CN116515158A - 一种光热选择性抗菌的细菌印迹海绵材料、制备及应用 - Google Patents

一种光热选择性抗菌的细菌印迹海绵材料、制备及应用 Download PDF

Info

Publication number
CN116515158A
CN116515158A CN202310452452.2A CN202310452452A CN116515158A CN 116515158 A CN116515158 A CN 116515158A CN 202310452452 A CN202310452452 A CN 202310452452A CN 116515158 A CN116515158 A CN 116515158A
Authority
CN
China
Prior art keywords
bacterial
sponge
imprinting
bacteria
sponge material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310452452.2A
Other languages
English (en)
Inventor
沈先涛
杨柳倩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN202310452452.2A priority Critical patent/CN116515158A/zh
Publication of CN116515158A publication Critical patent/CN116515158A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P1/00Disinfectants; Antimicrobial compounds or mixtures thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • C08J9/42Impregnation with macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/042Elimination of an organic solid phase
    • C08J2201/0422Elimination of an organic solid phase containing oxygen atoms, e.g. saccharose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • C08K2003/2275Ferroso-ferric oxide (Fe3O4)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • C08K2003/325Calcium, strontium or barium phosphate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Environmental Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Zoology (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明涉及一种光热选择性抗菌的细菌印迹海绵材料、制备及应用,涉及新材料领域。本发明细菌印迹海绵材料为聚二甲基硅氧烷海绵,具有相互连通的多孔结构;聚二甲基硅氧烷海绵表面固定有细菌印迹聚合物。制备方法为将模板浸没在聚二甲基硅氧烷预聚物和固化剂的混合物中,采用模板牺牲法合成多孔PDMS海绵。将具有光热性能的细菌印迹聚合物固定至PDMS海绵表面,还可将将趋化剂装载于海绵的多孔结构中。在目标细菌的识别过程中,趋化剂增强印迹材料的吸附容量和吸附选择性。本发明将细菌印迹聚合物的选择性识别性能与光热特性相结合,实现目标细菌的高选择性吸附与分离,并且实现耐药菌的选择性杀灭以及抗性基因的去除且保留有益细菌的存在。

Description

一种光热选择性抗菌的细菌印迹海绵材料、制备及应用
技术领域
本发明涉及新材料领域,更具体地,涉及一种光热选择性抗菌的细菌印迹海绵材料、制备及应用。
背景技术
随着微生物引起的感染和疾病的增多,如何清除和灭活病原菌一直是人类健康面临的严峻挑战。同时,各种抗生素的广泛使用增加了细菌向抗生素耐药菌(ARB)的进化,这些细菌已经广泛存在于废水等水生环境中。与许多易于降解的化学污染物相比,ARB可以在环境中持续存在并扩散,对人类的健康造成严重危害(H.Wang,S.Masters,Y.Hong,etal.Effect of disinfectant,water age,and pipe material on occurrence andpersistence of Legionella,mycobacteria,Pseudomonas aeruginosa,and twoamoebas.Environmental Science&Technology,2012,46(21):11566-11574)。在城市地区,将处理过的废水引入城市水资源已成为普遍现象,随着废水处理后循环利用,ARB进入饮用水系统的风险提高,进一步导致人类接触的潜在风险显著增加。近些年,功能性细菌(有益菌)在废水的生物处理和环境保护方面发挥了重要作用(Q.Chen,Q.Ding,W.Li,etal.Enhanced treatment of organic matters in starch wastewater throughBacillus subtilis strain with polyethylene glycol-modified polyvinyl alcohol/sodium alginate hydrogel microspheres.Bioresource Technology,2022,347:126741),例如,枯草芽孢杆菌可以有效地降解和控制废水中的污染物,植物乳杆菌可以作为吸附剂去除废水中重金属和有机污染物。因此,在不伤害废水中有益菌的情况下,开发新的抗菌方法用于选择性地消除致病菌,尤其是ARB,为解决水体环境的生物污染的问题提供了新思路。
近年来,新研发出的一些抗菌方法已被用于选择性地消灭各种致病菌。第一种实现选择性消灭细菌的方法是设计能够识别细菌自然形状的特殊抗菌材料(L.Hui,J.Huang,G.Chen,et al.Antibacterial property of graphene quantum dots(both sourcematerial and bacterial shape matter).ACS Applied Materials&Interfaces,2016,8(1):20-25),例如,由于石墨烯量子点的表面高斯曲率与目标细菌的球形形状相匹配,该材料实现了对金黄色葡萄球菌的选择性杀伤;第二种方法是合成抗菌复合物,该复合物可以选择性地在兼性厌氧菌表面产生自由基,在近红外光的照射下通过自由基阴离子的光热特性选择性地杀死兼性厌氧菌(Y.Yang,P.He,Y.Wang,et al.Supramolecular radicalanions triggered by bacteria in situ for selective photothermaltherapy.Angewandte Chemie-International Edition,2017,56(51):16239-16242);第三种方法是制备双功能材料,一部分材料用于选择性地识别革兰氏阳性菌或革兰氏阴性菌,另一部分材料用于杀灭细菌。抗生素、糖类和特定蛋白质通常被用作材料中的亲和部分,季铵盐、光敏剂和光热剂通常被用作材料中的抗菌部分。然而,上述方法中材料的选择性是有限的,仅限于某一类细菌。为了提高抗菌效果的选择性,抗体、适配体和噬菌体已被广泛用于细菌的识别与分离,并用作亲和部分与抗菌材料相结合,但是仍然存在生产困难、成本高和稳定性差等问题(K.Yang,L.Zhang,Z.Liang,et al.Protein-imprinted materials:Rational design,application and challenges.Analytical and BioanalyticalChemistry,2012,403(8):2173-2183)。作为一种模板引导的聚合技术,细菌印迹技术是以细菌为模板在交联聚合物中合成尺寸和形态与细菌互补的印迹空腔(S.A.Zaidi.Bacterial imprinting methods and their applications:Anoverview.Critical Reviews in Analytical Chemistry,2021,51(7):609-618)。胶体压印、电聚合、溶胶-凝胶、微接触压印以及皮克林乳液聚合等细菌印迹技术已成功用于细菌印迹聚合物的制备,为致病菌的快速识别提供了有效方法,但是由于细菌印迹中具有广谱杀菌特性的抗菌物质,在一定程度上也会导致有益菌的死亡。因此,开发一种能够选择性去除耐药菌,并且保留有益菌存在的新型材料具有重要意义。
发明内容
针对现有细菌选择性抗菌材料对目标细菌的吸附能力较低以及抗菌选择性不足等问题,本发明提供了一种光热选择性抗菌的细菌印迹海绵材料。将该材料利用细菌的趋化性在目标细菌的识别过程中增强传统细菌印迹材料的吸附容量和吸附选择性。该方法将细菌印迹聚合物的选择性识别性能与光热特性相结合,实现了细菌的高选择性吸附与分离,并且能够实现水体环境中耐药菌的选择性杀灭以及抗性基因的去除且保留有益细菌的存在。
根据本发明第一方面,提供了一种光热选择性抗菌的细菌印迹海绵材料,所述细菌印迹海绵材料为聚二甲基硅氧烷海绵,具有相互连通的多孔结构;所述聚二甲基硅氧烷海绵表面固定有细菌印迹聚合物,所述细菌印迹聚合物具有光热作用。
优选地,所述多孔结构中装载有趋化剂。
优选地,所述趋化剂为天冬氨酸溶液、甲硫氨酸溶液或异亮氨酸溶液。
优选地,所述多孔结构的孔径为100μm-200μm。
按照本发明另一方面,提供了任意一项所述光热选择性抗菌的细菌印迹海绵材料的制备方法,包括以下步骤:
(1)将模板浸没于聚二甲基硅氧烷预聚物和固化剂的混合物中,固化后,去除所述模板,得到具有多孔结构的聚二甲基硅氧烷海绵;
(2)通过超声注入法,将细菌印迹聚合物固定到步骤(1)得到的聚二甲基硅氧烷海绵表面,所述细菌印迹聚合物具有光热作用,即得到所述光热选择性抗菌的细菌印迹海绵材料。
优选地,步骤(2)之后,将趋化剂注入到聚二甲基硅氧烷海绵的多孔结构中。
优选地,步骤(2)中,所述细菌印迹聚合物的浓度为0.6mg mL-1-2.4mg mL-1
优选地,所述细菌印迹聚合物的制备方法包括以下步骤:
(1)将四氧化三铁纳米颗粒与水混匀后,再依次加入氯化钙和磷酸氢二钠,得到磷酸钙混合四氧化三铁纳米颗粒复合物;
(2)向细菌细胞的离心沉淀物中加入海藻酸钠溶液,再加入步骤(1)得到的磷酸钙混合四氧化三铁纳米颗粒复合物,再加入交联剂;借助磁分离得到仿生矿化外壳修饰的细菌混合物,清洗后干燥,即得到细菌印迹聚合物。
优选地,所述细菌细胞为耐药细菌的细胞。
根据本发明另一方面,提供了任意一项所述光热选择性抗菌的细菌印迹海绵材料的应用,用于细菌的选择性识别与分离。
优选地,所述应用具体为:向细菌悬浮液中加入所述细菌印迹海绵材料,然后将过氧化氢溶液注射到细菌印迹海绵材料中,并暴露于近红外激光下,所述细菌印迹海绵材料的光热性能使得吸附进入海绵的目标细菌被杀灭,同时,过氧化氢产生的羟基自由基使目标细菌的耐药基因被去除。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,主要具备以下的技术优点:
(1)本发明材料含有细菌印迹聚合物,显著提高了细菌印迹聚合物的吸附性能和吸附选择性细菌印迹海绵对目标细菌的最大吸附量为45.54×106CFU mg-1,能吸附并分离目标细菌。
(2)细菌印迹海绵能够借助细菌的主动性运动以及细菌印迹聚合物的特异性吸附,实现目标细菌的选择性识别与分离,在光热作用和芬顿反应下,能够对目标细菌进行选择性光热抗菌,同时能够实现抗性基因的清除与降解。在本发明材料中细菌印迹聚合物既是识别细菌的吸附剂,又是光热杀菌过程中的光热敏感剂。
(3)本发明优选地,在近红外照射和过氧化氢溶液的作用下,能够针对目标细菌进行选择性的识别及杀灭,并且还能实现抗性基因的清除。
细菌印迹海绵主要抗菌机制是利用光热转换剂在近红外光下产生的局部高温破坏细菌细胞壁和胞内蛋白,导致细菌的菌体发生破裂、胞内蛋白发生变性而死亡,同时抗性基因从胞内流出,在Fenton反应过程中,四氧化三铁纳米颗粒作为催化剂来催化H2O2,使其产生羟基自由基(·OH)。由于·OH具有较强的氧化能力,可以有效去除抗性基因。
附图说明
图1是本发明一种光热选择性抗菌的细菌印迹海绵材料的合成示意图。
图2是PDMS空白海绵材料的电镜图以及细菌印迹海绵材料的电镜图。
图3是细菌印迹海绵和非细菌印迹海绵在对照组和趋化剂组对目标细菌耐药大肠杆菌的等温吸附曲线。
图4是细菌印迹海绵和非细菌印迹海绵在对照组和趋化剂组对目标细菌耐药大肠杆菌的吸附动力学特征。
图5是在近红外照射和过氧化氢溶液的条件下细菌印迹海绵材料和非细菌印迹海绵材料对耐药大肠杆菌和植物乳酸菌的选择性杀菌性能。
图6是在近红外照射和过氧化氢溶液的条件下细菌印迹海绵材料对耐药细菌中多种耐药基因的去除效果。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本发明提供的光热选择性抗菌的细菌印迹海绵材料,为海绵样结构,该海绵样结构具有肉眼可见且相互连接的孔穴,孔径在100-200μm之间,称为多孔结构,海绵结构的顶面或侧壁粗糙,具有明显的颗粒堆叠层,称为细菌印迹聚合物层,多孔结构与细菌印迹层共同存在于海绵材料表面。
本发明提供的光热选择性抗菌的细菌印迹海绵材料是以糖分子作为伪模板,将方糖充分浸没于PDMS预聚物和四甲基四乙烯基环四硅氧烷(固化剂)的混合物中,该混合物置于真空室,经过固化后,放于超声波清洗器中溶解糖模板,利用糖分子模板牺牲法合成PDMS空白海绵,再通过超声注入的方法将细菌印迹聚合物固定至PDMS海绵表面,然后通过针管注入将趋化剂装载于海绵的多孔结构中得到细菌印迹海绵材料。
图1是本发明一种光热选择性抗菌的细菌印迹海绵材料的合成示意图。
本发明提供的光热选择性抗菌的细菌印迹海绵材料的制备方法,包括以下步骤:
步骤一:将市售的方糖(粒径约为400~500μm)放于20mL的烧杯中。以10:1的重量比制备PDMS预聚物和固化剂的混合物。将方糖充分浸没在该混合物中,并置于真空室中内30~60min,混合物因毛细驱动力的作用而渗入到糖模板中。将浸有PDMS混合物的方糖放于80~120℃下固化20~30min。在固化过程之后,将该方糖浸泡于40~60℃的超纯水中,放于超声波清洗器中,溶解糖模板,在去除糖模板后,可以得到具有三维互连微孔结构且生态友好的PDMS空白海绵。将PDMS空白海绵置于40~60℃的烘箱中干燥。
步骤二:将通过仿生矿化方法制备的细菌印迹聚合物分散于超纯水中,超声处理20~30min后,将步骤一合成的PDMS空白海绵(1mm×1mm×0.5mm)浸泡于细菌印迹聚合物的悬浮液中,在室温下超声处理15~30min,置于60~80℃的烘箱中干燥,得到装载有细菌印迹聚合物的PDMS海绵。用针管将80~100μL的趋化剂溶液(天冬氨酸溶液)注射到PDMS海绵内部,即得到细菌印迹海绵材料。
上述制备方法中所述的细菌印迹聚合物的浓度为0.8~2.4mg mL-1,细菌印迹聚合物可以用仿生矿化法制备,应用仿生矿化法制备细菌印迹聚合物的方法是:将反应容器置于超声机中,加入四氧化三铁纳米颗粒与蒸馏水,经过超声处理后依次加入氯化钙和磷酸氢二钠,并搅拌,继续超声处理30~40min。借助磁铁将该混合物分离出来后,用蒸馏水清洗3次,再加入蒸馏水得到磷酸钙混合四氧化三铁纳米颗粒复合物。在另一个试管中,向耐药大肠杆菌细胞的离心沉淀物中加入海藻酸钠溶液并涡旋5~10min,静置20~30min后,加入10mL磷酸钙混合四氧化三铁纳米颗粒复合物并在室温下涡旋混合15~20min,再加入2.5%戊二醛溶液静置6~8h。借助磁铁分离得到仿生矿化外壳修饰的细菌混合物,超声后并用超纯水多次清洗,放于60~70℃的烘箱中干燥12~18h,即得到细菌印迹聚合物。
本发明提供的光热选择性抗菌的细菌印迹海绵材料能够特异性识别目标细菌,细菌印迹海绵对目标细菌的最大吸附容量为的最大吸附量为45.54×106CFU mg-1,能吸附并分离耐药大肠杆菌,并在近红外照射和过氧化氢溶液的作用下,实现抗生素耐药大肠杆菌的选择性去除。
本发明还提供了细菌印迹海绵材料选择性光热抗菌的过程方法,具体步骤如下:
用PBS溶液(pH=7.4)将细菌稀释至OD600=0.10~0.14。将80~100μL的天冬氨酸溶液通过针管注射至细菌印迹海绵,然后加入到1~2mL的细菌悬浮液中。在室温下静置1h后,将90~120μL的过氧化氢溶液通过针管注射到细菌印迹海绵中,暴露在808nm激光(1.5~2W cm-2)下450~600s,再静置30~60min。最后,采用活细胞菌落计数法计算剩余溶液中存活的细菌总量。
与传统细菌印迹聚合物材料合成方法相比,本发明将光热敏感剂(四氧化三铁)加入至细菌印迹聚合物中,本发明的细菌印迹海绵材料能够在近红外光的作用下将光能转换为热能,实现对目标细菌的选择性杀灭,本发明制备了既能特异性吸附目标细菌,又能对目标细菌进行光热杀菌的印迹聚合物材料。
与传统光热材料相比,本发明材料含有细菌印迹聚合物,并将细菌趋化剂引入至印迹海绵材料中,显著提高了细菌印迹聚合物的吸附性能和吸附选择性,能够针对目标细菌进行选择性的识别及杀灭,并且还能实现抗性基因的清除。
细菌印迹海绵能够借助细菌的主动性运动以及细菌印迹聚合物的特异性吸附,实现目标细菌的选择性识别与分离,在光热作用和芬顿反应下,能够对目标细菌进行选择性光热抗菌,同时能够实现抗性基因的清除与降解。在本发明材料中细菌印迹聚合物既是识别细菌的吸附剂,又是光热杀菌过程中的光热敏感剂。
以下为具体实施例:
实施例1:一种光热选择性抗菌的细菌印迹海绵材料的制备
应用糖分子模板牺牲法制备PDMS空白海绵。将10mL的PDMS预聚物和1mL的固化剂的混合物放于20mL的烧杯中,再将方糖充分浸没在该混合物中,并置于真空室内30min,混合物因毛细驱动力的作用而渗入到糖模板中。把浸有PDMS混合物的方糖放于120℃下固化20min。在固化过程之后,该方糖浸泡于60℃的超纯水,放于超声波清洗器中溶解糖模板,在去除糖模板后,可以得到具有三维互连微孔结构且生态友好的PDMS空白海绵,再把PDMS空白海绵置于60℃的烘箱中干燥。应用仿生矿化方法制备浓度为1.2mg mL-1的细菌印迹聚合物溶液,将其分散于超纯水中,超声处理30min后,将步骤一合成的PDMS空白海绵(1mm×1mm×0.5mm)浸泡于2mL细菌印迹聚合物的悬浮液中,在室温下超声处理30min,置于60℃的烘箱中干燥,获得装载有细菌印迹聚合物的PDMS海绵。用针管将100μL的天冬氨酸溶液(25mmol L-1)注射到PDMS海绵内部,即得到细菌印迹海绵材料。
通过上述方法得到的细菌海绵材料,电镜图可以看到PDMS空白海绵由多孔、相互连接的三维框架组成,从结构的顶面或侧壁能够看到光滑的表面,表明使用方糖作为多孔结构的生成模板是成功的,见图2中的(1)。加入了细菌印迹聚合物后,海绵的整体多孔结构几乎没改变,孔径约为100至200μm,细菌印迹海绵表面粗糙,具有明显的颗粒样堆叠的结构,表明细菌印迹层成功嵌入至PDMS海绵骨架表面,见图2中的(2)。
实施例2:细菌印迹海绵材料吸附目标细菌应用例
用PBS缓冲液(pH=7.4)将耐药大肠杆菌细胞悬液稀释至OD600分别为0.01、0.02、0.04、0.08、0.12和0.14。把细菌印迹海绵加入到2mL的细菌悬浮液中。在室温下静置1h后,用镊子将细菌印迹海绵从菌液中取出,通过平板计数法测定剩余菌液中的细菌浓度。用PBS缓冲液(pH=7.4)将耐药大肠杆菌细胞稀释到OD600=0.12。在2mL的细菌溶液中,加入制备好的细菌印迹海绵,分别在0,15,30,45,60,75min后取出细菌印迹海绵,并用平板计数法对剩余菌液中的细菌数量进行检测。
细菌印迹海绵材料对耐药大肠杆菌的吸附容量达到45.54×106CFU mg-1,不含有趋化剂的非细菌印迹海绵材料的吸附容量为15.10×106CFU mg-1,表明特异性识别细菌的印迹位点成功制备(见图3)。由于去除模板细菌后残留印迹位点的存在,细菌海绵在60min内即可达到吸附平衡,表现出较好的吸附效率(见图4)。
实施例3:细菌印迹海绵材料选择性抗菌与清除抗性基因应用例
用PBS溶液(pH=7.4)将细菌稀释至OD600=0.12。在2mL的细菌悬浮液中加入细菌印迹海绵,在室温下静置1h后,将100μL的过氧化氢溶液通过针管注射到细菌印迹海绵中,然后暴露于808nm的近红外激光(1.5W cm-2)下45s,再静置60min。采用活细胞菌落计数法计算剩余溶液中存活的细菌总量。提取样品中剩余溶液中的质粒,通过qPCR技术检测样品中剩余目的基因的CT值,计算耐药基因的去除率。
由于细菌印迹海绵中存在印迹识别位点,因此相对于非印迹海绵,细菌印迹海绵能够吸附更多的目标细菌,从而使目标细菌更容易被杀死,保留大部分有益菌的存在(见图5)。在选择性抗菌的过程中,细菌印迹海绵中的细菌印迹聚合物能够在近红外光照射和过氧化氢溶液的条件下产生羟基自由基,实现耐药基因的吸附和清除(见图6)。
实施例4:细菌印迹海绵材料制备过程中,细菌印迹聚合物的浓度对细菌印迹海绵材料吸附性能的影响
按照实施例1方法制备细菌印迹海绵材料,不同的是利用不同浓度的(0.6、1.2、1.8、2.4mg mL-1)细菌印迹聚合物,考察细菌印迹聚合物浓度对细菌印迹海绵材料吸附性能的影响。通过对细菌印迹海绵材料对目标耐药大肠杆菌吸附性能的考察,结果表明细菌印迹聚合物浓度为1.2mg mL-1时制备的细菌印迹海绵材料的吸附性能最高。
实施例5:应用仿生矿化法制备细菌印迹聚合物
实施例1中的应用仿生矿化方法制备细菌印迹聚合物,具体方法为:将10mg的四氧化三铁纳米颗粒与200mL的蒸馏水加入至烧杯中,经过超声处理后依次加入147mg氯化钙和358mg磷酸氢二钠,并搅拌,继续超声处理30min。借助磁铁将该混合物分离出来后,用蒸馏水清洗3次,再加入蒸馏水得到磷酸钙混合四氧化三铁纳米颗粒复合物。在另一个试管中,向耐药大肠杆菌细胞的离心沉淀物中加入1mL的海藻酸钠溶液(0.1wt%)并涡旋5min,静置30min后,加入10mL磷酸钙混合四氧化三铁纳米颗粒复合物并在室温下涡旋混合20min,再加入2.5%戊二醛溶液静置6h。借助磁铁分离得到仿生矿化外壳修饰的细菌混合物,超声后并用超纯水多次清洗,放于60℃的烘箱中干燥12h,即得到细菌印迹聚合物。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种光热选择性抗菌的细菌印迹海绵材料,其特征在于,所述细菌印迹海绵材料为聚二甲基硅氧烷海绵,具有相互连通的多孔结构;所述聚二甲基硅氧烷海绵表面固定有细菌印迹聚合物,所述细菌印迹聚合物具有光热作用。
2.如权利要求1所述的光热选择性抗菌的细菌印迹海绵材料,其特征在于,所述多孔结构中装载有趋化剂;
优选地,所述趋化剂为天冬氨酸溶液、甲硫氨酸溶液或异亮氨酸溶液。
3.如权利要求1所述的光热选择性抗菌的细菌印迹海绵材料,其特征在于,所述多孔结构的孔径为100μm-200μm。
4.如权利要求1-3任意一项所述光热选择性抗菌的细菌印迹海绵材料的制备方法,其特征在于,包括以下步骤:
(1)将模板浸没于聚二甲基硅氧烷预聚物和固化剂的混合物中,固化后,去除所述模板,得到具有多孔结构的聚二甲基硅氧烷海绵;
(2)通过超声注入法,将细菌印迹聚合物固定到步骤(1)得到的聚二甲基硅氧烷海绵表面,所述细菌印迹聚合物具有光热作用,即得到所述光热选择性抗菌的细菌印迹海绵材料。
5.如权利要求4所述所述光热选择性抗菌的细菌印迹海绵材料的制备方法,其特征在于,步骤(2)之后,将趋化剂注入到聚二甲基硅氧烷海绵的多孔结构中。
6.如权利要求4所述所述光热选择性抗菌的细菌印迹海绵材料的制备方法,其特征在于,步骤(2)中,所述细菌印迹聚合物的浓度为0.6mg mL-1-2.4mg mL-1
7.如权利要求4-6任一项所述所述光热选择性抗菌的细菌印迹海绵材料的制备方法,其特征在于,所述细菌印迹聚合物的制备方法包括以下步骤:
(1)将四氧化三铁纳米颗粒与水混匀后,再依次加入氯化钙和磷酸氢二钠,得到磷酸钙混合四氧化三铁纳米颗粒复合物;
(2)向细菌细胞的离心沉淀物中加入海藻酸钠溶液,再加入步骤(1)得到的磷酸钙混合四氧化三铁纳米颗粒复合物,再加入交联剂;借助磁分离得到仿生矿化外壳修饰的细菌混合物,清洗后干燥,即得到细菌印迹聚合物。
8.如权利要求7所述所述光热选择性抗菌的细菌印迹海绵材料的制备方法,其特征在于,所述细菌细胞为耐药细菌的细胞。
9.如权利要求1-3任意一项所述光热选择性抗菌的细菌印迹海绵材料的应用,其特征在于,用于细菌的选择性识别与分离。
10.如权利要求9所述的应用,其特征在于,所述应用具体为:向细菌悬浮液中加入所述细菌印迹海绵材料,然后将过氧化氢溶液注射到细菌印迹海绵材料中,并暴露于近红外激光下,所述细菌印迹海绵材料的光热性能使得吸附进入海绵的目标细菌被杀灭,同时,过氧化氢产生的羟基自由基使目标细菌的耐药基因被去除。
CN202310452452.2A 2023-04-25 2023-04-25 一种光热选择性抗菌的细菌印迹海绵材料、制备及应用 Pending CN116515158A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310452452.2A CN116515158A (zh) 2023-04-25 2023-04-25 一种光热选择性抗菌的细菌印迹海绵材料、制备及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310452452.2A CN116515158A (zh) 2023-04-25 2023-04-25 一种光热选择性抗菌的细菌印迹海绵材料、制备及应用

Publications (1)

Publication Number Publication Date
CN116515158A true CN116515158A (zh) 2023-08-01

Family

ID=87393483

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310452452.2A Pending CN116515158A (zh) 2023-04-25 2023-04-25 一种光热选择性抗菌的细菌印迹海绵材料、制备及应用

Country Status (1)

Country Link
CN (1) CN116515158A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108339529A (zh) * 2018-01-24 2018-07-31 江苏大学 一种用于选择性分离钯离子的离子印迹复合膜的制备方法及应用
CN110339830A (zh) * 2019-05-22 2019-10-18 西南交通大学 氧化石墨烯海绵材料及其制备和使用方法
KR20230053901A (ko) * 2021-10-15 2023-04-24 아름다운 환경건설(주) 유류 오염 지하수의 정화를 위한 초수성 pdms 스펀지 필터 및 그 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108339529A (zh) * 2018-01-24 2018-07-31 江苏大学 一种用于选择性分离钯离子的离子印迹复合膜的制备方法及应用
CN110339830A (zh) * 2019-05-22 2019-10-18 西南交通大学 氧化石墨烯海绵材料及其制备和使用方法
KR20230053901A (ko) * 2021-10-15 2023-04-24 아름다운 환경건설(주) 유류 오염 지하수의 정화를 위한 초수성 pdms 스펀지 필터 및 그 제조방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIUQIAN YANG ET AL.: ""Specific nanoantibiotics for selective removal of antibiotic-resistant bacteria: New insights in bacterial imprinting based on interfacial biomimetic mineralization"", 《JOURNAL OF HAZARDOUS MATERIALS》, vol. 443, 23 October 2022 (2022-10-23), pages 130254 *
舒宝连: ""基于细菌趋化性的细菌印迹技术研究"", 《中国优秀硕士学位论文全文数据库 医药卫生科技辑》, no. 3, 15 March 2020 (2020-03-15), pages 060 - 208 *

Similar Documents

Publication Publication Date Title
Omer et al. Insights into recent advances of chitosan-based adsorbents for sustainable removal of heavy metals and anions
Thamer et al. Modified electrospun polymeric nanofibers and their nanocomposites as nanoadsorbents for toxic dye removal from contaminated waters: A review
Kadam et al. Supermagnetically tuned halloysite nanotubes functionalized with aminosilane for covalent laccase immobilization
Yu et al. A universally applicable strategy for construction of anti‐biofouling adsorbents for enhanced uranium recovery from seawater
Unuabonah et al. Clays for efficient disinfection of bacteria in water
Vilela et al. Microbots decorated with silver nanoparticles kill bacteria in aqueous media
Si et al. Biocidal and rechargeable N-halamine nanofibrous membranes for highly efficient water disinfection
Wang et al. Hydrogels for anion removal from water
Sellaoui et al. Make it clean, make it safe: A review on virus elimination via adsorption
Elwakeel et al. Facile synthesis of magnetic disinfectant immobilized with silver ions for water pathogenic microorganism’s deactivation
Ayub et al. Arsenic in drinking water: overview of removal strategies and role of chitosan biosorbent for its remediation
Cova et al. Cyclodextrin-based materials for removing micropollutants from wastewater
Gandavadi et al. Bio‐based nanofibers involved in wastewater treatment
Song et al. Fabrication of silica/polyrhodanine core/shell nanoparticles and their antibacterial properties
Mei et al. Conjugating hyaluronic acid with porous biomass to construct anti-adhesive sponges for rapid uranium extraction from seawater
Aryee et al. A review on adsorbents for the remediation of wastewater: Antibacterial and adsorption study
Chkirida et al. Insight into the bionanocomposite applications on wastewater decontamination
Zvulunov et al. Alginate composites reinforced with polyelectrolytes and clay for improved adsorption and bioremediation of formaldehyde from water
Rivas-Sanchez et al. Carbon-based nanocomposite materials with multifunctional attributes for environmental remediation of emerging pollutants
Payne et al. Comparison of cross-linked branched and linear poly (ethylene imine) microgel microstructures and their impact in antimicrobial behavior, copper chelation, and carbon dioxide capture
Kim et al. Application of a polyethylenimine-modified polyacrylonitrile-biomass waste composite fiber sorbent for the removal of a harmful cyanobacterial species from an aqueous solution
Li et al. Effective inactivation of Escherichia coli in aqueous solution by activated carbon-supported α-FeOOH as heterogeneous Fenton catalyst with high stability and reusability
CN111892711A (zh) 分子印迹型MOFs催化剂及制备与特异性催化降解抗生素应用
CN103752348A (zh) 一种磁性复合光催化剂
Elella et al. Biodegradable Polymeric nanocomposites for wastewater treatment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination