CN116463375A - 一种利用基因编辑技术创制棉花同时矮化和黄化材料的方法 - Google Patents

一种利用基因编辑技术创制棉花同时矮化和黄化材料的方法 Download PDF

Info

Publication number
CN116463375A
CN116463375A CN202310681747.7A CN202310681747A CN116463375A CN 116463375 A CN116463375 A CN 116463375A CN 202310681747 A CN202310681747 A CN 202310681747A CN 116463375 A CN116463375 A CN 116463375A
Authority
CN
China
Prior art keywords
ghnac3
trna
fragment
prgeb32
sgrna1
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310681747.7A
Other languages
English (en)
Other versions
CN116463375B (zh
Inventor
王志军
王亮
董永梅
叶春秀
李有忠
马盼盼
张国丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinjiang Academy of Agricultural and Reclamation Sciences
Original Assignee
Xinjiang Academy of Agricultural and Reclamation Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinjiang Academy of Agricultural and Reclamation Sciences filed Critical Xinjiang Academy of Agricultural and Reclamation Sciences
Priority to CN202310681747.7A priority Critical patent/CN116463375B/zh
Publication of CN116463375A publication Critical patent/CN116463375A/zh
Application granted granted Critical
Publication of CN116463375B publication Critical patent/CN116463375B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/66General methods for inserting a gene into a vector to form a recombinant vector using cleavage and ligation; Use of non-functional linkers or adaptors, e.g. linkers containing the sequence for a restriction endonuclease
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Virology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种利用基因编辑技术创制棉花同时矮化和黄化材料的方法,属于农业生物技术领域。本发明公开的一种利用基因编辑技术创制棉花同时矮化和黄化材料,通过CRISPR/Cas9技术对棉花GhNAC3基因进行基因编辑,并进一步获得目的基因功能缺失的突变体材料,这些矮化和黄化材料具有重要的育种价值,也可作为遗传学研究的重要材料。

Description

一种利用基因编辑技术创制棉花同时矮化和黄化材料的方法
技术领域
本发明涉及一种利用基因编辑技术创制棉花同时矮化和黄化材料的方法,属于农业生物技术技术领域。
背景技术
NAC是植物中最大的转录因子家族之一,而且是植物特有的一类转录因子,在植物的整个生长发育过程中具有重要的作用。植物激素在细胞分裂与伸长、组织与器官分化等方面调控植物的生长、发育与分化,植物激素对植物的生长发育具有重要的调节控制作用。NAC 转录因子可以通过调节脱落酸、赤霉素等植物激素的合成来对植物的生长发育或是抗逆性进行调控。过表达OsNAC2的转基因株系中参与赤霉索合成的基因的表达量下降,抑制赤霉素生物合成的基因和负调控赤霉素信号通路基因表达量升高,对赤霉素的响应明显减弱。通过在水稻中过表达OsNAC2基因,过表达转基因植株较野生型表现出株高变矮、穗长变短的表型。
CRISPR/Cas9系统是一种新型基因编辑工具,准确编辑目标基因,广泛应用于动植物的基因编辑中,但是因为靶标识别位点的 sg RNA的长度有 20 bp,在全基因组水平仍然存在高度相似的序列。早期研究表明,与 20 bp长度的打靶序列相比,位于 PAM 结构域端至少 13 个碱基以内的碱基错配,能够严重削弱 Cas9产生的基因编辑。因而这些相似序列是潜在的脱靶位点,这些位点产生的脱靶效应将引起不必要的突变,造成基因组的不稳定性。也就是说,如果打靶位点选择不当,目标基因将不会被编辑,也就不能产生表型性状变异的突变体。
发明内容
本发明针对上述问题,提供了一种利用基因编辑技术创制棉花同时矮化和黄化材料的方法,本发明利用基因编辑技术创制棉花同时矮化和黄化材料的方法,针对棉花中的目标基因GhNAC3设计基于CRISPR/Cas9的sgRNA序列,将含有编码所述sgRNA序列的DNA片段连接到携带Cas9的载体中,用构建的载体转化棉花(如农杆菌介导法),实现对GhNAC3基因的定点突变,进而获得GhNAC3基因功能缺失的棉花植株。本发明通过基因编辑,获得了表型变异的突变体,进而通过创制遗传变异类型丰富了突变体材料。本发明的技术方案如下:
一种利用基因编辑技术创制棉花同时矮化和黄化材料的方法,其特征在于,具体步骤如下:
(1)针对基因GhNAC3CDS序列设计基于CRISPR/Cas9的2个sgRNA作用位点;所述sgRNA1和sgRNA2作用位点的核苷酸序列为:
5’-CTGCAACGGAGTTACAGTTA-3’;SEQ ID NO .3;和
5’-GATCGAGTTCGGCGATAATA-3’;SEQ ID NO .4;
(2)gRNA+tRNA组合序列已经插入pGTR4载体,sgRNA1 序列以接头方式加到反向引物上,从 pGTR4 质粒上扩增 tRNA序列,获得第一个片段 tRNA-sgRNA1;将 sgRNA2 序列以接头方式加到反向引物上,同样以pGTR4 质粒为模板进行 PCR,获得第二个片段gRNA-tRNA-sgRNA2,利用重叠 PCR将两个片段拼成一个整片段gRNA-tRNA-sgRNA1-sgRNA2,所述引物序列如下:
pRGEB32-7 s-F:5’-AAGCATCAGATGGGCAAACAAAGCACCAGTGGTCTAG-3’;SEQ ID NO.5;
GhNAC3 2s-F0:5’-CTGCAACGGAGTTACAGTTAGTTTTAGAGCTAGAAATA-3’;SEQ ID NO.6;
GhNAC3 2as-R0:
5’-TATTATCGCCGAACTCGATC TGCACCAGCCGGGAAT-3’;SEQ ID NO .7;
GhNAC3 1as-R:
5’-TAACTGTAACTCCGTTGCAG TGCACCAGCCGGGAAT-3’;SEQ ID NO .8;
(3)将步骤(2)获得的gRNA-tRNA-sgRNA1-sgRNA2与载体pRGEB32-7-GhU6.9进行酶切连接,构建得到GhNAC3基因编辑载体pRGEB32-7-GhU6.9-GhNAC3;
所述酶切连接反应体系如下:100ul体系,ddH2O Up to 100 ul,Buffer 10 ul,BSAⅠ 4 ul,pRGEB32-7-GhU6.9载体 10ug,37℃ 6h;
(4)将步骤(3)获得的基因编辑载体pRGEB32-7GhU6.9-GhNAC3转入农杆菌LBA4404,进行棉花遗传转化,经筛选鉴定获得棉花同时矮化和黄化突变体材料。
优选的,所述步骤(2)中第一次PCR:tRNA-sgRNA1和gRNA-tRNA-sgRNA2两个片段分别从含有pGTR4载体的菌液或质粒中扩增,tRNA-sgRNA1扩增,20ul体系 ddH2O 16.1 ul,buffer 2 ul,dNTP 0.3 ul,S primer 0.2 ul,pRGEB32-7 s,AS primer 0.2 ul,GhNAC31as,Taq 0.2 ul;gRNA-tRNA-sgRNA2扩增,20ul体系,ddH2O 16.1 ul,buffer 2 ul, dNTP0.3 ul , S primer 0.2 ul,GhNAC3 2 s,AS primer 0.2 ul, GhNAC3 2 as, Taq 0.2ul,模板(pGTR4) 1 ul;
第二次PCR及纯化使用重叠延伸PCR将片段1(片段tRNA-sgRNA1)和片段2(片段gRNA-tRNA-sgRNA2)进行拼接,反应体系100ul体系,ddH2O 85.3 ul,10×Buffer10ul,2.5mM dNTP 1.5 ul,S primer inf pRGEB32-7 s和 AS primer Inf GhNAC3 as 各1 ul,Taq 1 ul,片段1 1ul,片段2 1ul;
第一次和第二次PCR的条件:预变性:95℃ 5min,变性:95℃ 30s,退火:58℃ 30s延伸:72℃ 35s,循环:28C,延伸:72℃ 6min,电泳检测,并用试剂盒进行回收、纯化。
本发明与现有技术相比具有以下优点:
本发明依据CRISPR/Cas9 编辑原理,对耐旱相关基因GhNAC3(Gh_D02G0790)第 1外显子区域设计 2 个 20 bp 的编辑靶点,并在陆地棉基因组数据库中比对分析靶点序列,排除非特异性编辑,将 2 个靶点核苷酸片段分别与gRNA-tRNA载体连接,通过 2 次PCR 扩增,得到含特异性连接接头的 gRNA-tRNA-sgRNA1-sgRNA2 片段连接到(pGREB32-7-GhU6.9载体上,获得pGREB32-7-GhU6.9-GhNAC3重组表达载体,利用农杆菌介导法转化陆地棉受体YZ-1 ,再生培养得到 T0代转基因幼苗,通过PCR 检测 Cas9蛋白基因获得阳性株系。对 T0代植株的靶点区域序列进行 PCR 扩增和测序分析,鉴定GhNAC3编辑类型。结果发现,pGREB32-7-GhU6.9-GhNAC3表达载体成功转化YZ-1,并获得40株转基因再生植株,经Cas9蛋白基因鉴定得到30株阳性株系,从阳性植株选择10株进行编辑类型测序分析,发现7株在靶点区域都发生编辑,编辑类型主要为碱基片段缺失,缺失片段大小为3-28bp,T1代种植于大田,获得了同时出现黄化和矮化的突变体3株。结果表明,采用CRISPR/Cas9 技术对GhNAC3序列进行编辑,获得了表型变异的突变体。
附图说明
图1为GhNAC3的 2 个 sgRNA 靶点位置图;
图2为GhNAC3棉花株系 PCR 验证图;
图3为转化植株编辑靶点的 PCR 产物测序序列与野生型(WT)序列的比对结果,其中,红色字母为靶点序列,蓝色大写字母表示 PAM 序列,删除线表示缺失碱基,-:缺失,WT:野生型;
图4为基因编辑棉花植株与野生型棉花植株形态差异对照图,其中A1、A2和A3均为野生型,B1、B2和B3均为突变体。
具体实施方式
下面结合具体实施例来进一步描述本发明,本发明的优点和特点将会随着描述而更为清楚。但实施例仅是范例性的,并不对本发明的范围构成任何限制。本领域技术人员应该理解的是,在不偏离本发明的精神和范围下可以对本发明技术方案的细节和形式进行修改或替换,但这些修改和替换均落入本发明的保护范围内。
实施例1:基因编辑载体的构建
(1)控制棉花株高的基因为GhNAC3基因,其核苷酸序列如SEQ ID NO .1所示,GhNAC3蛋白的氨基酸序列如SEQ ID NO .2所示。
(2)利用在线数据库cotton FGD(https://cottonfgd.net/),下载GhNAC3(Gh_ D02G0790)的全长序列,CDS序列和氨基酸序列,GhNAC3位于棉花 D02 染色体,DNA 序列编码区全长为 1241 bp,由 3 个外显子和 2个内含子组成,我们将上游靠近启动子区域第 1外显子作为突变区域设计靶点,利用在线靶位点设计软件CRISPR-GE(http://skl.scau.edu.cn/home/)在线设计,并将 2 个靶点序列在棉花基因组数据库中进行序列比对,以消除非特异性靶点干扰。选取第1外显子的正义链+25 到+27 bp 处的 CGG 为 PAM(protospacer-adjacent motif)序列,+5 到+24bp之间的 20 bp 碱基作为靶点 1 序列,第1外显子的反义链+117到+119 bp 处的 GGG 碱基为 PAM 序列,+120 到+140 bp 区间的20 bp 碱基作为靶点 2 的编辑序列,如图 1所示。针对基因GhNAC3,sgRNA作用位点的核苷酸序列为:
5’-CTGCAACGGAGTTACAGTTA - 3’;SEQIDNO .3 ;(靶点 1 ) 和 5’-GATCGAGTTCGGCGATAATA-3’;SEQ ID NO .4;(靶点2)。
根据所选的编辑位点以及载体pGTR4和pRGEB32-7-GhU6.9多克隆位点处的酶切位点设计引物,引物序列如下:
1sgRNA:
pRGEB32-7 s-F:5’-AAGCATCAGATGGGCAAACAAAGCACCAGTGGTCTAG-3’;SEQ ID NO.5;
GhNAC3 2s-F0:5’-CTGCAACGGAGTTACAGTTAGTTTTAGAGCTAGAAATA-3’;SEQ ID NO.6;
2sgRNA:
GhNAC3 2as-R0:5’-TATTATCGCCGAACTCGATCTGCACCAGCCGGGAAT-3’;SEQ ID NO.7;
GhNAC3 1as-R:
5’-TAACTGTAACTCCGTTGCAG TGCACCAGCCGGGAAT-3’;SEQ ID NO .8;
(3)将步骤(2)使用两轮PCR方法扩增目的片段 gRNA-tRNA-sgRNA1-sgRNA2,PCR反应使用引物pRGEB32-7 s-F,GhNAC31as,GhNAC3 2s,GhNAC3 2as以pGTR4质粒为模板扩增。
PCR反应体系:片段1 tRNA-sgRNA1扩增,20ul体系 ddH2O 16.1 ul,buffer 2 ul,dNTP 0.3 ul,S primer 0.2 ul,pRGEB32-7s,ASprimer 0.2 ul, GhNAC3 1as,Taq 0.2ul;片段2 gRNA-tRNA-sgRNA2扩增,20ul体系,ddH2O 16.1 ul,buffer 2 ul, dNTP 0.3 ul, S primer 0.2 ul, GhNAC3 2 s,AS primer 0.2 ul,GhNAC3 2 as, Taq 0.2 ul,模板(pGTR4) 1 ul。
第二次PCR及纯化使用重叠延伸PCR将片段1和片段2 进行拼接,反应体系100ul体系,ddH2O 85.3 ul,10×Buffer10ul,2.5mM dNTP 1.5 ul,S primer inf pRGEB32-7 s和AS primer Inf GhNAC3 as 各1 ul,Taq 1 ul,片段1 1 ul,片段2 1ul。
PCR条件:预变性:95℃ 5min,变性:95℃ 30s,退火:58℃ 30s延伸:72℃ 35s,循环:28C,延伸:72℃ 6min,电泳检测,并用试剂盒进行回收、纯化。
将获得的目的片段与载体pRGEB32-7-GhU6.9进行酶切连接,反应体系如下:
100ul体系,ddH2O Up to 100 ul,Buffer 10 ul,BSAⅠ 4 ul,pRGEB32-7-GhU6.9表达载体 10ug,
反应条件:37℃ 6h。
构建得到GhNAC3基因编辑载体pRGEB32-7-GhU6.9-GhNAC3。
实施例2:基因编辑载体转入农杆菌LBA4404
(1)取 2μl构建得到GhNAC3基因编辑载体pRGEB32-7-GhU6.9-GhNAC3加入 100μl冰浴的农杆菌感受态细胞(LBA4404),轻轻混匀,放入电击杯中,电压设置为 1800 V,电击转化农杆菌;
(2)将电转值大于5的转化质粒迅速加入 500 µL LB 液体培养基(不含抗生素),28℃培养 3h,5000 rpm 离心 5 min,去除上清 500 µL,剩余菌体悬浮,涂布于含千分之一抗生素(卡那霉素和 利福平)的 LB 固体培养基中,28 ℃倒置培养 48 h;
(3)挑取单克隆菌株,含千分之一抗生素(卡那霉素 和利福平 Rif)的 LB 液体培养基,220r/m 培养 16-24h,利用Inf pRGEB32-7 s 和Inf GhNAC3 as 引物,PCR 鉴定为阳性的菌株用 60 %甘油保菌,保存于-80 ℃冰箱备用。引物序列如下:
Inf pRGEB32-7 s 5’-AAGCATCAGATGGGCAAACAAA -3’ SEQ IDNO .9;
Inf GhNAC3 as 5’-TTCTAGCTCTAAAACTATTATCGCCGAACTCGATC -3’ SEQ IDNO.10;
反应体系:ddH2O 16μl,Buffer 2μl,dNTP 0.3μl,InfpRGEB32-7 s 0.2μl,InfGhNAC3 as 0.2 μl,菌液1μl, Taq酶0.2μl,Total20μl。
PCR扩增反应程序为:95℃ 4min;95℃ 30s,59℃ 30s,72℃ 30s,28个循环;72℃5min,4℃∞。
菌落PCR产物大小为507bp。
实施例3:pRGEB32-7-GhU6.9-GhNAC3棉花遗传转化
含 pRGEB32-7-GhU6.9-GhNAC3的基因编辑载体的 LBA4404 农杆菌浸染陆地棉YZ-1 的下胚轴,具体操作步骤如下:
(1)无菌苗的获得,种子去壳后,用 0.1 %的升汞消毒 15min,用无菌水清洗 6次;将消毒后的种子接种于无菌苗培养基 M0(1/2MS 培养基+15g/L 葡萄糖+6.5 g/L 琼脂粉),28 ℃暗培养 5~7 d 备用。
(2)愈伤组织的诱导,无菌条件下,将暗培养 5-7 d 的 YZ-1 幼苗,使用无菌手术刀切除根部和子叶,将下胚轴切成0.5-0.8 cm 左右的小段备用;用 OD 值为 0.8 左右的pRGEB32-GhNAC3农杆菌菌液(含 50 mg/mL 乙酰丁香酮)侵染下胚轴 15 min。
(3)去除多余菌液,迅速将下胚轴倒入无菌滤纸上,铺平,用滤纸将下胚轴表面的菌液吸干,20 ℃,共培养基暗培养 48 h,28 ℃ 选择培养基含千分之一抗生素(头孢霉素和卡那霉素 )光照培养,25-30 d 继代一次。
(4)选择培养 70 天左右,将下胚轴(褐化严重的去除)移至含千分之一抗生素(头孢霉素和卡那霉素),2,4-D 减半愈伤诱导培养基中,25 d 左右继代一次,直至出现颗粒状的胚性愈伤。
(5)选择胚性愈伤继代于分化培养基上,20 d 左右继代一次,及时淘汰未分化愈伤组织,直至出现黄绿色颗粒的球形胚。
(6)挑取球形胚继续在分化培养基诱导,直至子叶胚的出现。
(7)将萌发出幼根和幼叶的子叶胚移至生根培养基中,继续培养,直至成苗。
(8)待再生苗长出2-3片真叶时,将其转移至花盆并置于温室,之后进行检查,阳性植株保留,而后进行正常的棉花生长管理。
实施例4:发生编辑的转基因棉花植株的鉴定
再生植株棉花叶片采用CTAB法提取DNA,用GhNAC3基因特异性引物进行PCR鉴定,扩增产物用1%琼脂糖凝胶电泳进行检测。
GhNAC3基因特异性引物序列如下:
NAC-F 5’-ATGACTGCAACGGAGTTACA-3’;SEQ IDNO .11;
NAC-R 5’-CCGACCGGTCCACGTCGGCT-3’;SEQ IDNO .12;。
反应体系:ddH2O 16μl,Buffer 2μl,dNTP 0.3μl,Inf pRGEB32-7 s 0.2μl,InfGhNAC3 as 0.2 μl,菌液1μl, Taq酶0.2μl,Total20μl。
PCR扩增反应程序为:95℃ 4min;95℃ 30s,59℃ 30s,72℃ 30s,28个循环;72℃5min,4℃∞。
引物对(GhNAC3-CRISPR-F1/R1)用于扩增靶点1和靶点2突变,产物大小约为507bp,如图2所示,将扩增产物条带大小正确的PCR产物送去测序,测序结果与野生型进行比对,结果见图3(仅显示突变位点)。筛选到7株GhNAC3基因发生编辑的突变体株系。其中3株发生表型突变的纯合突变体材料明显比野生型棉花(如图4所示)植株矮并且叶片发生黄化。这个棉花矮化及叶片黄化材料具有重要的育种利用价值和重要的遗传学研究材料。
对野生型和突变体株系的株高进行统计,野生型植株平均株高为60.3cm,突变体株系平均株高为20.2cm,二者差异显著。
本发明提供一种创制棉花同时矮杆和黄化材料的方法,按照上述方法对GhNAC3目的基因进行编辑,获得GhNAC3基因功能缺失的棉花植株,然后基因功能缺失的棉花植株进行杂交、回交、自交或无性繁殖,从而创制棉花矮化和黄化材料。

Claims (2)

1.一种利用基因编辑技术创制棉花同时矮化和黄化材料的方法,其特征在于,具体步骤如下:
(1)针对基因GhNAC3的CDS序列,设计基于CRISPR/Cas9的2个sgRNA作用位点,分别命名为sgRNA1和sgRNA2,;所述sgRNA1和sgRNA2作用位点的核苷酸序列为:
5’-CTGCAACGGAGTTACAGTTA-3’;SEQ ID NO .3;和
5’-GATCGAGTTCGGCGATAATA-3’;SEQ ID NO .4;
(2)gRNA+tRNA组合序列已经插入pGTR4载体,sgRNA1 序列以接头方式加到反向引物上,从 pGTR4 质粒上扩增 tRNA序列,获得第一个片段 tRNA-sgRNA1;
将 sgRNA2 序列以接头方式加到反向引物上,同样以pGTR4 质粒为模板进行 PCR,获得第二个片段 gRNA-tRNA-sgRNA2,利用重叠 PCR将两个片段拼成一个整片段gRNA-tRNA-sgRNA1-sgRNA2,pRGEB32-7 s-F,GhNAC3 2s-F0,GhNAC3 2as-R0,GhNAC3 1as-R为引物,PCR扩增目的片段gRNA-tRNA-sgRNA1-sgRNA2;
所述引物序列如下:
pRGEB32-7 s-F:5’-AAGCATCAGATGGGCAAACAAAGCACCAGTGGTCTAG-3’;SEQ ID NO .5;
GhNAC3 2s-F0:5’-CTGCAACGGAGTTACAGTTAGTTTTAGAGCTAGAAATA-3’;SEQ ID NO .6;
GhNAC3 2as-R0:
5’-TATTATCGCCGAACTCGATC TGCACCAGCCGGGAAT-3’;SEQ ID NO .7;
GhNAC3 1as-R:
5’-TAACTGTAACTCCGTTGCAG TGCACCAGCCGGGAAT-3’;SEQ ID NO .8;
(3)将步骤(2)获得的目的片段gRNA-tRNA-sgRNA1-sgRNA2与载体pRGEB32-7-GhU6.9进行酶切连接,构建得到GhNAC3基因编辑载体pRGEB32-7--GhU6.9-GhNAC3;
所述酶切连接反应体系如下:100ul体系,ddH2O Up to 100 ul,Buffer 10 ul,BSAⅠ 4ul,pRGEB32-7-GhU6.9 10ug,37℃ 6h;
(4)将步骤(3)获得的基因编辑载体pRGEB32-7-GhU6.9-GhNAC3转入农杆菌LBA4404,进行棉花遗传转化,经筛选鉴定获得棉花同时矮化和黄化突变体材料。
2. 根据权利要求1所述的一种利用基因编辑技术创制棉花同时矮化和黄化突变材料的方法,其特征在于,步骤(2)中第一次PCR:tRNA-sgRNA1和gRNA-tRNA-sgRNA2两个片段分别从含有pGTR4载体的菌液或质粒中扩增,片段tRNA-sgRNA1扩增,20ul体系 ,ddH2O 16.1ul,buffer 2 ul,dNTP 0.3 ul,S primer 0.2 ul,pRGEB32-7 s,AS primer 0.2 ul,GhNAC3 1as,Taq 0.2 ul;片段gRNA-tRNA-sgRNA2扩增,20ul体系,ddH2O 16.1 ul,buffer2 ul, dNTP 0.3 ul , S primer 0.2 ul, GhNAC3 2 s,AS primer 0.2 ul, GhNAC3 2as, Taq 0.2 ul,模板pGTR4 1 ul;
第二次PCR及纯化使用重叠延伸PCR将片段1和片段2两个小片段进行拼接,反应体系100ul体系,ddH2O 85.3 ul,10×Buffer10 ul,2.5mM dNTP 1.5 ul,S primer infpRGEB32-7 s和 AS primer Inf GhNAC3 as 各1 ul,Taq 1 ul,片段1 1 ul,片段2 1ul;
第一次和第二次PCR的条件:预变性:95℃ 5min,变性:95℃ 30s,退火:58℃ 30s,延伸:72℃ 35s,循环:28C,延伸:72℃ 6min,电泳检测,并用试剂盒进行回收、纯化。
CN202310681747.7A 2023-06-09 2023-06-09 一种利用基因编辑技术创制棉花同时矮化和黄化材料的方法 Active CN116463375B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310681747.7A CN116463375B (zh) 2023-06-09 2023-06-09 一种利用基因编辑技术创制棉花同时矮化和黄化材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310681747.7A CN116463375B (zh) 2023-06-09 2023-06-09 一种利用基因编辑技术创制棉花同时矮化和黄化材料的方法

Publications (2)

Publication Number Publication Date
CN116463375A true CN116463375A (zh) 2023-07-21
CN116463375B CN116463375B (zh) 2024-06-25

Family

ID=87184722

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310681747.7A Active CN116463375B (zh) 2023-06-09 2023-06-09 一种利用基因编辑技术创制棉花同时矮化和黄化材料的方法

Country Status (1)

Country Link
CN (1) CN116463375B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102399791A (zh) * 2010-09-16 2012-04-04 创世纪转基因技术有限公司 一种棉花ghNAC3转录因子基因及其应用
CN108203714A (zh) * 2016-12-20 2018-06-26 华中农业大学 一种棉花基因的编辑方法
US20210324398A1 (en) * 2018-06-29 2021-10-21 Pioneer Hi-Bred International, Inc. Edited nac genes in plants

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102399791A (zh) * 2010-09-16 2012-04-04 创世纪转基因技术有限公司 一种棉花ghNAC3转录因子基因及其应用
CN108203714A (zh) * 2016-12-20 2018-06-26 华中农业大学 一种棉花基因的编辑方法
US20210324398A1 (en) * 2018-06-29 2021-10-21 Pioneer Hi-Bred International, Inc. Edited nac genes in plants

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KABIN XIE ET AL: "Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system", PNAS, vol. 112, no. 11, 31 December 2015 (2015-12-31), pages 3570, XP055196411, DOI: 10.1073/pnas.1420294112 *

Also Published As

Publication number Publication date
CN116463375B (zh) 2024-06-25

Similar Documents

Publication Publication Date Title
US20120192318A1 (en) Transformation system for Camelina sativa
CN110964743B (zh) 一种利用启动子编辑创制水稻直链淀粉含量变异的方法
CN110592097B (zh) 调控水稻大穗基因、突变体及其分子标记和应用
CN110904071A (zh) Raf49蛋白及其编码基因在调控植物抗旱性中的应用
CN110643589B (zh) 一种提高植物抗旱性的蛋白及其应用
CN112011547B (zh) 一种控制油菜叶形的主效基因及其应用
US12077764B2 (en) Delivery of developmental regulators to plants for the induction of meristematic tissue with genetic alterations
CN113265403A (zh) 大豆Dt1基因编辑位点及其应用
WO2001096583A2 (en) Removal of selectable markers from transformed cells
CN114854766B (zh) 一种降低烟叶烟碱含量的NtAIDP1基因突变体及其应用
CN116463375B (zh) 一种利用基因编辑技术创制棉花同时矮化和黄化材料的方法
CN116144700A (zh) 水稻OsbZIP53基因或其编码的蛋白在提高水稻产量中的应用
CN115287296A (zh) OsJMJ711基因在改良水稻每穗粒数性状中的应用
CN116064653B (zh) 番茄SlBBX17基因在促进番茄低温抗性中的应用
CN115786346B (zh) 利用敲除TaSnRK2.10增加小麦分蘖数、穗粒数和籽粒宽度的应用
CN116789785B (zh) 长雄蕊野生稻高产、高光效基因FarL1及其应用
CN115927394B (zh) 玉米VPS23类似基因ZmVPS23L及其应用
CN117821473A (zh) 棉花果枝夹角主效基因GhFBA1及其在调控棉花株型中的应用
JP4543161B2 (ja) タバコのレトロトランスポゾンを利用した遺伝子破壊法
CN117417950A (zh) 一种水稻分蘖调控基因、突变体及其制备方法和应用
CN116751808A (zh) 调控植物开花和成熟时间的方法及其生物材料与应用
CN118086367A (zh) OsLPR2基因和/或其编码蛋白在调控水稻分蘖角度中的应用
CN118755726A (zh) 小麦TaPUB4基因敲除突变体及其在调控分蘖数、小穗数中的应用
CN118620954A (zh) 水稻生育期调控因子tn1编码基因及其应用
Hisano et al. Targeted Modification of Grain Dormancy Genes in Barley

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant