CN116516053A - 用于检测西瓜lim基因家族的引物对、试剂盒及方法和应用 - Google Patents

用于检测西瓜lim基因家族的引物对、试剂盒及方法和应用 Download PDF

Info

Publication number
CN116516053A
CN116516053A CN202310585770.6A CN202310585770A CN116516053A CN 116516053 A CN116516053 A CN 116516053A CN 202310585770 A CN202310585770 A CN 202310585770A CN 116516053 A CN116516053 A CN 116516053A
Authority
CN
China
Prior art keywords
watermelon
lim
gene family
detecting
kit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310585770.6A
Other languages
English (en)
Other versions
CN116516053B (zh
Inventor
袁高鹏
朱迎春
孙德玺
周先林
李卫华
安国林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chinese Academy Of Agricultural Sciences Western Agriculture Research Center
Zhengzhou Fruit Research Institute CAAS
Original Assignee
Chinese Academy Of Agricultural Sciences Western Agriculture Research Center
Zhengzhou Fruit Research Institute CAAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chinese Academy Of Agricultural Sciences Western Agriculture Research Center, Zhengzhou Fruit Research Institute CAAS filed Critical Chinese Academy Of Agricultural Sciences Western Agriculture Research Center
Priority to CN202310585770.6A priority Critical patent/CN116516053B/zh
Publication of CN116516053A publication Critical patent/CN116516053A/zh
Application granted granted Critical
Publication of CN116516053B publication Critical patent/CN116516053B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6851Quantitative amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/13Plant traits
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/166Oligonucleotides used as internal standards, controls or normalisation probes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Botany (AREA)
  • Mycology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明属于基因检测技术领域,公开了用于检测西瓜LIM基因家族的引物对、试剂盒及方法和应用,该引物对包括12对引物对,所述引物对的序列如SEQ ID NO:1~SEQ ID NO:24所示。本发明提供的12对引物对,可快速、特异、准确检测出西瓜LIM基因家族在花药不同发育阶段下的表达特性,为利用花药培育西瓜单倍体打下基础。

Description

用于检测西瓜LIM基因家族的引物对、试剂盒及方法和应用
技术领域
本发明属于基因检测技术领域,具体涉及用于检测西瓜LIM基因家族的引物对、试剂盒及方法和应用。
背景技术
LIM转录因子是含有LIM结构域的转录因子,广泛存在于动物、酵母和植物中的富含半胱氨酸的蛋白(cysteine rich proteins,CRPs)中。Lin-ISL-MEC结构域(LIM结构域)首次从线虫的Lin-1、Isl-1基因和大鼠Mec-3基因编码的DNA结合蛋白中分离鉴定,并以这三个转录因子的首字母命名。在动植物的数十种LIM蛋白中,LIM结构域具有强保守性,通常包含一个或多个锌指结构,其氨基酸残基的保守结构为CX2CX16-23HX2CX2CX2CX16-21CX2-3(C/H/D)。LIM蛋白通过与一些结构蛋白、激酶、转录因子等蛋白相互作用,在动植物的生长发育中发挥重要作用,如信号转导、细胞分化、细胞骨架形成等。
在植物中,最早报道的LIM蛋白是1996年在向日葵中发现的HaPLM1,并在花粉中特异表达。随着研究的深入,LIM蛋白已在杨树、百合、橡胶树、玉米、水稻、棉花、番茄、高粱、苹果、梨、小米等植物中被鉴定出来。早期对LIM蛋白家族的研究主要集中在烟草和拟南芥等模式植物上,并将其分为四类:PLIM1和PLIM2特异性表达于花粉粒,WLIM1和WLIM2广泛分布于植物中。根据氨基酸序列的系统发育树,将植物LIM蛋白重新划分为四个亚群:αLIM1(FLIM1、WLIM1和PLIM1)、βLIM1、γLIM2(WLIM2)、δLIM2(PLIM2-I和PLIM2-II)。
LIM转录因子可以位于细胞核或细胞质中,也可以穿梭于细胞核或细胞质之间。研究发现LIM蛋白的结构与其亚细胞定位密切相关。细胞质LIM蛋白主要在细胞骨架中起作用。例如,向日葵的HaWLIM1蛋白分布在不同类型细胞的细胞质和细胞核中,或者同时分布在细胞质和细胞核中。向日葵原生质HaWLIM1与皮层微管的结合以及烟草NtWLIM1与肌动蛋白的结合都有助于细胞骨架的稳定。HaPLIM1分布在花粉粒的微细胞结构中,并与肌动蛋白细胞骨架相互作用。在百合中,LiLIM1作为肌动蛋白的结合蛋白,促进丝状肌动蛋白束的组装,保护丝状肌动蛋白解聚,调节花粉管伸长。而核LIM蛋白主要在特定组织的基因调控和细胞命运决定中发挥作用。如烟草的NtLIM1蛋白在体内激活PAL-box启动子驱动的GUS基因,NtLIM1在烟草中的反义表达导致苯丙类生物合成相关基因(PAL、C4H、4CL等)的表达减少,木质素含量降低20%以上。在苹果中,MdLIM11蛋白与MdPAL启动子区PAL-box元件结合,抑制了MdPAL的表达,表明MdLIM1蛋白调控了木质素生物合成相关基因的表达。在棉花纤维伸长阶段,WLIM1a作为一种肌动蛋白结合蛋白,主要参与细胞内物质的运输。H2O2存在时,棉纤维伸长被阻断,诱导WLIM1a作为转录因子进入细胞核,调控苯丙烷次生代谢途径相关基因的表达,进而调控次生细胞壁的形成。综上所述,LIM转录因子参与细胞的发育及分化调节,并且能够调控多种基因的转录。
在西瓜中,传统的纯系育种主要依靠杂交后不断的自交纯化,一般需要6-8代。利用单倍体加倍生产100%双单倍体(Double haploid,DH)是创造纯系(即DH)的快速途径。在DH基础上开发的单倍体育种技术只需要2-3代就可以产生自交系,大大缩短了育种周期,提高了育种效率。然而,单倍体育种一直是研究的重点和难点。花药培养和离体小孢子培养也是葫芦科作物获得单倍体胚和单倍体植株的重要途径,研究发现西葫芦花药培养获得的植株60%为单倍体,经诱导后获得的二倍体植株可以正常开花结果。故获得活力较强的花药是培育单倍体的重要前提。因此,亟需设计一种利用与花药发育相关的LIM基因检测西瓜花药表达量的方法,以进行西瓜单倍体育种。
发明内容
本发明针对西瓜单倍体育种中如何检测花药表达量的技术问题,提供用于检测西瓜LIM基因家族的引物对,可快速、特异、准确检测出西瓜LIM基因家族在花药不同发育阶段下的表达特性,为利用花药培育西瓜单倍体打下基础。
为实现上述目的,本发明采用以下技术方案:
本发明提供用于检测西瓜LIM基因家族的引物对,其包括12对引物对,所述引物对的序列如SEQ ID NO:1~SEQ ID NO:24所示。
本发明还提供用于检测西瓜LIM基因家族的试剂盒,包括12对引物对,所述引物对的序列如SEQ ID NO:1~SEQ ID NO:24所示。
优选地,上述试剂盒还包括PCR检测的反应体系用试剂。
优选地,上述反应体系用试剂包括2×TB Green荧光染料。
优选地,上述反应体系用试剂还包括H2O和cDNA。
优选地,上述试剂盒还包括内参引物对,所述内参引物对的序列如SEQ ID NO:25~SEQ ID NO:26所示。
本发明还提供西瓜LIM基因家族的检测方法,包括以下步骤:提取待测样品的总RNA,利用上述用于检测西瓜LIM基因家族的试剂盒进行荧光定量PCR检测。
优选地,所述荧光定量PCR检测的反应体系为20μL体系:6μL H2O,1μL 10mM上游引物,1μL 10mM下游引物,10μL 2×TB Green荧光染料,2μL 5×cDNA。
优选地,所述荧光定量PCR检测的反应条件为:95℃预变性5min;95℃变性10s;58℃退火10s;72℃延伸20s,共45个循环。
本发明还提供上述用于检测西瓜LIM基因家族的引物对或上述用于检测西瓜LIM基因家族的试剂盒在不同发育阶段西瓜花药LIM表达量检测中的应用。
相比现有技术,本发明的有益效果在于:
1、本发明全面鉴定了西瓜LIM基因家族,比对了西瓜的全基因组设计引物,并从多对引物中筛选确保引物特异性,共设计了12个引物对,并进行PCR反应,通过TBtools软件的Primer Check程序,在西瓜品种“Charleston Gray”和“97103”中进行检测,证实了其对西瓜多品种的通用性,用其检测西瓜体内LIM基因的表达量,LIM基因家族所有引物均通过多重验证得出。
2、本发明通过特定的引物进行多次实验后确定了最佳PCR反应体系,分别鉴定出了西瓜的12种LIM基因在花药不同发育阶段下的表达特性,有利于研究西瓜花药发育的特性,为利用花药培育西瓜单倍体打下基础。
3、本发明提供的12对引物能够通过荧光定量PCR方法快速、特异、准确检测出西瓜LIM基因家族在花药不同发育阶段下的表达特性,该检测方法灵敏度高,检测结果准确、可靠,为挖掘西瓜花粉发育、单倍体诱导相关的候选基因打下基础。
附图说明
图1为本发明12对引物对进行Primer Check电泳结果图;
图2为本发明12对引物对在ClLIMs基因CDS序列上的具体位置,其中,每对引物对对应的长条表示ClLIM基因,长条上的两个短条分别表示上游引物和下游引物;
图3为本发明西瓜LIM基因家族的系统发育树图;
图4为本发明西瓜LIM基因家族的染色体定位图;
图5为本发明西瓜LIM基因家族的基因结构图;
图6为本发明西瓜LIM基因家族的蛋白质结构域示意图;
图7为本发明西瓜LIM基因家族的蛋白保守基序图;
图8为本发明西瓜LIM基因家族在花药不同发育阶段表达分析图;柱上不同大小写字母表示不同阶段中差异显著(P<0.05)。
图9为本发明西瓜LIM基因家族在花药不同发育阶段的表达热图。
具体实施方式
以下实施例用于说明本发明,但不用来限定本发明的保护范围。若未特别指明,实施例中所用技术手段为本领域技术人员所熟知的常规手段。下述实施例中的试验方法,如无特别说明,均为常规方法。
实施例一
一、材料与方法:
选用实验品种为“Charleston Gray”和“97103”,叶片、花药取自中国农业科学院郑州果树研究所瓜类种质改良研究中心。植物RNA提取试剂盒购天根生化科技(北京)有限公司,引物由生工生物工程(上海)股份有限公司合成,反转录试剂盒及实时荧光染料购于百奥曼(北京)科技有限公司。
二、西瓜LIM基因家族的生物信息学分析
以拟南芥的LIM基因家族蛋白序列为模板,在西瓜基因组数据库CuGenDB(http://cucurbitgenomics.org/v2/organism/16)中进行BLAST比对,获得西瓜LIM基因家族的蛋白候选序列,并检索获得其对应的编码框架序列;用在线软件Conserved Domains(https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi)对候选序列进行验证,获得最终的LIM家族蛋白序列。利用ProtParam(https://web.expasy.org/protparam/)对氨基酸序列的理论等电点(pI)和分子量进行预测;使用Clustal W进行不同物种,如拟南芥(Arabidopsisthaliana,At)、烟草(Nicotiana tabacum,Nt)、陆地棉(Gossypium hirsutum,Gh)、油菜(Brassica napus,Bn)、甜橙(Citrus sinensis,Cs)、蓝桉(Eucalyptus globulus,Eg)、大豆(Glycine max,Gm)、雷蒙德氏棉(Gossypium raimondii,Gr)、蒺藜状苜蓿(Medicagotruncatula,Mt)、小立碗藓(Physcomitrella patens,Pp)、高粱(Sorghum bicolor,Sb)、马铃薯(Solanum tuberosum,St)、葡萄(Vitis vinifera,Vv)、玉米(Zea mays,Zm)和苹果(Malus domestica,Md)的LIM序列比对,然后使用MEGA 7.0软件采用邻接法(neighbor-joining,NJ)构建系统发育树,bootstrap设为1000。TBtools软件分析基因内含子、外显子数目及蛋白结构域和基因结构的可视化分析。西瓜LIM基因家族的序列分析如表1所示。
表1西瓜LIM基因家族的序列信息
三、西瓜花药的处理
在西瓜花期,每天上午7:00至10:00及下午3:30至6:30采集花蕾。取出花药后,将整个花药分成两部分,用1/3的材料鉴定发育阶段。镜检后将花药分为四分体时期、单核期、双核期、成熟期。每个阶段收集三组重复样本,共12个样本。每个花药的其余2/3被迅速剥离并浸泡在液氮中,保存至-80℃的冰箱中,保存备用,用于RNA提取。
四、RNA提取、反转录
上述样品使用RNA提取试剂盒提取总RNA(TIANGEN,北京),使用反转录试剂盒(Bioman,北京)反转录为cDNA,利用实时荧光定量PCR(qRT-PCR)检测各样品中基因的相对表达量。
五、引物设计和实时荧光定量PCR分析
利用NCBI中PrimerBlast设计西瓜LIM家族的定量PCR引物,充分考虑在西瓜基因组中的特异性,并尽量跨内含子区。共设计了12对LIM基因的引物,并进行PCR反应、通过琼脂糖凝胶电泳检测了其特异性,在两个品种(“Charleston Gray”和“97103”)中进行检测证实了其西瓜多品种的通用性(见图1,图1-a为“Charleston Gray”品种、图1-b为“97103”品种)。以ClActin基因(SEQ ID NO:25~SEQ ID NO:26)为内参基因,不同发育阶段西瓜花药提取的cDNA为模板,使用如表2所示的特异性引物通过实时逆转录聚合酶链式反应(RT-PCR),12对引物对在ClLIMs基因CDS序列上的具体位置如图2所示,分析这12个基因的表达特性。具体的反应体系和条件为:20μL体系:6μL H2O,1μL10mM上游引物,1μL 10mM下游引物,10μL 2×TB Green荧光染料,2μL 5×cDNA。反应条件为:95℃预变性5min;95℃变性10s;58℃退火10s;72℃延伸20s,共45个循环。每个处理进行三次生物学重复和三次平行样重复。相对表达量采用2-△Ct法计算,使用Excel2010软件统计数据,使用SPSS 18.0对数据进行差异性分析。
表2西瓜LIM基因家族表达检测用的引物
六、结果分析与讨论
1、西瓜LIM基因家族的信息学分析
西瓜LIM转录因子的分类情况如图3所示,所有的西瓜LIM蛋白被分为αLIM、βLIM、γLIM和δLIM蛋白4类。αLIM蛋白组有7个成员,包括ClLIM1、ClLIM2、ClLIM3、ClLIM6ClLIM8、ClLIM10、ClLIM11,γLIM和δLIM蛋白组均有2个成员,分别为ClLIM9、ClLIM12和ClLIM4、ClLIM5,βLIM蛋白组只有1个成员:ClLIM7。
西瓜LIM家族基因的染色体分布如图4所示,12个ClLIMs成功定位在西瓜7条染色体上。Chr01、Chr06和Chr11分别只含有1个ClLIM,Chr02、Chr07和Chr08分别含有2个ClLIMs,Chr05含有3个ClLIMs。在基因重复事件分析中,12个ClLIMs中只有ClLIM11之间的ClLIM6出现重复。由于这两个基因属于两条不同的染色体,推测可能源于片段复制,表明片段复制可能是ClLIMs扩增的主要因素。
西瓜LIM基因家族的外显子-内含子结构如图5所示,ClLIM2、ClLIM4、ClLIM5、ClLIM6、ClLIM7、ClLIM9和ClLIM12均含有5个外显子,ClLIM11含有4个外显子,而ClLIM1含有10个外显子,ClLIM3和CLLIM10含11个外显子,ClLIM8含有12个外显子。尤其发现ClLIM3具有较长的DNA序列(~5.5kb),这与其他基因有明显不同。西瓜LIM家族的蛋白结构如图6所示,ClLIM家族蛋白具有普遍保守的蛋白质基序(Motif,图7)。12个ClLIM蛋白中均含有motif 1,并且ClLIM2、ClLIM4、ClLIM5、ClLIM6、ClLIM7、ClLIM9、CLIM11和ClLIM12含有2个motif,而ClLIM1、ClLIM3、ClLIM8和ClLIM10只含有motif 2。
2、西瓜LIM基因家族在花药不同发育阶段的表达分析
此前已有研究报道HaPLM1在花粉特异表达。为了研究ClLIM基因在花粉中的具体表达模式,本发明利用qRT-PCR鉴定了花药不同发育阶段下ClLIM基因的表达水平,如图8和图9所示。结果表明,ClLIM1、ClLIM3、ClLIM4、ClLIM6、ClLIM7、ClLIM8、ClLIM9、ClLIM10、ClLIM11和ClLIM12其他基因在花药成熟过程中均具有较高的表达水平。ClLIM5在四分体时期和单核期的表达量较低,而在双核期和成熟期的表达量较高。然而,对于ClLIM2,其在四分体期不表达,而在单核期、双核期和成熟期的表达量随着发育时间的延长而增加,并且在成熟期的表达量高于其他11个ClLIMs,表明ClLIM2对于花粉的成熟具有重要作用。
以上所述之实施例,只是本发明的较佳实施例而已,仅仅用以解释本发明,并非限制本发明实施范围,对于本技术领域的技术人员来说,当然可根据本说明书中所公开的技术内容,通过置换或改变的方式轻易做出其它的实施方式,故凡在本发明的原理上所作的变化和改进等,均应包括于本发明申请专利范围内。

Claims (10)

1.用于检测西瓜LIM基因家族的引物对,其特征在于,包括12对引物对,所述引物对的序列如SEQ ID NO:1~SEQ ID NO:24所示。
2.用于检测西瓜LIM基因家族的试剂盒,其特征在于,包括权利要求1所述的引物对。
3.根据权利要求2所述的用于检测西瓜LIM基因家族的试剂盒,其特征在于,还包括PCR检测的反应体系用试剂。
4.根据权利要求3所述的用于检测西瓜LIM基因家族的试剂盒,其特征在于,所述反应体系用试剂包括2×TB Green荧光染料。
5.根据权利要求4所述的用于检测西瓜LIM基因家族的试剂盒,其特征在于,所述反应体系用试剂还包括H2O和cDNA。
6.根据权利要求2所述的用于检测西瓜LIM基因家族的试剂盒,其特征在于,还包括内参引物对,所述内参引物对的序列如SEQ ID NO:25~SEQ ID NO:26所示。
7.西瓜LIM基因家族的检测方法,其特征在于,包括以下步骤:提取待测样品的总RNA,利用权利要求2~6任一项所述的用于检测西瓜LIM基因家族的试剂盒进行荧光定量PCR检测。
8.根据权利要求7所述的检测方法,其特征在于,所述荧光定量PCR检测的反应体系为20μL体系:6 μL H2O,1 μL 10mM上游引物,1 μL 10mM下游引物,10 μL 2×TB Green荧光染料,2 μL 5×cDNA。
9.根据权利要求7所述的检测方法,其特征在于,所述荧光定量PCR检测的反应条件为:95℃预变性5 min;95℃变性10 s;58℃退火10 s;72℃延伸20 s,共45个循环。
10.如权利要求1所述的用于检测西瓜LIM基因家族的引物对或权利要求2~6任一项所述的用于检测西瓜LIM基因家族的试剂盒在不同发育阶段西瓜花药LIM表达量检测中的应用。
CN202310585770.6A 2023-05-23 2023-05-23 用于检测西瓜lim基因家族的引物对、试剂盒及方法和应用 Active CN116516053B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310585770.6A CN116516053B (zh) 2023-05-23 2023-05-23 用于检测西瓜lim基因家族的引物对、试剂盒及方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310585770.6A CN116516053B (zh) 2023-05-23 2023-05-23 用于检测西瓜lim基因家族的引物对、试剂盒及方法和应用

Publications (2)

Publication Number Publication Date
CN116516053A true CN116516053A (zh) 2023-08-01
CN116516053B CN116516053B (zh) 2023-11-10

Family

ID=87403002

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310585770.6A Active CN116516053B (zh) 2023-05-23 2023-05-23 用于检测西瓜lim基因家族的引物对、试剂盒及方法和应用

Country Status (1)

Country Link
CN (1) CN116516053B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102747088A (zh) * 2012-06-27 2012-10-24 华中师范大学 棉花纤维发育相关的GhLIM5基因克隆鉴定及应用
CN104342438A (zh) * 2014-09-28 2015-02-11 华中农业大学 ClCAC基因和ClSAND基因在西瓜果实基因表达分析中作为内参基因的应用
CN114277180A (zh) * 2022-01-06 2022-04-05 西南大学 用于检测柑橘sod基因家族的引物对、试剂盒及方法和应用
CN114350837A (zh) * 2022-01-06 2022-04-15 西南大学 用于检测柑橘apx基因家族的引物对、试剂盒及方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102747088A (zh) * 2012-06-27 2012-10-24 华中师范大学 棉花纤维发育相关的GhLIM5基因克隆鉴定及应用
CN104342438A (zh) * 2014-09-28 2015-02-11 华中农业大学 ClCAC基因和ClSAND基因在西瓜果实基因表达分析中作为内参基因的应用
CN114277180A (zh) * 2022-01-06 2022-04-05 西南大学 用于检测柑橘sod基因家族的引物对、试剂盒及方法和应用
CN114350837A (zh) * 2022-01-06 2022-04-15 西南大学 用于检测柑橘apx基因家族的引物对、试剂盒及方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZHU YING-CHUN等: "Transcriptomic profiling of watermelon (Citrullus lanatus) provides insights into male flowers development", JOURNAL OF INTEGRATIVE AGRICULTURE, vol. 21, no. 2, pages 407 - 421, XP086911870, DOI: 10.1016/S2095-3119(21)63615-8 *
袁高鹏等: "苹果LIM基因家族生物信息学及表达分析", 中国农业科学, vol. 52, no. 23, pages 4322 - 4332 *

Also Published As

Publication number Publication date
CN116516053B (zh) 2023-11-10

Similar Documents

Publication Publication Date Title
Li et al. Genome-wide identification, evolution and functional divergence of MYB transcription factors in Chinese white pear (Pyrus bretschneideri)
Young et al. Translating Medicago truncatula genomics to crop legumes
Külahoglu et al. Comparative transcriptome atlases reveal altered gene expression modules between two Cleomaceae C3 and C4 plant species
O’Rourke et al. The Medicago sativa gene index 1.2: a web-accessible gene expression atlas for investigating expression differences between Medicago sativa subspecies
Li et al. Analysis of genetic architecture and favorable allele usage of agronomic traits in a large collection of Chinese rice accessions
Gao et al. Transcriptomic comparison reveals genetic variation potentially underlying seed developmental evolution of soybeans
Norton et al. Genome wide association mapping of grain and straw biomass traits in the rice Bengal and Assam Aus panel (BAAP) grown under alternate wetting and drying and permanently flooded irrigation
Salih et al. Genome-wide analysis of cotton C2H2-zinc finger transcription factor family and their expression analysis during fiber development
Chao et al. Variation in Rubisco activase (RCAβ) gene promoters and expression in soybean [Glycine max (L.) Merr.]
Zhao et al. Genetic effects and expression patterns of the nitrate transporter (NRT) gene family in Populus tomentosa
Song et al. Genome-wide identification of the auxin response factor (ARF) gene family and expression analysis of its role associated with pistil development in Japanese apricot (Prunus mume Sieb. et Zucc)
Sarfraz et al. GWAS mediated elucidation of heterosis for metric traits in cotton (Gossypium hirsutum L.) across multiple environments
Zhang et al. Identification of functional single-nucleotide polymorphisms affecting leaf hair number in Brassica rapa
CN111778352A (zh) 与小麦粒重相关的kasp引物组及其应用
Gunadi et al. Characterization of 40 soybean (Glycine max) promoters, isolated from across 5 thematic gene groups
Thakro et al. A superior gene allele involved in abscisic acid signaling enhances drought tolerance and yield in chickpea
Mo et al. Transcriptome profiling of Gossypium arboreum during fiber initiation and the genome-wide identification of trihelix transcription factors
CN104004848B (zh) 一种早期旱胁迫诱导高羊茅dreb2基因的筛选试剂盒及方法
Shao et al. Genome-wide association study and transcriptome analysis reveal key genes controlling fruit branch angle in cotton
An et al. Identification of gene family members and a key structural variation reveal important roles of OVATE genes in regulating tea (Camellia sinensis) leaf development
Xiao et al. Systematic analysis and comparison of CaLB genes reveal the functions of GhCaLB42 and GhCaLB123 in fiber development and abiotic stress in cotton
Zhang et al. Evolutionary relationships and divergence of KNOTTED1-like family genes involved in salt tolerance and development in cotton (Gossypium hirsutum L.)
Liu et al. Exogenous methyl jasmonate and cytokinin antagonistically regulate lignin biosynthesis by mediating CsHCT expression in Camellia sinensis
Su et al. Genome-Wide Analysis of Cotton MYB Transcription Factors and the Functional Validation of GhMYB in Response to Drought Stress
Wu et al. Characterization and expression profiles of the B-box gene family during plant growth and under low-nitrogen stress in Saccharum

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant