CN116453878A - 一种MWCNTs/PPy/NiCo-LDH的制备方法及其应用 - Google Patents

一种MWCNTs/PPy/NiCo-LDH的制备方法及其应用 Download PDF

Info

Publication number
CN116453878A
CN116453878A CN202310686700.XA CN202310686700A CN116453878A CN 116453878 A CN116453878 A CN 116453878A CN 202310686700 A CN202310686700 A CN 202310686700A CN 116453878 A CN116453878 A CN 116453878A
Authority
CN
China
Prior art keywords
mwcnts
ppy
nico
ldh
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310686700.XA
Other languages
English (en)
Inventor
邓哲鹏
孙银霞
孙荷
王强
胡文清
孙豫
王建军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou Jiaotong University
Original Assignee
Lanzhou Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou Jiaotong University filed Critical Lanzhou Jiaotong University
Priority to CN202310686700.XA priority Critical patent/CN116453878A/zh
Publication of CN116453878A publication Critical patent/CN116453878A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明采用吡咯在MWCNTs上的原位化学氧化聚合法合成了MWCNTs/PPy。通过预处理碳纳米管引入官能团羧基和羟基,使其与吡咯单体上的‑NH形成氢键,保持n(Ni2+):n(Co2+)为1:2不变,n(py):n(APS)为1:1,Py及氧化剂之间的反应时间为12 h时,MWCNTs和PPy形成珍珠状项链式,并从反应机理和电化学原理上进行阐释,最后采用一步水热法和共沉淀法成功制备了碳纳米管/聚吡咯/镍钴层状氢氧化物电极材料。综合这三种复合材料发现,MWCNTs/PPy可以降低材料在充放电过程中发生的坍塌和团聚,改善层状氢氧化物的导电性、倍率性能及循环稳定性。

Description

一种MWCNTs/PPy/NiCo-LDH的制备方法及其应用
技术领域
本发明属于电极材料制备技术领域,具体涉及一种MWCNTs/PPy/NiCo-LDH的制备方法。
背景技术
碳基电极材料由于其可持续的原材料获取、低廉的价格、较大的比表面积和可控的物理和化学性能,被认为是最有前途的材料类型,且已在超级电容器中商业化。一方面,碳基材料具有高孔隙率、独特的多孔结构和良好的电子导电性,可以充当物理载体,另一方面,其较强的可调控性、较高的电导率和强大的稳定性有利于电化学动力传输。然而,传统碳基材料的低比电容、低比能量和表面疏水性削弱了其相对于其他电极材料的竞争优势。因此通过自外掺杂可以大大提高碳材料的性能,以克服低比电容的限制。在各种碳纳米材料中,碳纳米管是一种重要的一维纳米材料,具有较高的固有电导率、强大的物理化学性能(机械、电和热性能),使其成为与其他过渡金属氧化物、硫化物、磷化物等结合的杰出基质,在电子领域、化学传感、半导体产业、电力基础设施、3C数码等领域展现了巨大的潜力。多壁碳纳米管作为一种典型的双电层材料,其强大的循环稳定性,可以有效改善赝电容的倍率性能,为电极材料提供了结构支持,并为电极建立丰富的孔径结构和连续的导电网络,缓解纳米颗粒的团聚等。
另外,作为高性能赝电容的超级电容器最佳候选者,过渡金属层状双氢氧化物(LDHs) 由二价/三价金属氧化物八面体主体层和位于层间空间内的电荷平衡阴离子组成,其元素组成具有高度可调性和主体层金属的高氧化还原活性,同时,LDHs是一种赝电容材料,可以提供较大的比电容。最近,研究人员们通过探究实验,已合成了一些LDHs及其复合材料,并取得了不错的成果。例如Chen Ling等人在装有三维多孔氮掺杂石墨烯水凝胶(N-GH)的泡沫镍(NF)衬底上制备了镍钴层状双氢氧化物(NiCo-LDH)@N-GH/NF复合材料,三维分层结构对促进电化学性能有积极作用。组装的非对称超级电容器(ASC)的比电容为1393F.g-1(1 mA·cm-2),当功率密度为260 W.kg-1时,能量密度达到63.33 Wh.kg-1。因此,可以充分利用功能化的多壁碳纳米管、导电性强的聚吡咯以及较大比表面的层状金属氢氧化物的形貌优势和性能优点协同制备超级电容器,以获得更好的比电容和更优异的能量密度。
发明内容
本发明的目的在于提供一种MWCNTs/PPy/NiCo-LDH复合材料的制备方法,以获得电化学性能更好的复合材料应用在不对称超级电容器中。
一、MWCNTs/PPy/NiCo-LDH的制备
MWCNTs/PPy/NiCo-LDH复合材料的制备路线如下:
包括以下步骤:
1)MWCNTs的纯化:将MWCNTs置于按体积比1:3配置的浓硝酸和浓盐酸混合液中不断搅动,超声3~4 h后,80~90 ℃油浴回流4 h,冷却至室温,抽滤,过夜干燥备用;MWCNTs在浓硝酸和浓盐酸混合液中的浓度为1.5~1.7g/L。
2)MWCNTs/PPy的制备:在H3PO4溶剂体系中,以APS为引发剂,纯化后的MWCNTs和Py为反应物,在0℃条件下聚合反应8~24h,制得MWCNTs/PPy;纯化后的MWCNTs与Py的质量比为0.7:1~0.9:1,APS与Py的质量比为2:1~4:1。
3)MWCNTs/PPy/NiCo-LDH的制备:
MWCNTs/PPy/ZIF-67的制备,首先取MWCNTs/PPy和Co(NO3)2 .6H2O共溶于甲醇溶剂中,搅拌混合1~2h,随后加入2-MeIM有机配体在室温下搅拌反应0.5~1h,静置12h,抽滤洗涤,70℃干燥12 h即得MWCNTs/PPy/ZIF-67;
MWCNTs/PPy/NiCo-LDH的制备,取上述制备的MWCNTs/PPy/ZIF-67和Ni(NO3)2·6H2O共溶于去离子水中搅拌混合均匀后,在100~120℃反应10~12 h,冷却后离心,抽滤,乙醇洗涤,70℃干燥10 h得到黑灰色粉末,即为MWCNTs/PPy/NiCo-LDH。
MWCNTs/PPy与Co(NO3)2 .6H2O的质量比为0.005:1~0.009:1,2-MeIM与Co(NO3)2 .6H2O的质量比为0.4:1~0.8:1。MWCNTs/PPy/ZIF-67和Ni(NO3)2·6H2O的质量比为0.15:1~0.25:1。
二、MWCNTs/PPy/NiCo-LDH结构表征及性能评价
以下测试数据基于本发明实施例制备样品MPNCL-1,MPNCL-2和MPNCL-3而来。
2.1结构表征
1)SEM和TEM表征
本发明首先提出了一种聚吡咯(PPy)和多壁碳纳米管(MWCNTs)复合材料的核壳结构,以APS为氧化剂,通过吡咯原位聚合,将PPy引入MWCNTs表面。如图1(a)和(b)所示,MWCNTs具有光滑、均匀的管状结构,购买的MWCNTs的直径约为40~60nm,长度约为10~20 μm;加入Py单体聚合后,MWCNTs的管状表面被PPy覆盖的粗糙结节覆盖,功能化的MWCNTs与PPy复合形成珍珠项链式形貌,主要是由于加入的掺杂剂不同,碳纳米管作为模板,聚吡咯是生长在其表面,如图1(c)和(d)所示;随后在MWCNTs/PPy/ZIF-67中加入Ni(NO3)2 .6H2O,通过水热法工艺将沸石咪唑酸盐框架(ZIF-67)拓扑转化为NiCo-LDH。其原理为ZIF-67释放的Co2+被O2和硝酸盐部分氧化形成Co3+,将离子Ni2+/Ni3+和Co2+/Co3+共沉淀形成镍钴氢氧化物。从图1(e)可以看出,其整体呈现为蜂窝状,放大倍数,则可以看到在纳米管和聚吡咯表面生长了相互连接的3D结构堆叠的纳米片,如图1(f)所示,同时也可以观察到有部分MWCNTs/PPy裸露,这表明MWCNTs/PPy/NiCo-LDH纳米复合材料合成成功。其中碳纳米管轴向的空间取向提升了ZIF-67中空纳米笼单体的空间占有率,改善了颗粒间的分散性,增强了中空纳米笼的机械稳定性;聚吡咯的加入提升材料的导电性能;三维纳米片状阵列使电解质离子能够更好地与电极材料接触,促进电子的传递,促进电化学反应的发生。从图1(g)和图1(h)可以更清晰的观察MWCNTs/PPy/NiCo-LDH微观形貌和结构特征,虚线标记的部分为MWCNTs/PPy,用实线标记的部分为外面包裹的NiCo-LDH纳米片,其中晶格间距为0.3 nm的晶格条纹归属于碳纳米管,其余则是NiCo-LDH的特征晶面。
2)XRD分析
如图2所示为本发明所制备的MWCNTs/PPy/NiCo-LDH复合材料的XRD图,从图中可以清晰的看到在2θ=21.91°、42.58°的衍射峰分别与碳纳米管的 (002)、(100) 晶面相对应,这与大多数文献所报道的相一致,PPy在2θ = 17~27°存在明显的宽的衍射峰证明其无晶形结构,同时,MWCNTs/PPy/NiCo-LDH在11.44°、34.62°、38.8°、52.1°、60.66°处的峰,分别对应于NiCo-LDH的 (003)、(100)、(015)、(102) 和 (110)衍射平面,且所得到复合材料的XRD与NiCo-LDH的XRD图形走势基本一致,说明碳纳米管和聚吡咯的加入对复合材料的晶形没有影响。
3)表面元素分析
对MWCNTs/PPy/NiCo-LDH进一步进行了EDS测试,可以看出C、O、N、Co、Ni的存在,其中N、Co元素的强度较弱,主要是因为加入的PPy含量较少,以及ZIF-67的拓扑转化,O、C和Ni元素的强度较强,说明碳纳米管以及层状氢氧化物的成功合成。H元素没有被检测出来,是由于H元素的相对原子质量低,说明产物很纯净,无杂质。同时,在图3中可以看出C、N、O、Co和Ni的质量比,分别为42.8%、5.8%、20.9%、5.5%和25.0%。
4)XPS能谱分析
为进一步分析表面成分,采用XPS谱图对已制备的样品结构进行了表征,所得数据如图4所示。
MWCNTs/PPy/NiCo-LDH的XPS全谱图(图4a)表明了Ni、Co、O、C、N元素的存在。对于Ni 2p高分辨率XPS谱(图4b),在854.8 eV和872.8 eV的两个主峰与Ni 2p3/2和Ni 2p1/2一致,在879.0eV和860.8eV有两个卫星峰,表明MWCNTs/PPy/NiCo-LDH结构中存在Ni3+和Ni2+。Co 2p光谱如图4 (c)所示,以780.5 eV和796.3 eV为中心的两个主要峰由Co 2p3/2和Co2p1/2组成,位于785.8 eV和801.7 eV的峰属于Co的卫星峰,表明Co3+和Co2+的存在。图4(d)显示了C 1s谱在结合能为284.3、285.6和291.7eV处有三个强带,分别指向C-C/C=C、C-N和C-OH证明了羧基化碳纳米管、聚吡咯与碳纳米管复合的成功。O 1s谱峰图位于530.1eV(图4e),原因是MWCNTs/PPy/NiCo-LDH样品中的金属-氧键即氧的配位缺陷,在531.6eV处观察到的峰值来源于化学溶化水,在533.1eV处观察到的峰值属NiCo-LDH的氢氧化物组分。图4(f)中的N 1s谱的结合能大约在398.8eV,400.0eV和,归因于-C≡N-中的电子、吡咯环中的-NH和吡咯中带正电的NH+的存在,一个峰(约401.2eV)显示引入的硝酸盐离子嵌入NiCo-LDH的结构中。虽然全谱图中N的含量较少,但N的掺杂通过向共轭sp2碳结构提供p电子,可以有效地提高碳基质的电导率。此外,吡咯中N的存在会导致碳结构中存在大量的缺陷,从而促进传质,从而提高超级电容器的性能。
5)红外谱图和拉曼谱图分析
通过FT-IR对材料的官能团进行分析,如图5(a)所示,在3434cm-1左右的峰值归因于水分子的振动模式和NiCo-LDH的峰强度,表明其具有良好的亲水性,且能将水分子吸附在其表面,证实了-OH的存在。在3136cm-1左右的吸收峰对应于芳香环上的C-H伸缩振动峰,此外,在1626cm-1和1108cm-1处的特征峰归属于纯化后多壁碳纳米管上C=O和C-C-O的伸缩振动,值得注意的是,在1400cm-1处较强的峰为材料表面存在的硝酸根的N-O键伸缩振动的特征峰,这是因为Ni(NO3)2·6H2O和Co(NO3)2·6H2O的残留,也有可能是吡咯环上C-N键的伸缩振动,1171.5cm-1处的特征峰来源于C-H面内的变形振动,在800cm-1以下的峰值是由于金属-氧键的弯曲振动或者是C-H面外的变形振动。从FT-IR可以看出PPy、MWCNTs/PPy、MWCNTs/PPy/NiCo-LDH的成功合成。
对复合材料进行拉曼表征,如图5(b)所示,碳纳米管的典型峰出现在1345 cm-1和1590 cm-1处,分别对应碳纳米管的缺陷程度D峰和完整程度G峰,ID/IG的强度比值为1.10,MWCNTs/PPy/NiCo-LDH的D峰和G峰分别出现在1325 cm-1和1594 cm-1,ID/IG的强度比值为1.25,证明了PPy/NiCo-LDH的引入使得碳层的微观结构的本征缺陷暴露,改变了碳基材料的物理和化学性质,导致缺陷密度增加,进一步结合相应的电化学测试分析复合材料的充放电行为,缺陷的增加提供了电容贡献。
2.2电化学性能测试
工作电极的制备:将电极活性材料、炭黑、粘结剂PTFE按照质量比为80:10:10的比例,滴加适量乙醇形成浆料,混合搅拌,然后均匀涂覆在1cm2处理好的泡沫镍集流体上。其中制备的电极片上活性物质的质量约为2mg.cm-l,厚度约为0.1mm。使用前将工作电极在60℃真空干燥,并在10MPa下压片处理20s。
在三电极体系进行测试。工作电极为MWCNTs/PPy/NiCo-LDH复合材料,对电极和参比电极分别为铂片电极和Hg/HgO电极,3M的KOH为电解液。通过CHI760E电化学工作站测量材料的循环伏安曲线(CV)、恒电流充放电曲线(GCD)、电化学阻抗谱图(EIS),其中比电容的测试根据公式(1)和公式(2)计算,最后在蓝电系统上进行循环寿命测试。
(1)
其中,为CV曲线的面积,m为活性物质的质量,单位为g,Vc-Va为电压窗口之差,单位为V,v为扫描速率,单位为mV s-1
(2)
其中I为加载电流,单位为A,Δt为放电时间,单位为s,m为活性物质的质量,单位为g,ΔV为电压差,单位为V。
1)三电极体系的电化学性能
利用3.0 M碱性电解液中的三电极电池,采用CV、GCD和EIS方法评价了MWCNTs/PPy/NiCo-LDH复合材料在电化学性能上的优势,结果如下所示。图6(a)为在5~50 mV s-1的扫描速率下获得的MWCNTs/PPy/NiCo-LDH的CV曲线,可以观察到峰值电流有轻微的变化,阳极峰值向较高的电位移动,而阴极向相反的电位移动且具有清晰的氧化还原峰,这表明存在可逆法拉第反应。解释如以下方程:
Co(OH)2+OH-→ CoOOH+H2O +e-
CoOOH+OH-→ CoO2+H2O+e-
Ni(OH)2+OH-→ NiOOH +H2O+e-
正如预期,高氧化还原电流强度和MPNCL面积代表优越的电化学电容和更优秀的存储电荷的能力。图6(b)GCD曲线显示了约在0.28~0.3V的放电平台。非线性放电曲线清楚地表明了MPNCL的电池型电极,与CV结果吻合较好。根据等式计算了相应的比电容,MPNCL在1A g-1时具有高的比电容2114F g-1,在10A g-1时的倍率性能保持为77.5%(表1为该复合材料与其他文献中材料比容量的比较)。结合结构和形貌的表征,在高电流密度下电容保持的改善是由于表面活化引起的电荷转移速度的增加。此外,为了探索这种优势所在,在开放电路条件下测试了EIS(0.1 Hz到100 kHz),以检查电极材料的离子和电子传递过程。图6(c)展示了制备的MPNCL的奈奎斯特图。可以看出,MPNCL-2、MPNCL-3高频区域的圆弧与截距的交点相差不大(包括电极内阻,电解液离子阻抗以及电极材料与集流体的界面阻抗等),表明MPNCL-2、MPNCL-3电极的溶液电阻(Rs)相当,经Zview软件分析得到其电阻分别为0.627Ω和0.669 Ω。以反应12 h的MWCNTs/PPy作为反应基底所制备的复合材料,半圆环的直径显著减小,即电荷转移电阻(Rct)减小(其中Rct阻值MPNCL-1、MPNCL-2、MPNCL-3分别为0.578 Ω、0.518 Ω和0.560 Ω)。这些结果表明,反应时间对于降低电荷转移电阻有很大的影响,因此MPNCL-2在电荷存储过程中的电荷转移能力大于MPNCL-1、MPNCL-3。
表1 MWCNTs/PPy/NiCo-LDH电极与其他材料性能的对比
图6(d),(e)为三种材料的比电容,分别为1866 F g-1、2114 F g-1和1738 F g-1,且可以看出三种反应时间的复合材料的在10 A g-1时倍率性能分别为70.7%、77.5%、73.4%。经过循环5000次后,图6(f),最优样品的循环稳定性为初始比电容的80.1%。
产生以上结果的原因主要在于吡咯单体与碳纳米管的反应时间的影响,可能发生的机理如下:在一定时间内,吡咯的共轭链随着聚合时间的增加而增加,链的规则排列趋于完整。到12 h,吡咯单体已经完全反应,聚合和质子掺杂已经完成,产物的共轭链长度达到最佳状态。分子排列比较规整,大π共轭体系的电子迁移率高,整体电化学性能优异。但随着反应时间的进一步延长,吡咯环的链转移和局部过氧化等副反应增加,链的有序性及共轭程度下降,可能导致产物的电导率下降。综上,当MWCNTs与PPy的反应时间为12h时,与NiCo-LDH复合的材料电化学性能最优。
2)三电极体系的赝电容行为判断及贡献分析
为了阐明传输动力学,我们根据不同扫描速率下的CV曲线,采用以下经验公式(3),公式(4)定量分析了扫描速率与峰值电流之间的关系。式中,I为峰值电流密度(A g-1),ν为扫描速率(mV s-1),a和b都是可调参数。一般认为,当b值接近1时,电荷存储具有类似电容的行为,而b值小于0.5时,电荷存储能力源于缓慢的半无限扩散控制的法拉第反应。根据公式(5)计算得到具体的赝电容贡献。
(3)
(4)
(5)
如图7 (a)和(b)所示,MPNCL-2(b1 = 0.3802,b2 = 0.5209)表明电荷存储主要受伪电容贡献的扩散过程控制。从图7(c),(d)中可以看出,表面控制过程对电极电荷存储能力的贡献随着扫描速率的增加而增加,其中在30 mV s-1的扫速下赝电容贡献率为22.1%。
3)组装MWCNTs/PPy/NiCo-LDH//AC不对称超级电容器
水系不对称超级电容器的组装示意图如图8(a)所示。图8(b)显示了在三电极系统中正、负电极在电荷平衡后在50 mV s-1的扫描速率条件下所得到的循环伏安曲线,其中MWCNTs/PPy/NiCo-LDH电极的电压窗口范围为0~0.5 V,而活性炭AC电极的电位窗口范围为-1.0-0 V。为了确定器件的稳定测试电压窗口,图8(c)显示了在扫描速率为50 mV s-1时在不同电位窗口下的CV图。当电压窗口达到1.6 V时,由于电解液发生分解,电极出现明显的极化。因此,不对称器件的最大电位窗口在1.5 V时具有稳定的工作电压。因此扫描了在0-1.5 V电压下的不同扫描速率下器件的CV测试,如图8(d)所示。从图中可以看到,随着扫描速率的增加,所有的CV曲线中没有观察到明显的形状变化,即使当扫描速率增大至100mV s-1时,所有的CV曲线仍然具有相同的形状,这表明该器件具有出色的快速充放电性能。其中,组装后的超级电容器的CV曲线,其显示出平滑的类矩形形状,这与单电极的CV曲线不同。
图8(e)是器件在电流密度为1-10 A g-1时所测试的GCD曲线,其中所有的曲线几乎是对称的,这不仅表明器件具有快速的电荷存储能力。所组装的器件在电流密度为10 A g-1时连续充放电5000个循环,其容量保持率可达87.6%,说明其具有优异的性能。如图8(f)所示,通过计算可知,该器件在电流密度为1 A g-1时,比电容为123 F g-1;在电流密度为10 Ag-1时,比电容为81.6 F g-1,容量保持率约为66.34%。经计算,在能量密度为38.44 Wh kg-1时,功率密度为754.55 W kg-1,即使在高功率密度为7512.27 W kg-1时,能量密度也可达到25.5 Wh kg-1。该性能明显高于部分文献中所报道(图8g)。如Ragone图所示(ZhangLuojiang 等人组装的器件NiAI-LDH@NF//AC获得800 W kg-1的功率密度和30.2 Wh kg-1的能量密度,Zhang Junye 等人组装的器件Ni-MOF SPANI//AC获得824 W kg-1的功率密度和34.79 Wh kg-1的能量密度,Zhang Weijie 等人组装的器件GR-CNT@Co//AC获得685.3 Wkg-1的功率密度和36.55 Wh kg-1的能量密度。)这证明正极复合材料的成功合成,MWCNTs/PPy/NiCo-LDH//AC在超级电容器中的应用潜力。
综上,本发明采用吡咯在MWCNTs上的原位化学氧化聚合法合成了MWCNTs/PPy。通过预处理碳纳米管引入官能团羧基和羟基,使其与吡咯单体上的-NH形成氢键,保持n(Ni2 +):n(Co2+)为1:2不变,n(py):n(APS)为1:1,Py及氧化剂之间的反应时间为12 h时,MWCNTs和PPy形成珍珠状项链式,并从反应机理和电化学原理上进行阐释,最后采用一步水热法和共沉淀法成功制备了碳纳米管/聚吡咯/镍钴层状氢氧化物电极材料。综合这三种复合材料发现,MWCNTs/PPy可以降低材料在充放电过程中发生的坍塌和团聚,改善层状氢氧化物的导电性、倍率性能及循环稳定性。该材料在1 A g-1时比电容为2114 F g-1、在10 A g-1时倍率性能达到77.5%,在长循环过程中保持了较好的循环稳定性能(循环5000圈后电容保持率为87.6%)。组装为不对称超级电容器,其比电容123 F g-1,在能量密度为38.44 Wh kg-1时,功率密度为754.55 W kg-1,该实验方案表现了碳基和赝电容复合材料在超电领域的广泛应用。
附图说明
图1中: (a) (b)分别为碳纳米管MWCNTs在2μm和300nm放大倍率下的SEM图;(c)(d)分别为 MWCNTs/PPy在2μm和300nm放大倍率下的SEM图,(e)、(f)分别为MWCNTs/PPy/NiCo-LDH在2μm和300nm放大倍率下的SEM图,(g)为MWCNTs/PPy/NiCo-LDH在50nm放大倍率下的TEM图、(h) 为MWCNTs/PPy/NiCo-LDH 在5nm放大倍率下的HRTEM图;
图2为本发明制备的MWCNTs/PPy/NiCo-LDH复合材料的XRD图;
图3为本发明制备的MWCNTs/PPy/NiCo-LDH的表面元素分析图;
图4中:(a)为本发明制备的MWCNTs/PPy/NiCo-LDH的XPS谱图,
(b) 为Ni 2p、 (c) 为Co 2p、(d) 为C 1s、 (e) 为O 1s、(f) 为N 1s的高分辨能谱图;
图5中:(a)为本发明制备的MWCNTs/PPy/NiCo-LDH的红外谱图,
(b)为本发明制备的MWCNTs/PPy/NiCo-LDH的拉曼谱图;
图6中:(a)为本发明实施例制备的MPNCL-2 在不同扫速下的CV曲线、
(b)为MPNCL-2在不同电流密度下的恒电流充放电曲线、
(c) 为本发明实施例制备的MPNCL-1、MPNCL-2和MPNCL-3三种复合材料的EIS谱图的Nyquist拟合图(频率范围0.1-10 KHz)、
(d) 为MPNCL-1、MPNCL-2和MPNCL-3三种复合材料在不同电流密度下比容量的对比折线图、
(e) 为MPNCL-1、MPNCL-2和MPNCL-3三种复合材料在1 A g-1时的恒电流充放电图、
(f)为MPNCL-2在电流密度为10 A g-1时的循环5000圈的曲线图;
图7中:(a)为本发明实施例制备的 MPNCL-2扫描速率与阴阳极峰值电流的线性关系,
(b) 为MPNCL-2扫描速率与阴阳极峰值电流取对数后的线性关系、(c) 为MPNCL-2在扫描速率为30 mV s-1时的赝电容贡献率、
(d) 为MPNCL-2在不同扫描速率下的电容贡献率图;
图8中:(a) 为不对称超级电容的组装示意图、
(b) 为三电极体系下AC和MWCNTss/PPy/NiCo-LDH在扫描速率为50 mV s-1时的CV曲线、
(c)为 MWC NTss/PPy/NiCo-LDH//AC在不同电压窗口的CV曲线图
(d)为MWCNTss/PPy/NiCo-LDH//AC 在不同扫描速率的CV曲线图、
(e)为MWCNTss/PPy/NiCo-LDH//AC的GCD曲线、
(f) 为MWCNTss/PPy/NiCo-LDH//AC的循环性能图、
(g)为MWCNTss/PPy/NiCo-LDH//AC与其他器件的性能对比Ragone图。
具体实施方式
下面结合具体实施例对本发明做进一步的解释说明。
实施例
1)MWCNTs的纯化:将MWCNTs置于按体积比1:3配置的浓硝酸和浓盐酸混合液中不断搅动,超声3~4 h后,80~90 ℃油浴回流4 h,冷却至室温,用聚碳酸酯膜抽滤,过夜干燥备用;
2)MWCNTs/PPy的制备:将0.36 g纯化MWCNTs置于三颈烧瓶中,分别将0.006mol(0.454 mL)Py和0.1 mol/L50 mL的H3PO4倒入三颈烧瓶中超声10 min形成溶液A,0.006mol的(NH4)2S2O8(APS)溶于15 mL0.1 mol/L的H3PO4形成溶液B,将溶液B用恒压漏斗在15 min中内滴入A中,0 ℃分别反应8 h,12 h,24 h分别记为样品1、样品2、样品3,抽滤,用去离子水、乙醇洗涤至无色并在60℃真空干燥。
3)MWCNTs/PPy/NiCo-LDH的制备:
①MWCNTs/PPy/ZIF-67的制备,其形成的主要原因是游离的Co2+通过静电吸引被吸附到带负电荷的MWCNTs/PPy。具体过程如下:分别取78.6 mg的MWCNTs/PPy(样品1、2和3)分散在30mL的甲醇溶液中,超声30 min形成溶液A,用电子天平称取1.36g Co(NO3)2 .6H2O加入上述溶液中搅拌1 h,同时,称取0.833 g 2-MeIM(2-甲基咪唑)溶入30 mL的甲醇中形成溶液B,并采用恒压漏斗在25 min内将溶液B缓慢滴入溶液A中并搅拌30 min,静置12 h,抽滤洗涤,70 ℃干燥12 h;
②MWCNTs/PPy/NiCo-LDH的制备;分别称取160 mg的MWCNTs/PPy/ZIF-67和356.6mg Ni(NO3)2·6H2O分别溶于35 mL的去离子水搅拌30 min后倒入反应釜中,120 ℃反应12h,冷却后离心,抽滤,乙醇洗涤,70℃干燥10 h得到黑灰色粉末,分别命名为MPNCL-1,MPNCL-2,MPNCL-3。
结构表征及性能评价如图1~8所示。

Claims (6)

1.一种MWCNTs/PPy/NiCo-LDH的制备方法,其特征在于,包括以下步骤:
1)MWCNTs的纯化:将MWCNTs置于按体积比1:3配置的浓硝酸和浓盐酸混合液中不断搅动,超声3~4 h后,80~90 ℃油浴回流4 h,冷却至室温,抽滤,过夜干燥备用;
2)MWCNTs/PPy的制备:在H3PO4溶剂体系中,以APS为引发剂,纯化后的MWCNTs和Py单体为反应物,在0℃条件下聚合反应8~24h,制得MWCNTs/PPy;
3)MWCNTs/PPy/NiCo-LDH的制备:
MWCNTs/PPy/ZIF-67的制备,首先取MWCNTs/PPy和Co(NO3)2 .6H2O共溶于甲醇溶剂中,搅拌混合1~2h,随后加入2-MeIM有机配体在室温下搅拌反应0.5~1h,静置12h,抽滤洗涤,70℃干燥12 h即得MWCNTs/PPy/ZIF-67;
MWCNTs/PPy/NiCo-LDH的制备,取上述制备的MWCNTs/PPy/ZIF-67和Ni(NO3)2·6H2O共溶于去离子水中搅拌混合均匀后,在100~120℃反应10~12 h,冷却后离心,抽滤,乙醇洗涤,70℃干燥10h得到黑灰色粉末,即为MWCNTs/PPy/NiCo-LDH。
2.如权利要求1所述一种MWCNTs/PPy/NiCo-LDH的制备方法,其特征在于:步骤1)中,MWCNTs在浓硝酸和浓盐酸混合液中的浓度为1.5~1.7g/L。
3.如权利要求1所述一种MWCNTs/PPy/NiCo-LDH的制备方法,其特征在于:步骤2)中,纯化后的MWCNTs与Py的质量比为0.7:1~0.9:1,APS与Py的质量比为2:1~4:1。
4.如权利要求1所述一种MWCNTs/PPy/NiCo-LDH的制备方法,其特征在于:步骤3)中,MWCNTs/PPy与Co(NO3)2 .6H2O的质量比为0.005:1~0.009:1,2-MeIM与Co(NO3)2 .6H2O的质量比为0.4:1~0.8:1。
5.如权利要求1所述一种MWCNTs/PPy/NiCo-LDH的制备方法,其特征在于:步骤3)中,MWCNTs/PPy/ZIF-67和Ni(NO3)2·6H2O的质量比为0.15:1~0.25:1。
6.一种如权利要求1所述方法制备的MWCNTs/PPy/NiCo-LDH在不对称超级电容器中的应用。
CN202310686700.XA 2023-06-12 2023-06-12 一种MWCNTs/PPy/NiCo-LDH的制备方法及其应用 Pending CN116453878A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310686700.XA CN116453878A (zh) 2023-06-12 2023-06-12 一种MWCNTs/PPy/NiCo-LDH的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310686700.XA CN116453878A (zh) 2023-06-12 2023-06-12 一种MWCNTs/PPy/NiCo-LDH的制备方法及其应用

Publications (1)

Publication Number Publication Date
CN116453878A true CN116453878A (zh) 2023-07-18

Family

ID=87132324

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310686700.XA Pending CN116453878A (zh) 2023-06-12 2023-06-12 一种MWCNTs/PPy/NiCo-LDH的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN116453878A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117467863A (zh) * 2023-08-28 2024-01-30 福建祥鑫新材料科技有限公司 一种耐腐蚀性和可焊性的高强铝合金及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117467863A (zh) * 2023-08-28 2024-01-30 福建祥鑫新材料科技有限公司 一种耐腐蚀性和可焊性的高强铝合金及其制备方法

Similar Documents

Publication Publication Date Title
Wu et al. Enhanced electrochemical performances of organ-like Ti3C2 MXenes/polypyrrole composites as supercapacitors electrode materials
Khalaj et al. Synthesis of novel graphene/Co3O4/polypyrrole ternary nanocomposites as electrochemically enhanced supercapacitor electrodes
Huang et al. High performance asymmetric supercapacitor based on hierarchical flower-like NiCo2S4@ polyaniline
Zhang et al. Carbon nanotubes@ metal–organic frameworks as Mn-based symmetrical supercapacitor electrodes for enhanced charge storage
Ramkumar et al. Fabrication of ultrathin CoMoO 4 nanosheets modified with chitosan and their improved performance in energy storage device
Liu et al. CuO nanosheets/rGO hybrid lamellar films with enhanced capacitance
Wu et al. Core–shell nanospherical polypyrrole/graphene oxide composites for high performance supercapacitors
Roy et al. Morphological behaviour, electronic bond formation and electrochemical performance study of V2O5-polyaniline composite and its application in asymmetric supercapacitor
US9734954B2 (en) Conducting polymer/graphene-based material composites, and methods for preparing the composites
Mao et al. Nickel foam supported hierarchical Co 9 S 8 nanostructures for asymmetric supercapacitors
Li et al. Rapid in situ growth of β-Ni (OH) 2 nanosheet arrays on nickel foam as an integrated electrode for supercapacitors exhibiting high energy density
Mao et al. Synthesis of cobalt phosphate nanoflakes for high-performance flexible symmetric supercapacitors
CN109461593B (zh) 功能化石墨烯水凝胶/功能化碳布复合织物、柔性全固态超级电容器集成电极及制备方法
Guo et al. Facile preparation of high-performance cobalt–manganese layered double hydroxide/polypyrrole composite for battery-type asymmetric supercapacitors
Payami et al. A novel composite electrode material derived from bisferrocenyl-functionalized GO and PANI for high performance supercapacitor
CN111763213B (zh) 金属酞菁-MXene复合材料、超级电容器及其制备方法
Ran et al. Nano vanadium nitride incorporated onto interconnected porous carbon via the method of surface-initiated electrochemical mediated ATRP and heat-treatment approach for supercapacitors
Van Hoa et al. Rapid and efficient synthesis of high-porous reduced graphene oxide/NiCo2S4 nanocomposites for supercapacitor application
Xu et al. Facile hydrothermal synthesis of tubular kapok fiber/MnO 2 composites and application in supercapacitors
Xu et al. Eigenstate PANI–coated paper fiber with graphene materials for high-performance supercapacitor
Praveena et al. Camphor sulphonic acid doped novel polycarbazole-gC 3 N 4 as an efficient electrode material for supercapacitor
Jin et al. Hierarchical Ni@ Ni (OH) 2 core-shell hybrid arrays on cotton cloth fabricated by a top-down approach for high-performance flexible asymmetric supercapacitors
Zhang et al. A nickel coordination supramolecular network synergized with nitrogen-doped graphene as an advanced cathode to significantly boost the rate capability and durability of supercapacitors
Tang et al. Hemispherical flower-like N-doped porous carbon/NiCo2O4 hybrid electrode for supercapacitors
CN116453878A (zh) 一种MWCNTs/PPy/NiCo-LDH的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination