一小区组时触发用于第二辅助小区的第二波束故障恢复程序的第二调度请求程序,第二波束故障恢复程序包括当禁止定时器未运行时传送第二调度请求。
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201962878973P | 2019-07-26 | 2019-07-26 | |
| US62/878,973 | 2019-07-26 | ||
| PCT/CN2020/103895 WO2021018010A1 (en) | 2019-07-26 | 2020-07-23 | Methods and apparatuses for scheduling request resource prioritization for beam failure recovery |
| CN202080047557.4A CN114097286B (zh) | 2019-07-26 | 2020-07-23 | 用于波束故障恢复的调度请求资源优化方法及用户装置 |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202080047557.4A Division CN114097286B (zh) | 2019-07-26 | 2020-07-23 | 用于波束故障恢复的调度请求资源优化方法及用户装置 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN116528362A true CN116528362A (zh) | 2023-08-01 |
Family
ID=74188027
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202310489848.4A Pending CN116528362A (zh) | 2019-07-26 | 2020-07-23 | 用于波束故障恢复的调度请求资源优化方法及用户装置 |
| CN202080047557.4A Active CN114097286B (zh) | 2019-07-26 | 2020-07-23 | 用于波束故障恢复的调度请求资源优化方法及用户装置 |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202080047557.4A Active CN114097286B (zh) | 2019-07-26 | 2020-07-23 | 用于波束故障恢复的调度请求资源优化方法及用户装置 |
Country Status (4)
| Country | Link |
|---|---|
| US (3) | US11240829B2 (zh) |
| EP (2) | EP4465736A1 (zh) |
| CN (2) | CN116528362A (zh) |
| WO (1) | WO2021018010A1 (zh) |
Families Citing this family (44)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR102588492B1 (ko) * | 2016-11-28 | 2023-10-13 | 삼성전자주식회사 | 무선 통신 시스템에서 빔 불일치를 탐지하기 위한 장치 및 방법 |
| EP3648369A1 (en) * | 2018-11-01 | 2020-05-06 | Comcast Cable Communications, LLC | Beam failure recovery in carrier aggregation |
| CN113348699B (zh) * | 2019-06-27 | 2023-03-14 | Oppo广东移动通信有限公司 | 数据传输方法、装置和通信设备 |
| EP3991486A4 (en) * | 2019-06-28 | 2023-01-04 | ZTE Corporation | PROCEDURE FOR RECOVERING A WIRELESS CONNECTION |
| EP3986068B1 (en) * | 2019-06-28 | 2025-01-01 | LG Electronics Inc. | Method for transmitting and receiving physical uplink control channel in wireless communication system, and device for same |
| WO2021018010A1 (en) | 2019-07-26 | 2021-02-04 | FG Innovation Company Limited | Methods and apparatuses for scheduling request resource prioritization for beam failure recovery |
| EP4005319A4 (en) * | 2019-07-31 | 2023-08-02 | Qualcomm Incorporated | MAC-CE FOR BEAM FAILURE RECOVERY |
| EP3917198B1 (en) * | 2019-08-01 | 2024-01-10 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Communication method, terminal device, and network device |
| WO2021022429A1 (zh) * | 2019-08-02 | 2021-02-11 | Oppo广东移动通信有限公司 | 无线通信方法和终端设备 |
| EP4017065A1 (en) * | 2019-08-15 | 2022-06-22 | Ntt Docomo, Inc. | Terminal and wireless communication method |
| JP7362745B2 (ja) * | 2019-08-15 | 2023-10-17 | 株式会社Nttドコモ | 端末、無線通信方法及びシステム |
| CN111836279B (zh) * | 2019-08-23 | 2022-07-15 | 维沃移动通信有限公司 | 一种发生波束失败的处理方法和终端 |
| US11665558B2 (en) * | 2019-09-19 | 2023-05-30 | Qualcomm Incorporated | Beam failure recovery request multiplexing for secondary cells |
| US20220295520A1 (en) * | 2019-09-25 | 2022-09-15 | Samsung Electronics Co., Ltd. | Method and device for transmitting data in consideration of priority of mac ce |
| EP3799518A1 (en) * | 2019-09-27 | 2021-03-31 | Apple Inc. | Secondary cell link recovery request transmission |
| CN112584443B (zh) * | 2019-09-27 | 2025-02-07 | 苹果公司 | 辅助小区链路恢复请求传输 |
| KR20220054844A (ko) * | 2019-09-29 | 2022-05-03 | 후지쯔 가부시끼가이샤 | 무선 통신 방법, 장치 및 시스템 |
| US11362722B2 (en) * | 2019-10-03 | 2022-06-14 | Mediatek Inc. | Beam failure recovery procedure for secondary cell in mobile communications |
| CA3155060C (en) | 2019-10-03 | 2023-03-28 | Hyoungsuk Jeon | Discontinuous reception for a two-step random access procedure |
| US11695465B2 (en) * | 2019-10-11 | 2023-07-04 | Qualcomm Incorporated | High reliability transmission mode for 2-step secondary cell beam failure recovery procedure |
| CN112788754B (zh) * | 2019-11-07 | 2022-08-02 | 维沃移动通信有限公司 | 信息传输方法及设备 |
| US11924837B2 (en) * | 2019-11-15 | 2024-03-05 | Qualcomm Incorporated | Techniques for physical uplink control channel beam failure recovery reselection |
| US11140694B1 (en) * | 2020-03-31 | 2021-10-05 | Asustek Computer Inc. | Method and apparatus for prioritization between uplink data and scheduling request in a wireless communication system |
| WO2021201524A1 (en) * | 2020-04-01 | 2021-10-07 | Samsung Electronics Co., Ltd. | Method and apparatus for idle mode operation in wireless communication system |
| WO2021206625A1 (en) * | 2020-04-10 | 2021-10-14 | Telefonaktiebolaget Lm Ericsson (Publ) | Beam failure recovery in multi-cell configuration |
| KR20230035257A (ko) * | 2020-07-03 | 2023-03-13 | 퀄컴 인코포레이티드 | 리던던트 빔 실패 복구 매체 액세스 시그널링을 완화하기 위한 기법들 |
| CN115669157A (zh) * | 2020-08-07 | 2023-01-31 | Oppo广东移动通信有限公司 | 通信方法和通信装置 |
| US11943037B2 (en) * | 2020-10-05 | 2024-03-26 | Samsung Electronics Co., Ltd. | Method and apparatus for beam failure recovery in a wireless communication system |
| US20220132517A1 (en) * | 2020-10-23 | 2022-04-28 | Samsung Electronics Co., Ltd. | Method and apparatus for partial beam failure recovery in a wireless communications system |
| WO2022153450A1 (ja) * | 2021-01-14 | 2022-07-21 | 株式会社Nttドコモ | 端末、無線通信方法及び基地局 |
| WO2022151417A1 (en) * | 2021-01-15 | 2022-07-21 | Apple Inc. | HANDOVER WITH PSCell BASED ON TRIGGER MESSAGE |
| CN115119225A (zh) * | 2021-03-22 | 2022-09-27 | 北京紫光展锐通信技术有限公司 | 一种信息传输方法及装置 |
| WO2022211478A1 (en) * | 2021-03-31 | 2022-10-06 | Samsung Electronics Co., Ltd. | Methods and systems for reviving scheduling request (sr) resources |
| JP7667869B2 (ja) * | 2021-03-31 | 2025-04-23 | ノキア テクノロジーズ オサケユイチア | 複数の送受信点シナリオにおけるビーム障害の回復 |
| US20240179779A1 (en) * | 2021-04-02 | 2024-05-30 | Datang Mobile Communications Equipment Co.,Ltd. | Resource determination method and apparatus |
| EP4320976A4 (en) * | 2021-04-06 | 2025-01-22 | INTEL Corporation | IMPROVED PRIORITIZATION OF WEANING WITHIN A USER FOR UPLINK TRANSFERS |
| US20240244469A1 (en) * | 2021-05-11 | 2024-07-18 | Telefonaktiebolaget Lm Ericsson (Publ) | Gap cancellation in concurrent measurement gap patterns |
| US20240250739A1 (en) * | 2021-05-13 | 2024-07-25 | Qualcomm Incorporated | Beam failure recovery in wireless communication systems employing multiple transmission/reception points |
| CN117121392A (zh) * | 2021-08-05 | 2023-11-24 | Oppo广东移动通信有限公司 | 通信方法、终端设备、网络设备及通信系统 |
| WO2023015555A1 (en) * | 2021-08-13 | 2023-02-16 | Lenovo (Beijing) Limited | Methods and apparatuses for physical uplink control channel transmission in case of beam failure |
| US20230180333A1 (en) * | 2021-12-08 | 2023-06-08 | Samsung Electronics Co., Ltd. | Method and apparatus for handling pucch resource for enhanced beam failure recovery in wireless communication system |
| WO2023196574A1 (en) * | 2022-04-08 | 2023-10-12 | Interdigital Patent Holdings, Inc. | Method and apparatus for beam failure recovery in mimo systems |
| CN120693939A (zh) * | 2023-02-16 | 2025-09-23 | 苹果公司 | 用于无线系统的波束故障检测和恢复 |
| CN121284630A (zh) * | 2024-07-01 | 2026-01-06 | 夏普株式会社 | 用户设备的执行方法以及用户设备 |
Family Cites Families (22)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9520984B2 (en) * | 2013-01-03 | 2016-12-13 | Lg Electronics Inc. | Method and apparatus for transmitting uplink signals in wireless communication system |
| US10218474B2 (en) * | 2015-09-02 | 2019-02-26 | Htc Corporation | Device and method of handling scheduling request transmission |
| US10554540B2 (en) * | 2016-08-22 | 2020-02-04 | Qualcomm Incorporated | Controlling allocations for independent links |
| US10454755B2 (en) * | 2017-03-22 | 2019-10-22 | Qualcomm Incorporated | Beam failure identification and recovery techniques |
| US10912110B2 (en) * | 2017-03-24 | 2021-02-02 | Sharp Kabushiki Kaisha | Systems and methods for an enhanced scheduling request for 5G NR |
| US11228992B2 (en) * | 2017-05-05 | 2022-01-18 | Qualcomm Incorporated | Uplink transmissions without timing synchronization in wireless communication |
| ES2784001T3 (es) * | 2017-06-08 | 2020-09-21 | Asustek Comp Inc | Procedimiento y aparato de configuración de SR (solicitud de planificación) múltiple en un sistema de comunicación inalámbrica |
| US10813097B2 (en) * | 2017-06-14 | 2020-10-20 | Qualcomm Incorporated | System and method for transmitting beam failure recovery request |
| US11246147B2 (en) * | 2017-06-15 | 2022-02-08 | Convida Wireless, Llc | Scheduling requests, status reports, and logical channel prioritization |
| EP4465551A3 (en) | 2017-08-09 | 2025-05-07 | InterDigital Patent Holdings, Inc. | Methods and systems for beam recovery and management |
| CN109392175B (zh) | 2017-08-11 | 2023-08-08 | 华为技术有限公司 | 调度请求的发送方法、调度请求的处理方法及相关设备 |
| EP3718334A4 (en) * | 2018-01-05 | 2021-08-25 | Samsung Electronics Co., Ltd. | DEVICE AND METHOD FOR BEAM RECOVERY ON A SECONDARY CELL |
| CN110035535A (zh) * | 2018-01-12 | 2019-07-19 | 华为技术有限公司 | 一种上行控制信息的传输方法、接入网设备以及终端设备 |
| CA3033533A1 (en) * | 2018-02-09 | 2019-08-09 | Ali Cirik | Beam failure recovery procedure in carrier aggregation |
| CN110278612B (zh) * | 2018-03-16 | 2022-07-12 | 华硕电脑股份有限公司 | 无线通信中处理多个无线电资源控制程序的方法和设备 |
| KR102854400B1 (ko) * | 2018-03-30 | 2025-09-02 | 레즈메드 아이엔씨. | 스케줄링 요청 기반 빔 장애 복구 |
| EP3567776B1 (en) * | 2018-05-10 | 2021-08-18 | Comcast Cable Communications, LLC | Prioritization in beam failure recovery procedures |
| CN108702763B (zh) | 2018-05-18 | 2023-04-18 | 北京小米移动软件有限公司 | 前导码和调度请求的发送方法及装置 |
| US11277302B2 (en) | 2018-06-21 | 2022-03-15 | Ofinno, Llc | PUCCH based beam failure recovery procedure |
| US12035404B2 (en) * | 2018-10-31 | 2024-07-09 | Comcast Cable Communications, Llc | Beam management for cells in wireless communications |
| JP7266744B2 (ja) * | 2019-07-22 | 2023-04-28 | 鴻穎創新有限公司 | ビーム障害回復方法及び関連する装置 |
| WO2021018010A1 (en) | 2019-07-26 | 2021-02-04 | FG Innovation Company Limited | Methods and apparatuses for scheduling request resource prioritization for beam failure recovery |
-
2020
- 2020-07-23 WO PCT/CN2020/103895 patent/WO2021018010A1/en not_active Ceased
- 2020-07-23 CN CN202310489848.4A patent/CN116528362A/zh active Pending
- 2020-07-23 US US16/937,414 patent/US11240829B2/en active Active
- 2020-07-23 CN CN202080047557.4A patent/CN114097286B/zh active Active
- 2020-07-23 EP EP24202962.7A patent/EP4465736A1/en active Pending
- 2020-07-23 EP EP20846703.5A patent/EP4005316B1/en active Active
-
2021
- 2021-12-21 US US17/557,540 patent/US11910432B2/en active Active
-
2024
- 2024-01-16 US US18/413,165 patent/US20240237053A1/en active Pending
Also Published As
| Publication number | Publication date |
|---|---|
| EP4005316A4 (en) | 2023-08-23 |
| US20240237053A1 (en) | 2024-07-11 |
| WO2021018010A1 (en) | 2021-02-04 |
| EP4465736A1 (en) | 2024-11-20 |
| US11240829B2 (en) | 2022-02-01 |
| CN114097286B (zh) | 2023-05-23 |
| US20210029724A1 (en) | 2021-01-28 |
| CN114097286A (zh) | 2022-02-25 |
| US20220201705A1 (en) | 2022-06-23 |
| EP4005316B1 (en) | 2024-10-23 |
| US11910432B2 (en) | 2024-02-20 |
| EP4005316A1 (en) | 2022-06-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN114097286B (zh) | 用于波束故障恢复的调度请求资源优化方法及用户装置 | |
| US11342980B2 (en) | Methods and apparatuses for uplink transmission prioritization | |
| US12262439B2 (en) | Methods for data transmission and user equipment using the same | |
| US11632794B2 (en) | Methods and apparatuses for listen before talk failure detection and recovery | |
| US12022551B2 (en) | Method and apparatus for sidelink communication managements | |
| WO2022143686A1 (en) | Method for small data transmission and related device | |
| CN114556845A (zh) | 用于波束失败恢复(bfr)的方法和设备 | |
| US11381300B2 (en) | Method and apparatus for performing random access procedure for beam failure recovery | |
| CN114503685B (zh) | 用于波束故障恢复过程的不连续接收操作的方法和设备 | |
| CN114097266A (zh) | 执行波束故障恢复的方法和相关装置 | |
| US11582807B2 (en) | Methods and apparatuses for random access procedure in medium access control layer | |
| CN118266260A (zh) | 在无线通信系统中对增强bfr的pucch资源处理的方法和装置 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |