CN116477943A - 一种新型钽酸盐复相陶瓷及其制备方法 - Google Patents

一种新型钽酸盐复相陶瓷及其制备方法 Download PDF

Info

Publication number
CN116477943A
CN116477943A CN202210051684.2A CN202210051684A CN116477943A CN 116477943 A CN116477943 A CN 116477943A CN 202210051684 A CN202210051684 A CN 202210051684A CN 116477943 A CN116477943 A CN 116477943A
Authority
CN
China
Prior art keywords
tantalate
complex
phase ceramic
oxide
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210051684.2A
Other languages
English (en)
Other versions
CN116477943B (zh
Inventor
余艺平
李�浩
王松
李伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN202210051684.2A priority Critical patent/CN116477943B/zh
Publication of CN116477943A publication Critical patent/CN116477943A/zh
Application granted granted Critical
Publication of CN116477943B publication Critical patent/CN116477943B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • C04B35/505Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明公开一种新型钽酸盐复相陶瓷及其制备方法,该钽酸盐复相陶瓷由钽酸钇、钽酸铪和钽酸锆中的至少两种组成,钽酸钇、钽酸铪和钽酸锆的摩尔比为(50~80):(0~50):(0~50)。该钽酸盐复相陶瓷热导率为1.2~2.5W·(m·K)‑1,1200℃的热膨胀系数为8.0~9.6×10‑6·K‑1。因此,本发明提供的钽酸盐复相陶瓷可应用于航空发动机和火箭发动机等高温部件及其表面防护涂层领域中。该制备方法通过控制氧化钇、氧化钽、氧化铪和氧化锆的比例关系来调控最终产品的组成,以使经过球磨、干燥、压实和烧结后的到产物为包含钽酸钇、钽酸铪和钽酸锆中的至少两相的钽酸盐复相陶瓷。

Description

一种新型钽酸盐复相陶瓷及其制备方法
技术领域
本发明涉及高温结构陶瓷技术领域,尤其是一种新型钽酸盐复相陶瓷及其制备方法。
背景技术
航空航天技术的飞速发展对发动机用结构材料的综合性能提出了更加严苛的要求。在高温陶瓷领域中,目前广泛应用的是氧化钇稳定的氧化锆(YSZ)陶瓷材料,当使用温度超过1200℃时,YSZ易发生烧结和腐蚀,并且剧烈的相变会导致材料迅速失去使用性能,难以满足服役要求。针对这一问题,研究者们尝试向YSZ体系中继续掺杂Ta2O5、HfO2等过渡金属氧化物进行改性,开发出由YSZ和钽酸盐组成的复相陶瓷体系。但是,由于掺杂的过渡金属氧化物含量较少,由YSZ和钽酸盐组成的复相陶瓷体系仍无法避免YSZ本身存在的不足,即在1200℃下物相稳定性差,会发生相变。
发明内容
本发明提供一种新型钽酸盐复相陶瓷及其制备方法、应用,用于克服现有技术中YSZ和钽酸盐组成的复相陶瓷体系在1200℃下物相稳定性差等缺陷。
为实现上述目的,本发明提出一种新型钽酸盐复相陶瓷,所述钽酸盐复相陶瓷由钽酸钇、钽酸铪和钽酸锆中的至少两种组成;所述钽酸钇、钽酸铪和钽酸锆的摩尔比为(50~80):(0~50):(0~50)。
为实现上述目的,本发明还提出一种如上述所述的新型钽酸盐复相陶瓷的制备方法,包括以下步骤:
S1:按摩尔比(10~25):(20~40):(0~60):(0~60)称取氧化钇、氧化钽、氧化铪和氧化锆,混合均匀,得到混合料;
S2:将所述混合料置于有机溶剂中,进行湿法球磨,干燥,压实,得到料坯;
S3:对所述料坯进行烧结,得到钽酸盐复相陶瓷。
为实现上述目的,本发明还提出一种新型钽酸盐复相陶瓷的应用,将上述所述的钽酸盐复相陶瓷或者上述所述制备方法制备得到的钽酸盐复相陶瓷应用于航空发动机和火箭发动机的热端部件及其表面防护涂层中。
与现有技术相比,本发明的有益效果有:
1、本发明提供的钽酸盐复相陶瓷由钽酸钇(YTaO4)、钽酸铪(Hf6Ta2O17)和钽酸锆(Zr6Ta2O17)中的至少两种组成组成,钽酸钇、钽酸铪和钽酸锆的摩尔比为(50~80):(0~50):(0~50)。钽酸钇具有较高的熔点和极低的理论热导率,且在高温下可通过铁弹相变实现增韧效果。钽酸铪和钽酸锆均具有较高的熔点,较低的热导率,优异的耐腐蚀性能,且在室温到熔点范围内仅存在α-PbO2型正交结构一种物相形式,不存在相变,是理想的高温热结构材料。由钽酸钇、钽酸铪和钽酸锆组成的钽酸盐复相陶瓷兼具上述优势,是一种耐高温、耐腐蚀、高韧性、低热导率的复相陶瓷体系。钽酸盐复相陶瓷热导率为1.2~2.5W·(m·K)-1,1200℃的热膨胀系数为8.0~9.6×10-6·K-1。因此,本发明提供的钽酸盐复相陶瓷可应用于航空发动机和火箭发动机等高温部件及其表面防护涂层领域中。
2、本发明提供的钽酸盐复相陶瓷的制备方法通过控制氧化钇、氧化钽、氧化铪和氧化锆的比例关系来调控最终产品的组成,以使经过球磨、干燥、压实和烧结后的到产物为包含钽酸钇、钽酸铪和钽酸锆中的至少两相的钽酸盐复相陶瓷,其中钽酸钇有两种存在形式,反应过程如下:
Y2O3+Ta2O5=2YTaO4
Y2O3+3Ta2O5=2YTa3O9
6HfO2+Ta2O5=Hf6Ta2O17
6ZrO2+Ta2O5=Zr6Ta2O17
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本发明实施例1中钽酸盐复相陶瓷在背散射模式下的SEM照片;
图2为本发明实施例3中钽酸盐复相陶瓷在背散射模式下的SEM照片;
图3为本发明实施例1中钽酸盐复相陶瓷的热导率随温度变化曲线;
图4为本发明实施例2中钽酸盐复相陶瓷的热膨胀系数随温度变化曲线。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
另外,本发明各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
无特殊说明,所使用的药品/试剂均为市售。
本发明提出一种新型钽酸盐复相陶瓷,所述钽酸盐复相陶瓷由钽酸钇、钽酸铪和钽酸锆中的至少两种组成;所述钽酸钇、钽酸铪和钽酸锆的摩尔比为(50~80):(0~50):(0~50)。
优选地,所述钽酸盐复相陶瓷的热导率为1.2~2.5W·(m·K)-1,1200℃的热膨胀系数为8.0~9.6×10-6·K-1
本发明还提出一种如上述所述的新型钽酸盐复相陶瓷的制备方法,包括以下步骤:
S1:按摩尔比(10~25):(20~40):(0~60):(0~60)称取氧化钇、氧化钽、氧化铪和氧化锆,混合均匀,得到混合料。
原料氧化物必须在上述范围内才是目标复相陶瓷。超出该范围,会由于某一种元素太多或者太少而生成新的物相。
优选地,所述氧化钇为Y2O3,氧化钽为Ta2O5,氧化铪为HfO2,氧化锆是ZrO2
氧化钽包括Ta2O5,Ta2O,TaO2等等,但只有以Ta2O5为原料才能最终制备得到本发明的由钽酸钇、钽酸铪和钽酸锆中的至少两种组成,且钽酸钇、钽酸铪和钽酸锆的摩尔比为(50~80):(0~50):(0~50)的新型钽酸盐复相陶瓷。
S2:将所述混合料置于有机溶剂中,进行湿法球磨,干燥,压实,得到料坯。
优选地,所述湿法球磨的转速为300~500r/min,时间为60~300min。
所述干燥的温度为60~80℃,时间为10~24h。
所述压实的保压压力为8~12MPa,保压时间为5~20min。
S3:对所述料坯进行烧结,得到钽酸盐复相陶瓷。
优选地,所述烧结为无压烧结、热压烧结和放电等离子烧结中的一种。
优选地,所述无压烧结的温度为1500~1700℃,时间为5~10h。
优选地,所述热压烧结的温度为1300~1600℃,压力为20~70MPa,时间为0.5~2h。
优选地,所述放电等离子烧结的温度为1300~1600℃,压力为40~70MPa,时间为5~30min。
无压烧结温度为1500~1700℃,热压烧结温度为1300~1600℃,放电等离子烧结温度为1300~1600℃。温度是影响陶瓷材料烧结的关键因素。颗粒烧结主要由扩散过程控制,温度较低时固相中的扩散过程极为缓慢。随着温度升高,离子和空位扩散以及颗粒重排和粘性塑性流动等过程加速,使陶瓷材料实现烧结致密化。对于氧化物陶瓷,无压烧结完全依靠颗粒自身的长大和迁移,因此需要较高的烧结温度;热压烧结和放电等离子烧结由于压力的辅助使得烧结可以在较宽温域下进行,但烧结温度不能过高,否则会导致氧化物与石墨模具发生严重反应,碳元素的扩散会导致金属碳化物生成,影响氧化物陶瓷的物相组成。
热压烧结压力为20~70MPa,放电等离子烧结压力为40~70MPa。压力的存在极大促进了氧化物陶瓷的烧结过程,可使烧结过程在相对较低的温度和较短的时间下完成,同时消除材料内部大量的闭孔,赋予氧化物陶瓷材料高度致密的微观结构。但压力不能过高,否则会加速氧化物陶瓷和石墨模具接触面处碳元素的扩散,发生严重的碳化反应。
本发明还提出一种新型钽酸盐复相陶瓷的应用,将上述所述的钽酸盐复相陶瓷或者上述所述制备方法制备得到的钽酸盐复相陶瓷应用于航空发动机和火箭发动机的热端部件及其表面防护涂层中。
本发明的钽酸盐复相陶瓷的热导率为1.2~2.5W·(m·K)-1,1200℃的热膨胀系数为8.0~9.6×10-6·K-1,可很好的应用于航空发动机、火箭发动机等高温部件及其表面防护涂层领域。
实施例1
本实施例提供一种新型钽酸盐复相陶瓷,该钽酸盐复相陶瓷制备方法包括以下步骤:
S1:称取8g氧化钇、22g氧化钽、24g氧化铪置于球磨罐中;
S2:向球磨罐中加入无水乙醇,在300r/min的转速下球磨300min;
S3:将S2得到的粉末在60℃下干燥24h后,置于模具内,在8MPa压力下保压20min;
S4:将S3中压实后的粉体在1700℃下无压烧结8h,得到钽酸钇复相陶瓷1#
本实施例制备的钽酸盐复相陶瓷的SEM照片如图1所示,包含两种衬度的相,白色相为钽酸铪Hf6Ta2O17,灰色相为钽酸钇YTaO4。热导率较低,在1200℃时为2.2W·(m·K)-1(如图3)。1200℃下热膨胀系数为9.4×10-6·K-1。热膨胀系数随温度的变化曲线是连续的,没有突变点说明本实施例制备的钽酸盐复相陶瓷在室温到1500℃范围内都具有很好的物相稳定性,优于YSZ。
实施例2
本实施例提供一种新型钽酸盐复相陶瓷,该钽酸盐复相陶瓷制备方法包括以下步骤:
S1:称取5g氧化钇、23g氧化钽、7g氧化锆置于球磨罐中;
S2:向球磨罐中加入无水乙醇,在400r/min的转速下球磨200min;
S3:将S2得到的粉末在80℃下干燥15h后,置于模具内,在10MPa压力下保压10min;
S4:将S3中压实后的粉体在1500℃,40MPa压力下热压烧结1h,得到钽酸钇复相陶瓷2#
本实施例制备的钽酸盐复相陶瓷的SEM照片如图2所示,由于钽元素含量较高,微观结构中包含三种衬度的相,白色相为钽酸锆Zr6Ta2O17,灰色相分为两种,大部分为浅灰色相,为钽酸钇YTa3O9,其中还存在少部分的深灰色相,属于钽酸钇YTaO4。本实施例制备的钽酸盐复相陶瓷在1200℃时热导率为2.0W·(m·K)-1。热膨胀系数随温度升高而变大,1200℃下热膨胀系数为9.1×10-6·K-1(如图4)。
实施例3
本实施例提供一种新型钽酸盐复相陶瓷,该钽酸盐复相陶瓷制备方法包括以下步骤:
S1:称取10g氧化钇、24g氧化钽、11g氧化铪、6g氧化锆置于球磨罐中;
S2:向球磨罐中加入无水乙醇,在400r/min的转速下球磨240min;
S3:将S2得到的粉末在80℃下干燥24h后,置于模具内,在10MPa压力下保压10min;
S4:将S3中压实后的粉体在1500℃,40MPa压力下放电等离子烧结10min,得到钽酸钇复相陶瓷3#
本实施例制备的钽酸盐复相陶瓷在1200℃时热导率为1.6W·(m·K)-1,热膨胀系数为8.75×10-6·K-1
实施例4
本实施例提供一种新型钽酸盐复相陶瓷,该钽酸盐复相陶瓷制备方法包括以下步骤:
S1:称取5g氧化钇、33g氧化钽、11g氧化铪、6g氧化锆置于球磨罐中;
S2:向球磨罐中加入无水乙醇,在500r/min的转速下球磨60min;
S3:将S2得到的粉末在70℃下干燥12h后,置于模具内,在12MPa压力下保压5min;
S4:将S3中压实后的粉体在1300℃,70MPa压力下放电等离子烧结20min,得到钽酸钇复相陶瓷4#
本实施例制备的钽酸盐复相陶瓷在1200℃时热导率为1.4W·(m·K)-1,热膨胀系数为8.62×10-6·K-1
对比例1
本对比例提供一种复相陶瓷的制备方法,与实施例2相比,氧化钇、氧化钽与氧化锆的摩尔比为18:18:64。其他同实施例2。
本对比例制备得到的复相陶瓷由氧化锆ZrO2和钽酸钇YTaO4组成,说明通过控制氧化钇、氧化钽、氧化铪和氧化锆的比例关系可调控最终产品的组成,且氧化钇、氧化钽、氧化铪和氧化锆的比例关系只有在本发明的范围内才能得到相应组成的新型钽酸盐复相陶瓷。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (10)

1.一种新型钽酸盐复相陶瓷,其特征在于,所述钽酸盐复相陶瓷由钽酸钇、钽酸铪和钽酸锆中的至少两种组成;所述钽酸钇、钽酸铪和钽酸锆的摩尔比为(50~80):(0~50):(0~50)。
2.如权利要求1所述的钽酸盐复相陶瓷,其特征在于,所述钽酸盐复相陶瓷的热导率为1.2~2.5W·(m·K)-1,1200℃的热膨胀系数为8.0~9.6×10-6·K-1
3.一种如权利要求1或2所述的新型钽酸盐复相陶瓷的制备方法,其特征在于,包括以下步骤:
S1:按摩尔比(10~25):(20~40):(0~60):(0~60)称取氧化钇、氧化钽、氧化铪和氧化锆,混合均匀,得到混合料;
S2:将所述混合料置于有机溶剂中,进行湿法球磨,干燥,压实,得到料坯;
S3:对所述料坯进行烧结,得到钽酸盐复相陶瓷。
4.如权利要求1所述的制备方法,其特征在于,在步骤S1中,所述氧化钇为Y2O3,氧化钽为Ta2O5,氧化铪为HfO2,氧化锆是ZrO2
5.如权利要求1所述的制备方法,其特征在于,在步骤S2中,所述湿法球磨的转速为300~500r/min,时间为60~300min;所述干燥的温度为60~80℃,时间为10~24h;所述压实的保压压力为8~12MPa,保压时间为5~20min。
6.如权利要求1所述的制备方法,其特征在于,在步骤S3中,所述烧结为无压烧结、热压烧结和放电等离子烧结中的一种。
7.如权利要求6所述的制备方法,其特征在于,所述无压烧结的温度为1500~1700℃,时间为5~10h。
8.如权利要求6所述的制备方法,其特征在于,所述热压烧结的温度为1300~1600℃,压力为20~70MPa,时间为0.5~2h。
9.如权利要求6所述的制备方法,其特征在于,所述放电等离子烧结的温度为1300~1600℃,压力为40~70MPa,时间为5~30min。
10.一种新型钽酸盐复相陶瓷的应用,其特征在于,将权利要求1或2所述的钽酸盐复相陶瓷或者权利要求3~9任一项所述制备方法制备得到的钽酸盐复相陶瓷应用于航空发动机和火箭发动机的热端部件及其表面防护涂层中。
CN202210051684.2A 2022-01-17 2022-01-17 一种钽酸盐复相陶瓷及其制备方法 Active CN116477943B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210051684.2A CN116477943B (zh) 2022-01-17 2022-01-17 一种钽酸盐复相陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210051684.2A CN116477943B (zh) 2022-01-17 2022-01-17 一种钽酸盐复相陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN116477943A true CN116477943A (zh) 2023-07-25
CN116477943B CN116477943B (zh) 2024-04-12

Family

ID=87220057

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210051684.2A Active CN116477943B (zh) 2022-01-17 2022-01-17 一种钽酸盐复相陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN116477943B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4525464A (en) * 1984-06-12 1985-06-25 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften Ceramic body of zirconium dioxide (ZrO2) and method for its preparation
US5780178A (en) * 1996-10-31 1998-07-14 The United States Of America As Represented By The Secretary Of The Navy Scandia, yttria-stabilized zirconia for ultra-high temperature thermal barrier coatings
US20050064225A1 (en) * 2003-08-07 2005-03-24 Snecma Moteurs Thermal barrier composition, a superalloy machine part provided with a coating having such a composition, a ceramic coating, and a method of fabricating the coating
US20080160172A1 (en) * 2006-05-26 2008-07-03 Thomas Alan Taylor Thermal spray coating processes
US20100327213A1 (en) * 2009-06-30 2010-12-30 Honeywell International Inc. Turbine engine components
US20110151239A1 (en) * 2003-09-22 2011-06-23 Siemens Power Generation, Inc. High temperature insulation and insulated article
US20140220378A1 (en) * 2011-10-13 2014-08-07 General Electric Company Thermal barrier coating systems and processes therefor
CN106167406A (zh) * 2016-03-03 2016-11-30 昆明理工大学 钽酸钇高温陶瓷及其制备方法
CN110002873A (zh) * 2019-04-26 2019-07-12 昆明理工大学 一种多孔钽酸盐陶瓷及其制备方法
CN113173787A (zh) * 2021-03-08 2021-07-27 江苏大学 一种锆酸钆/钽酸钆复合陶瓷及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4525464A (en) * 1984-06-12 1985-06-25 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften Ceramic body of zirconium dioxide (ZrO2) and method for its preparation
US5780178A (en) * 1996-10-31 1998-07-14 The United States Of America As Represented By The Secretary Of The Navy Scandia, yttria-stabilized zirconia for ultra-high temperature thermal barrier coatings
US20050064225A1 (en) * 2003-08-07 2005-03-24 Snecma Moteurs Thermal barrier composition, a superalloy machine part provided with a coating having such a composition, a ceramic coating, and a method of fabricating the coating
US20110151239A1 (en) * 2003-09-22 2011-06-23 Siemens Power Generation, Inc. High temperature insulation and insulated article
US20080160172A1 (en) * 2006-05-26 2008-07-03 Thomas Alan Taylor Thermal spray coating processes
US20100327213A1 (en) * 2009-06-30 2010-12-30 Honeywell International Inc. Turbine engine components
US20140220378A1 (en) * 2011-10-13 2014-08-07 General Electric Company Thermal barrier coating systems and processes therefor
CN106167406A (zh) * 2016-03-03 2016-11-30 昆明理工大学 钽酸钇高温陶瓷及其制备方法
CN110002873A (zh) * 2019-04-26 2019-07-12 昆明理工大学 一种多孔钽酸盐陶瓷及其制备方法
CN113173787A (zh) * 2021-03-08 2021-07-27 江苏大学 一种锆酸钆/钽酸钆复合陶瓷及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HEINZE, STEFAN G.ETC: "Crystallography and substitution patterns in the ZrO2-YTaO4 system", 《PHYSICAL REVIEW MATERIALS》, vol. 7, no. 2, 19 July 2018 (2018-07-19) *
宗若菲等: "稀土钽酸盐在热障涂层中的研究与应用", 《航空制造技术》, vol. 62, no. 3, 31 January 2019 (2019-01-31) *

Also Published As

Publication number Publication date
CN116477943B (zh) 2024-04-12

Similar Documents

Publication Publication Date Title
US5945166A (en) Method for forming fiber reinforced composite bodies with graded composition and stress zones
Wiederhorn et al. Mechanisms of deformation of silicon nitride and silicon carbide at high temperatures
US3966855A (en) Method of fabricating silicon carbide articles
Sun et al. ZrW2O8-containing composites with near-zero coefficient of thermal expansion fabricated by various methods: Comparison and optimization
CN112341233A (zh) 多元单相超高温陶瓷TaxHf1-xC改性碳/碳复合材料的制备方法
Derakhshandeh et al. Comparison of spark plasma and microwave sintering of mullite based composite: mullite/Ta2O5 reaction
Guo et al. Low‐temperature hot pressing of ZrB2‐based ceramics with ZrSi2 additives
CN112028635A (zh) 一种超高温陶瓷复合材料及制备方法
Ran et al. Sintering Behavior of 0.8 mol%‐CuO‐Doped 3Y‐TZP Ceramics
Misiolek et al. Reactive sintering and reactive hot isostatic compaction of aluminide matrix composites
US6537617B2 (en) Manufacturing method of ceramic matrix composite
Köbel et al. MoSi2–Al2O3 electroconductive ceramic composites
CN116477943B (zh) 一种钽酸盐复相陶瓷及其制备方法
CN113105238B (zh) 一种原位生成SiC掺杂Gd2Zr2O7热障涂层陶瓷材料及其制备方法
Jeong et al. Fabrication of Si3N4 ceramics by post-reaction sintering using Si–Y2O3–Al2O3 nanocomposite particles prepared by mechanical treatment
Jiang et al. Microstructure and oxidation behaviors of dense mullite‑silicon carbide‑silicon coating for graphite fabricated by dipping-pyrolysis and reactive infiltration
Krnel et al. Surface modification and oxidation kinetics of hot-pressed AlN–SiC–MoSi2 electroconductive ceramic composite
US5227345A (en) Powder mixtures including ceramics and metal compounds
JP2829724B2 (ja) 窒化珪素系複合セラミックス及びその製造方法
Meléndez‐Martínez et al. Creep and microstructural evolution at high temperature of liquid‐phase‐sintered silicon carbide
Lee et al. Densification behavior of monolithic SiC fabricated by pressureless liquid phase sintering method
CN116477942A (zh) 一种新型钽铪氧化物复相陶瓷及其制备方法
Kaplan Akarsu et al. Comparative study of reactive and nonreactive spark plasma sintering routes for the production of TaB2‐TaC composites
RU2788686C1 (ru) Композиция для высокотемпературной керамики и способ получения высокотемпературной керамики на основе карбида кремния и силицида молибдена
JP3359443B2 (ja) アルミナ質焼結体およびその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant