CN116465936A - 基于Sb掺杂SnO2纳米球复合网状聚苯胺敏感材料的柔性室温氨气传感器及其制备方法 - Google Patents

基于Sb掺杂SnO2纳米球复合网状聚苯胺敏感材料的柔性室温氨气传感器及其制备方法 Download PDF

Info

Publication number
CN116465936A
CN116465936A CN202310493742.1A CN202310493742A CN116465936A CN 116465936 A CN116465936 A CN 116465936A CN 202310493742 A CN202310493742 A CN 202310493742A CN 116465936 A CN116465936 A CN 116465936A
Authority
CN
China
Prior art keywords
sensitive material
polyaniline
solution
doped sno
room temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310493742.1A
Other languages
English (en)
Inventor
孙鹏
李依纹
卢革宇
王天双
赵留鹏
刘方猛
闫旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN202310493742.1A priority Critical patent/CN116465936A/zh
Publication of CN116465936A publication Critical patent/CN116465936A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Electrochemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

一种基于Sb掺杂SnO2纳米球复合网状聚苯胺敏感材料的柔性室温氨气传感器及其制备方法,属于气体传感器技术领域。本发明首次采用水热法和原位生长法合成了Sb掺杂SnO2复合聚苯胺敏感材料,并将其滴铸在带有Au叉指电极的聚酰亚胺衬底上。制备的传感器具有较高的灵敏度,对100ppm NH3的灵敏度为33.4,是纯聚苯胺传感器的5.6倍,并且具有优异的选择性和良好的稳定性。传感性能的增强是由于导电聚合物与金属氧化物半导体材料之间形成了p‑n结,并且Sb元素的掺杂使得n型半导体氧化物的费米能升高,电子浓度升高,使得复合物中的势垒进一步变厚,该材料在设计和制造柔性室温NH3气体传感器中具有良好应用前景。

Description

基于Sb掺杂SnO2纳米球复合网状聚苯胺敏感材料的柔性室温 氨气传感器及其制备方法
技术领域
本发明属于气体传感器技术领域,具体涉及一种基于Sb掺杂SnO2纳米球复合网状聚苯胺敏感材料的柔性室温氨气传感器及其制备方法。
背景技术
氨气(NH3)作为氮肥、制冷剂、纺织品等重要的化工原料,其检测在农业、工业和人类日常生活中具有重要意义。在某些条件下,大量NH3排放形成二次气溶胶,降低能见度,对生态环境产生剧毒影响。根据美国政府工业卫生学家会议的数据,接触NH3 8小时的阈值为25ppm。如果人体暴露在大量NH3中,会影响皮肤、眼睛或呼吸系统,对人体健康造成负面影响。NH3作为肾脏疾病和肝炎的潜在生物标志物,在呼吸诊断中变得越来越重要。因此,对NH3进行有效监测是环境监测和化学过程控制的迫切需要和必要条件,在疾病诊断和人类健康监测中具有广泛的应用前景。
基于SnO2、WO3、TiO2和MoO3等金属氧化物半导体的刚性氨传感器是NH3检测中应用最广泛的传感器,其传感机制是基于双肖特基势垒模型。它们往往具有高灵敏度和稳定性,但通常需要在高温下工作,选择性和机械性能较差,这使得其应用前景更加有限。另一方面,导电聚合物在氨传感领域显示出良好的潜力。其中,基于聚苯胺敏感材料的室温氨气传感器得到了广泛的研究,因为它易于通过化学和电化学方法合成,其导电性可以通过氧化还原反应改变,并且在空气和水介质中具有良好的稳定性,操作温度低,易于与柔性设备集成。然而,它仍然存在响应恢复时间慢和灵敏度低的缺点。因此,将导电聚合物和金属氧化物半导体复合可以通过协同互补效应,扬长避短,从而显示出良好的传感性能。
SnO2是一种具有宽带间隙的n型半导体金属氧化物。由于其高电子迁移率、高化学稳定性和热稳定性,它已被确定为一种很有前途的应用于气敏领域的候选材料。此外,阳离子掺杂被认为是提高其气体灵敏度和选择性的有效手段。锑是一种常见的n型掺杂剂,锑的离子半径与锡的离子半径接近,容易形成取代掺杂。除此之外,掺锑氧化锡材料易于合成,并且其形貌可控。与纯氧化锡相比,锑的加入可以提高SnO2的传感性能,因为Sb掺杂的SnO2的费米能高于纯SnO2,这增加了载流子浓度,从而促进了电子转移。
发明内容
本发明的目的是提供一种基于Sb掺杂SnO2纳米球复合网状聚苯胺敏感材料的柔性室温氨气传感器及其制备方法。
本发明首次采用水热法和原位生长法合成了Sb掺杂SnO2复合聚苯胺敏感材料,并将其滴铸在带有Au叉指电极的聚酰亚胺衬底上。结果表明,Sb掺杂SnO2复合网状聚苯胺传感器具有较高的灵敏度,对100ppm NH3的灵敏度为33.4,是纯聚苯胺传感器的5.6倍,并且具有优异的选择性和良好的稳定性。与初始状态相比,对柔性传感器弯曲100次、300次甚至500次后,传感器对50ppm NH3的响应值分别下降了2.5%、4.5%和12.3%。传感性能的增强是由于导电聚合物与金属氧化物半导体材料之间形成了p-n结,并且Sb元素的掺杂使得n型半导体氧化物的费米能升高,电子浓度升高,使得复合物中的势垒进一步变厚。因此,Sb掺杂SnO2纳米球复合网状聚苯胺敏感材料是设计和制造柔性室温NH3气体传感器的一种有前途的敏感材料。
本发明所述的一种基于Sb掺杂SnO2纳米球复合网状聚苯胺敏感材料的柔性室温氨气传感器,其特征在于:传感器由锑掺杂二氧化锡纳米球复合网状聚苯胺敏感材料和溅射有Au叉指电极的聚酰亚胺柔性薄膜衬底构成。通过紫外光照射对柔性衬底进行亲水除菌处理,再将敏感材料滴铸于薄膜之上。敏感材料由如下步骤制备得到:
(1)将230~250mg SnCl2·2H2O与0.8~1.2mL浓HCL溶于30~50mL乙醇中,并搅拌10~20分钟,得到溶液A;将80~120mg SbCl3与0.3~0.5mL浓HCL溶于15~30mL乙醇中,并搅拌10~20分钟,得到溶液B;将溶液B滴入溶液A中,使得Sb与Sn的摩尔比为0.02~0.05:1,然后磁力搅拌0.5~2.0h;将得到的混合溶液转移到50mL聚四氟乙烯水热釜中,在170~190℃下加热20~30小时后自然冷却至室温,将获得的沉淀物离心并用去离子水和无水乙醇洗涤数次,在50~70℃下干燥过夜,再于350~450℃下在空气中退火1~3小时,得到纯Sb掺杂SnO2纳米球;
(2)将10~20mg纯Sb掺杂SnO2纳米球和40~50μL苯胺(预纯化)溶于10~20mL、0.8~1.2mol/L HCL中,并在冰水浴中超声20~40分钟,得到溶液C;将55~60mg过硫酸铵溶于10~20mL、0.8~1.2mol/L HCL中,并在冰水浴中磁力搅拌20~40分钟,得到溶液D;然后,将溶液D加入溶液C中,保持在0℃静置1~3小时,将获得的沉淀物离心并用去离子水和无水乙醇洗涤数次,在50~70℃下干燥10~15小时,得到Sb掺杂SnO2纳米球复合网状聚苯胺敏感材料。
本发明所述的一种基于Sb掺杂SnO2纳米球复合网状聚苯胺敏感材料的柔性室温氨气传感器的制备方法,其步骤如下:
(1)以聚酰亚胺(PET)薄膜为支撑衬底,用紫外灯照射聚酰亚胺薄膜表面,增强亲水性并除菌;在得到的聚酰亚胺薄膜表面溅射Au叉指电极,电极指数为10~15,叉指间距为70~90μm,叉指宽度为90~110μm;
(2)将10~20mg Sb掺杂SnO2纳米球复合网状聚苯胺敏感材料溶于10~20mL去离子水中,制得0.5~2mg/mL的悬浊液,再用微量移液枪将悬浊液转移于溅射有Au叉指电极的聚酰亚胺薄膜表面,用量为10~20μL/cm2,在室温下干燥后得到基于Sb掺杂SnO2纳米球复合网状聚苯胺敏感材料的柔性室温氨气传感器。本发明的优点如下:
(1)通过水热反应与原位生长法制备了Sb掺杂SnO2纳米球复合网状聚苯胺敏感材料,制作工艺简单,成本较低。
(2)通过替位掺杂增加n型半导体电子浓度,使得复合物势垒进一步增厚,导电沟道变窄,空气中空穴浓度下降从而增感。
(3)本发明制备的Sb掺杂SnO2纳米球复合网状聚苯胺敏感材料的柔性室温氨气传感器对氨气表现出优异的灵敏度(33.4-100ppm)和选择性以及优异的鲁棒性。
附图说明
图1:(a-b)为Sb掺杂SnO2材料的SEM形貌图;(c-d)为Sb掺杂SnO2纳米球复合网状聚苯胺敏感材料的SEM形貌图;(e-f)为Sb掺杂SnO2纳米球复合网状聚苯胺敏感材料的TEM图;
图2:纯聚苯胺敏感材料(对比例1)与Sb掺杂SnO2纳米球复合网状聚苯胺敏感材料(实施例1)的XRD图;
图3:(a-b)分别为实施例1和对比例1传感器叉指电极间的电阻对不同浓度的NH3的实时变化曲线;(c)为实施例1和对比例1传感器对不同浓度的NH3的灵敏度变化折线图;
图4:为实施例1传感器在室温下对6种10ppm待测气体的选择性折线图;
图5:为实施例1传感器在弯折0~500次后,对10ppm NH3的电阻实时变化曲线与灵敏度变化曲线。
如图1所示,从图1(a-b)中可以看出Sb掺杂SnO2是由微小颗粒构成的球状结构。从图1(c-f)中可以看出Sb掺杂SnO2纳米球复合网状聚苯胺敏感材料是由聚苯胺生长包覆在Sb掺杂SnO2表面构成的网状结构。
如图2所示,Sb掺杂SnO2纳米球复合网状聚苯胺敏感材料的XRD谱图与SnO2标准卡相吻合,且没有出现其他杂峰。对于纯聚苯胺敏感材料,可以在大约25°处观察到宽的衍射峰,表明通过化学氧化聚合方法制备的聚苯胺的无定形行为。
如图3所示,对比例1和实施例1中的传感器对100ppm氨气的灵敏度分别为6.1和33.4,相对于对比例1中传感器来说,实施例1中的传感器气敏性能提升较大。
如图4所示,Sb掺杂SnO2纳米球复合网状聚苯胺敏感材料传感器在室温下对10ppm的丙酮(Acetone)、H2S、甲烷(Methane)、CO、NO的灵敏度趋近于1,对NH3(Ammonia)具有优异的选择性。
如图5所示,实施例中的传感器初始状态相比,对柔性传感器弯曲100次、300次甚至500次后,对10ppm NH3的响应值分别下降了2.5%、4.5%和12.3%。具有较为优异的机械柔韧性。
注:灵敏度的计算方法为其中Rg为传感器暴露于氨气中的电阻值,Ra为传感器被置于空气时的基线电阻值。
具体实施方式
对比例1:
一种基于聚苯胺敏感材料的氨气气体传感器及其制备方法,其步骤如下:
(1)将46μL苯胺(预纯化)溶于15mL的HCL(浓度为1.0mol/L)中,并在冰水浴中超声30分钟,得到溶液C;将57mg过硫酸铵溶于15mL的HCL(浓度为1.0mol/L)中,并在冰水浴中磁力搅拌30分钟,得到溶液D;然后,将溶液D加入溶液C中,保持在0℃静置2小时,将获得的沉淀物离心并用去离子水和无水乙醇洗涤数次,在60℃下干燥12小时,得到纯聚苯胺敏感材料;
(2)以聚酰亚胺(PET)薄膜(1cm*1cm)为支撑衬底,用紫外灯照射聚酰亚胺薄膜表面,增强亲水性并除菌;在得到的聚酰亚胺薄膜表面溅射Au叉指电极,电极指数为12,叉指间距为80μm,叉指宽度为100μm;
(3)将20mg纯聚苯胺敏感材料溶于10mL去离子水中制得2mg/mL的悬浊液,再用微量移液枪将其转移于溅射有Au叉指电极的聚酰亚胺薄膜表面,用量为15μL/cm2,在室温下干燥后制得基于聚苯胺敏感材料的柔性室温氨气气体传感器。
实施例1:
一种基于Sb掺杂SnO2纳米球复合网状聚苯胺敏感材料的柔性室温氨气传感器的制备方法,其步骤如下:
(1)将240mg SnCl2·2H2O与1mL的浓HCL溶于40mL乙醇中,并搅拌15分钟,得到溶液A;将100mg SbCl3与0.5mL的浓HCL溶于20mL乙醇中,并搅拌15分钟,得到溶液B;将溶液B滴入溶液A中,使得Sb与Sn的摩尔比为0.03:1,然后磁力搅拌1.0h;将得到的混合溶液转移到50mL聚四氟乙烯水热釜中,在180℃下加热24小时,自然冷却至室温后,将获得的沉淀物离心并用去离子水和无水乙醇洗涤数次,在60℃下干燥过夜,并在400℃下在空气中退火2小时,得到纯Sb掺杂SnO2纳米球;
(2)将15mg纯Sb掺杂SnO2纳米球和46μL苯胺(预纯化)溶于15mL的HCL(浓度为1.0mol/L)中,并在冰水浴中超声30分钟,得到溶液C;将57mg过硫酸铵溶于15mL的HCL(浓度为1.0mol/L)中,并在冰水浴中磁力搅拌20~40分钟,得到溶液D;然后,将溶液D加入溶液C中,保持在0℃静置2小时,将获得的沉淀物离心并用去离子水和无水乙醇洗涤数次,在60℃下干燥12小时,得到Sb掺杂SnO2纳米球复合网状聚苯胺敏感材料。
(3)以聚酰亚胺(PET)薄膜(1cm*1cm)为支撑衬底,用紫外灯照射聚酰亚胺薄膜表面,增强亲水性并除菌;在得到的聚酰亚胺薄膜表面溅射Au叉指电极,电极指数为12,叉指间距为80μm,叉指宽度为100μm;
(4)将20mg Sb掺杂SnO2纳米球复合网状聚苯胺敏感材料溶于10mL去离子水中制得2mg/mL的悬浊液,再用微量移液枪将其转移于溅射有Au叉指电极的聚酰亚胺薄膜表面,用量为15μL/cm2,在室温下干燥后,制得基于Sb掺杂SnO2纳米球复合网状聚苯胺敏感材料的柔性室温氨气传感器。

Claims (3)

1.一种基于Sb掺杂SnO2纳米球复合网状聚苯胺敏感材料的柔性室温氨气传感器,其特征在于:传感器由Sb掺杂SnO2纳米球复合网状聚苯胺敏感材料和溅射有Au叉指电极的聚酰亚胺柔性薄膜衬底构成,且Sb掺杂SnO2纳米球复合网状聚苯胺敏感材料由如下步骤制备得到,
(1)将230~250mg SnCl2·2H2O与0.8~1.2mL浓HCL溶于30~50mL乙醇中,并搅拌10~20分钟,得到溶液A;将80~120mg SbCl3与0.3~0.5mL浓HCL溶于15~30mL乙醇中,并搅拌10~20分钟,得到溶液B;将溶液B滴入溶液A中,使得Sb与Sn的摩尔比为0.02~0.05:1,然后磁力搅拌0.5~2.0h;将得到的混合溶液转移到50mL聚四氟乙烯水热釜中,在170~190℃下加热20~30小时后自然冷却至室温,将获得的沉淀物离心并用去离子水和无水乙醇洗涤数次,在50~70℃下干燥过夜,再于350~450℃下在空气中退火1~3小时,得到纯Sb掺杂SnO2纳米球;
(2)将10~20mg纯Sb掺杂SnO2纳米球和40~50μL苯胺溶于10~20mL、0.8~1.2mol/LHCL中,并在冰水浴中超声20~40分钟,得到溶液C;将55~60mg过硫酸铵溶于10~20mL、0.8~1.2mol/L HCL中,并在冰水浴中磁力搅拌20~40分钟,得到溶液D;然后,将溶液D加入溶液C中,保持在0℃静置1~3小时,将获得的沉淀物离心并用去离子水和无水乙醇洗涤数次,在50~70℃下干燥10~15小时,得到Sb掺杂SnO2纳米球复合网状聚苯胺敏感材料。
2.如权利要求1所述的一种基于Sb掺杂SnO2纳米球复合网状聚苯胺敏感材料的柔性室温氨气传感器,其特征在于:Au叉指电极的电极指数为10~15,叉指间距为70~90μm,叉指宽度为90~110μm。
3.权利要求1或2所述的一种基于Sb掺杂SnO2纳米球复合网状聚苯胺敏感材料的柔性室温氨气传感器的制备方法,其步骤如下:
(1)以聚酰亚胺薄膜为支撑衬底,用紫外灯照射聚酰亚胺薄膜表面,增强亲水性并除菌;
(2)将10~20mg Sb掺杂SnO2纳米球复合网状聚苯胺敏感材料溶于10~20mL去离子水中,制得0.5~2mg/mL的悬浊液,再用微量移液枪将悬浊液转移于溅射有Au叉指电极的聚酰亚胺薄膜表面,用量为10~20μL/cm2,在室温下干燥后得到基于Sb掺杂SnO2纳米球复合网状聚苯胺敏感材料的柔性室温氨气传感器。
CN202310493742.1A 2023-05-05 2023-05-05 基于Sb掺杂SnO2纳米球复合网状聚苯胺敏感材料的柔性室温氨气传感器及其制备方法 Pending CN116465936A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310493742.1A CN116465936A (zh) 2023-05-05 2023-05-05 基于Sb掺杂SnO2纳米球复合网状聚苯胺敏感材料的柔性室温氨气传感器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310493742.1A CN116465936A (zh) 2023-05-05 2023-05-05 基于Sb掺杂SnO2纳米球复合网状聚苯胺敏感材料的柔性室温氨气传感器及其制备方法

Publications (1)

Publication Number Publication Date
CN116465936A true CN116465936A (zh) 2023-07-21

Family

ID=87180703

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310493742.1A Pending CN116465936A (zh) 2023-05-05 2023-05-05 基于Sb掺杂SnO2纳米球复合网状聚苯胺敏感材料的柔性室温氨气传感器及其制备方法

Country Status (1)

Country Link
CN (1) CN116465936A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116283356A (zh) * 2023-02-16 2023-06-23 安徽维纳物联科技有限公司 一种SnO2基甲烷气体传感器及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116283356A (zh) * 2023-02-16 2023-06-23 安徽维纳物联科技有限公司 一种SnO2基甲烷气体传感器及其制备方法
CN116283356B (zh) * 2023-02-16 2024-04-02 安徽维纳物联科技有限公司 一种SnO2基甲烷气体传感器及其制备方法

Similar Documents

Publication Publication Date Title
El-Shafai et al. Magnetite nano-spherical quantum dots decorated graphene oxide nano sheet (GO@ Fe3O4): electrochemical properties and applications for removal heavy metals, pesticide and solar cell
Yao et al. Oxygen-defective ultrathin BiVO4 nanosheets for enhanced gas sensing
Naik et al. Co-precipitation synthesis of cobalt doped ZnO nanoparticles: Characterization and their applications for biosensing and antibacterial studies
Vignesh et al. Multifunctional performance of gC 3 N 4-BiFeO 3-Cu 2 O hybrid nanocomposites for magnetic separable photocatalytic and antibacterial activity
CN116465936A (zh) 基于Sb掺杂SnO2纳米球复合网状聚苯胺敏感材料的柔性室温氨气传感器及其制备方法
Zhang et al. Aptamer based photoelectrochemical determination of tetracycline using a spindle-like ZnO-CdS@ Au nanocomposite
Kumar et al. Structural, optical, electrochemical, and antibacterial features of ZnS nanoparticles: incorporation of Sn
Yang et al. Enhanced 1-butylamine gas sensing characteristics of flower-like V2O5 hierarchical architectures
Chen et al. Design of 2D/2D CoAl LDH/g-C3N4 heterojunction-driven signal amplification: Fabrication and assay for photoelectrochemical aptasensor of ofloxacin
Lamba et al. Sb2O3–ZnO nanospindles: A potential material for photocatalytic and sensing applications
Majhi et al. Accordion-like-Ti3C2 MXene-based gas sensors with sub-ppm level detection of acetone at room temperature
Tahir et al. Photocatalytic degradation and hydrogen evolution using bismuth tungstate based nanocomposites under visible light irradiation
Hilal et al. A dual-functional flexible sensor based on defects-free Co-doped ZnO nanorods decorated with CoO clusters towards pH and glucose monitoring of fruit juices and human fluids
Devi et al. SILAR-coated Mg-doped ZnO thin films for ammonia vapor sensing applications
Palomera et al. Zinc oxide nanorods modified indium tin oxide surface for amperometric urea biosensor
Karimi et al. A novel rapid synthesis of Fe2O3/graphene nanocomposite using ferrate (VI) and its application as a new kind of nanocomposite modified electrode as electrochemical sensor
Mahajan et al. Polyaniline/MnO2 nanocomposites based stainless steel electrode modified enzymatic urease biosensor
CN112557457A (zh) 基于可印刷纳米复合材料的平面柔性室温气体传感器
CN109839408B (zh) 一种以纳米复合材料为传感膜的氨气传感器
Li et al. Mg-doped InSnO nanofiber field-effect transistor for methanol gas detection at room temperature
CN101776632A (zh) 水分散聚苯胺纳米粒子气敏元件与制作方法
Rahal et al. Preparation of separable MnFe2O4/ZnO/CQDs as a visible light photocatalyst for Gentamicin treatment
Si et al. One-pot hydrothermal synthesis of nano-sheet assembled NiO/ZnO microspheres for efficient sulfur dioxide detection
Ou et al. 2D/2D Dy2O3 Nanosheet/MoO3 Nanoflake Heterostructures for Humidity-Independent and Sensitive Ammonia Detection
Hou et al. Mxene Ti3C2Tx derived lamellar Ti3C2Tx-TiO2-CuO heterojunction: Significantly improved ammonia sensor performance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication