CN116449368B - 短距离毫米波mimo-sar的成像方法、装置及设备 - Google Patents
短距离毫米波mimo-sar的成像方法、装置及设备 Download PDFInfo
- Publication number
- CN116449368B CN116449368B CN202310700078.3A CN202310700078A CN116449368B CN 116449368 B CN116449368 B CN 116449368B CN 202310700078 A CN202310700078 A CN 202310700078A CN 116449368 B CN116449368 B CN 116449368B
- Authority
- CN
- China
- Prior art keywords
- imaging
- target
- model
- target image
- direction multiplier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 129
- 239000011159 matrix material Substances 0.000 claims abstract description 83
- 238000000034 method Methods 0.000 claims abstract description 76
- 238000004364 calculation method Methods 0.000 claims abstract description 7
- 230000008569 process Effects 0.000 claims description 45
- 238000004590 computer program Methods 0.000 claims description 12
- 230000006870 function Effects 0.000 claims description 8
- 238000010276 construction Methods 0.000 claims description 5
- 238000004613 tight binding model Methods 0.000 claims description 5
- 238000001514 detection method Methods 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 4
- 230000003190 augmentative effect Effects 0.000 claims description 3
- 230000002457 bidirectional effect Effects 0.000 claims 2
- 238000005457 optimization Methods 0.000 abstract description 6
- 238000004422 calculation algorithm Methods 0.000 description 17
- 238000010586 diagram Methods 0.000 description 9
- 238000004088 simulation Methods 0.000 description 7
- 238000003860 storage Methods 0.000 description 7
- 244000248349 Citrus limon Species 0.000 description 3
- 235000005979 Citrus limon Nutrition 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- HOWHQWFXSLOJEF-MGZLOUMQSA-N systemin Chemical compound NCCCC[C@H](N)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(O)=O)C(=O)OC(=O)[C@@H]1CCCN1C(=O)[C@H]1N(C(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H]2N(CCC2)C(=O)[C@H]2N(CCC2)C(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)N)C(C)C)CCC1 HOWHQWFXSLOJEF-MGZLOUMQSA-N 0.000 description 1
- 108010050014 systemin Proteins 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
- G01S13/90—Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
- G01S13/90—Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
- G01S13/904—SAR modes
- G01S13/9058—Bistatic or multistatic SAR
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/28—Details of pulse systems
- G01S7/285—Receivers
- G01S7/295—Means for transforming co-ordinates or for evaluating data, e.g. using computers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mathematical Physics (AREA)
- Data Mining & Analysis (AREA)
- Electromagnetism (AREA)
- Theoretical Computer Science (AREA)
- Algebra (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
本申请涉及一种短距离毫米波MIMO‑SAR的成像方法、装置及设备,通过将由短距离毫米波MIMO‑SAR系统对待成像目标探测接收到的目标回波矩阵,利用优化后的交替方向乘子模型对需要求解的目标图像进行迭代计算,直至得到的目标图像符合预设要求,则将当前迭代得到的目标图像作为最终的成像结果,其中在对交替方向乘子模型进行优化时,构建逆传感算子代替交替方向乘子模型中的大规模传感矩阵,以避免了大规模传感矩阵的求逆计算,并对其进行优化后,得到优化后的交替方向乘子模型。采用本方法在保证高计算效率的前提下大幅度提高成像质量。
Description
技术领域
本申请涉及雷达成像技术领域,特别是涉及一种短距离毫米波MIMO-SAR的成像方法、装置及设备。
背景技术
短距离毫米波MIMO-SAR系统因其具备高分辨成像能力和低制造成本,使得该技术在安全监测、医疗诊断和无损评估等领域具有良好的应用前景。
在短距离MIMO-SAR成像应用中,“速度”和“质量”无疑是图像重构算法需要考虑的核心性能指标。在现有的MIMO-SAR成像算法中,后向投影算法(Backprojectionalgorithm, BPA)适用于任意形状及排布的MIMO阵列,但该算法是通过对重构区域逐点扫描,并采用后向投影的方式叠加得到的目标图像,面临巨大的计算负担。而近年来新开发出的快速成像算法通常采用快速傅里叶变换(Fast Fourier Transform, FFT)的手段来反演目标图像,严重影响了高动态范围下的图像重构质量。
发明内容
基于此,有必要针对上述技术问题,提供一种能够在保证高计算效率的前提下大幅度提高成像质量的短距离毫米波MIMO-SAR的成像方法、装置及设备。
一种短距离毫米波MIMO-SAR的成像方法,所述方法包括:
获取待成像目标的回波矩阵数据,所述回波矩阵数据由短距离毫米波MIMO-SAR系统对目标探测得到;
根据所述短距离毫米波MIMO-SAR系统中发射天线、接收天线和所述待成像目标在三维笛卡尔坐标系中的成像几何关系构建成像求解过程模型;
根据所述成像求解过程模型构建逆传感算子,将所述逆传感算子代替交替方向乘子模型中的大规模传感矩阵,并对其进行优化后,得到优化后的交替方向乘子模型;
利用所述优化后的交替方向乘子模型以及回波矩阵数据对目标图像进行迭代求解,直至当前迭代及上一次迭代得到的目标图像之间的相似度符合预设值,则将当前迭代得到的目标图像作为最终成像结果。
在其中一实施例中,所述优化后的交替方向乘子模型表示为:
;
上式中,表示需要求解的目标图像,/>和/>分别表示基于交替方向乘子理论引入的辅助变量以及拉格朗日乘子,/>表示惩罚参数,/>表示正则化参数,上标/>表示迭代次数。
在其中一实施例中,在对所述目标图像利用优化后的交替方向乘子模型进行第一次迭代计算时,将所述惩罚参数设置为,正则化参数/>,将辅助变量/>以及拉格朗日乘子/>分别设为与目标图像/>具有相同维度的零矩阵。
在其中一实施例中,所述短距离毫米波MIMO-SAR系统中的天线阵采用一维实孔径MIMO线阵。
在其中一实施例中,所述根据所述短距离毫米波MIMO-SAR系统中发射天线、接收天线和所述待成像目标在三维笛卡尔坐标系中的成像几何关系构建成像求解过程模型包括:
根据双向并矢格林函数以及所述短距离毫米波MIMO-SAR系统中发射天线、接收天线和所述待成像目标在三维笛卡尔坐标系中的成像几何关系得到目标回波模型;
对所述目标回波模型进行处理得到所述成像求解过程模型;
其中,所述目标回波模型表示为:
;
其中,;
在上式中,表示待求解的目标图像,/>表示信号的空间波数,/>表示位于/>的发射阵元到目标散射点/>的距离,/>表示位于/>的发射阵元到目标散射点/>的距离;
所述成像求解过程模型表示为:
。
在其中一实施例中,所述根据所述成像求解过程模型构建逆传感算子包括:
令
;
则所述成像求解过程模型可表示为:
;
则上式可以表示为,目标图像通过逆传感算子/>作用于三维散射数据即回波矩阵数据/>得到。
在其中一实施例中,在对所述交替方向乘子模型进行优化时,还包括:
在将所述逆传感算子代替交替方向乘子模型中的大规模传感矩阵的基础上,构建基于交替方向乘子模型的增广拉格朗日函数,并通过求解二次规划问题优化原始交替方向乘子模型中对目标图像的求解方程,得到所述优化后的交替方向乘子模型。
一种短距离毫米波MIMO-SAR的成像装置,所述装置包括:
回波矩阵数据获取模块,用于获取待成像目标的回波矩阵数据,所述回波矩阵数据由短距离毫米波MIMO-SAR系统对目标探测得到;
成像求解过程模型构建模块,用于根据所述短距离毫米波MIMO-SAR系统中发射天线、接收天线和所述待成像目标在三维笛卡尔坐标系中的成像几何关系构建成像求解过程模型;
交替方向乘子模型优化模块,用于根据所述成像求解过程模型构建逆传感算子,将所述逆传感算子代替交替方向乘子模型中的大规模传感矩阵,并对其进行优化后,得到优化后的交替方向乘子模型;
目标成像结果得到模块,用于利用所述优化后的交替方向乘子模型以及回波矩阵数据对目标图像进行迭代求解,直至当前迭代及上一次迭代得到的目标图像之间的相似度符合预设值,则将当前迭代得到的目标图像作为最终成像结果。
一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现以下步骤:
获取待成像目标的回波矩阵数据,所述回波矩阵数据由短距离毫米波MIMO-SAR系统对目标探测得到;
根据所述短距离毫米波MIMO-SAR系统中发射天线、接收天线和所述待成像目标在三维笛卡尔坐标系中的成像几何关系构建成像求解过程模型;
根据所述成像求解过程模型构建逆传感算子,将所述逆传感算子代替交替方向乘子模型中的大规模传感矩阵,并对其进行优化后,得到优化后的交替方向乘子模型;
利用所述优化后的交替方向乘子模型以及回波矩阵数据对目标图像进行迭代求解,直至当前迭代及上一次迭代得到的目标图像之间的相似度符合预设值,则将当前迭代得到的目标图像作为最终成像结果。
一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现以下步骤:
获取待成像目标的回波矩阵数据,所述回波矩阵数据由短距离毫米波MIMO-SAR系统对目标探测得到;
根据所述短距离毫米波MIMO-SAR系统中发射天线、接收天线和所述待成像目标在三维笛卡尔坐标系中的成像几何关系构建成像求解过程模型;
根据所述成像求解过程模型构建逆传感算子,将所述逆传感算子代替交替方向乘子模型中的大规模传感矩阵,并对其进行优化后,得到优化后的交替方向乘子模型;
利用所述优化后的交替方向乘子模型以及回波矩阵数据对目标图像进行迭代求解,直至当前迭代及上一次迭代得到的目标图像之间的相似度符合预设值,则将当前迭代得到的目标图像作为最终成像结果。
上述短距离毫米波MIMO-SAR的成像方法、装置及设备,通过将由短距离毫米波MIMO-SAR系统对待成像目标探测接收到的目标回波矩阵,利用优化后的交替方向乘子模型对需要求解的目标图像进行迭代计算,直至得到的目标图像符合预设要求,则将当前迭代得到的目标图像作为最终的成像结果,其中在对交替方向乘子模型进行优化时,根据短距离毫米波MIMO-SAR系统中发射天线、接收天线和待成像目标在三维笛卡尔坐标系中的成像几何关系构建成像求解过程模型,再根据成像求解过程模型构建逆传感算子,将逆传感算子代替交替方向乘子模型中的大规模传感矩阵,并对其进行优化后,得到优化后的交替方向乘子模型。在本方法中将构建的逆传感算子代替原始交替方向乘子模型中的大规模传感矩阵,以避免了大规模传感矩阵的求逆计算,这样显著降低了高精度图像求解所需要的计算量,在保证高计算效率的前提下大幅度提高成像质量。
附图说明
图1为一个实施例中短距离毫米波MIMO-SAR的成像方法的流程示意图;
图2为一个实施例中短距离毫米波MIMO-SAR成像几何示意图;
图3为一个仿真实验中柠檬片模型的示意图;
图4为一个仿真实验中采用的MIMO天线阵列结构示意图;
图5为一个仿真实验中采用不同成像方法对柠檬片模型进行成像的三维成像结果以及沿方向的最大值投影结果,其中,图5(a)和图5(b)采用BP算法得到三维成像结果以及沿/>方向的最大值投影结果示意图,图5(c)和图5(d)采用现有最先进的快速算法得到三维成像结果以及沿/>方向的最大值投影结果示意图,图5(e)和图5(f)采用本方法得到三维成像结果以及沿/>方向的最大值投影结果示意图;
图6为一个实施例中短距离毫米波MIMO-SAR的成像装置的结构框图;
图7为一个实施例中计算机设备的内部结构图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
针对现有技术中,基于FFT的手段来反演得到目标图像的MIMO-SAR快速成像算法,严重影响了高动态范围下的图像重构质量的问题,如图1所示,提供了一种短距离毫米波MIMO-SAR的成像方法,包括以下步骤:
步骤S100,获取待成像目标的回波矩阵数据,该回波矩阵数据由短距离毫米波MIMO-SAR系统对目标探测得到;
步骤S110,根据短距离毫米波MIMO-SAR系统中发射天线、接收天线和待成像目标在三维笛卡尔坐标系中的成像几何关系构建成像求解过程模型;
步骤S120,根据成像求解过程模型构建逆传感算子,将逆传感算子代替交替方向乘子模型中的大规模传感矩阵,并对其进行优化后,得到优化后的交替方向乘子模型;
步骤S130,利用优化后的交替方向乘子模型以及回波矩阵数据对目标图像进行迭代求解,直至当前迭代及上一次迭代得到的目标图像之间的相似度符合预设值,则将当前迭代得到的目标图像作为最终成像结果。
在本方法中,基于成像求解过程模型对传统的交替方向乘子法(AlternatingDirection Method of Multipliers,ADMM,在下文中均以ADMM对交替方向乘子法进行表述)进行优化,通过构造逆传感算子,并将其替代ADMM模型中的大规模的传感矩阵,使得在对目标图像进行求解时避免了大规模传感矩阵的求逆,显著降低了高精度图像求解所需的计算量,可以在保证高计算效率的前提下大幅度提高成像质量。
在步骤S100中,所采用的短距离毫米波MIMO-SAR系统中的天线阵为一维实孔径MIMO线阵。该MIMO-SAR系统中的天线阵与待成像目标之间的成像几何关系如图2所示,在三维笛卡尔坐标系中,天线阵孔径位于/>平面上,其中一维实孔径MIMO阵列位于方向上,并沿着/>方向SAR扫描以等效二维孔径来照射目标区域。
在步骤S110中,根据短距离毫米波MIMO-SAR系统中发射天线、接收天线和待成像目标在三维笛卡尔坐标系中的成像几何关系构建成像求解过程模型包括:根据双向并矢格林函数以及短距离毫米波MIMO-SAR系统中发射天线、接收天线和待成像目标在三维笛卡尔坐标系中的成像几何关系得到目标回波模型,其成像几何关系如图2所示。
进一步的,假设毫米波雷达发射天线和接收天线的拥有相同的极化方向,不考虑信号沿传播方向的衰减效应,根据一阶Born近似可获取如下的目标回波模型:
(1)
其中,;
在公式(1)中,表示待求解的目标图像,/>表示信号的空间波数,/>表示位于/>的发射阵元到目标散射点/>的距离,/>表示位于/>的发射阵元到目标散射点/>的距离;
接着,对公式(1)两端做关于和/>的傅里叶变换,然后采用球面波的平面波分解技术,可得到:
(2)
在公式(2)中,和/>分别与/>和/>构成傅里叶变换对。
根据匹配滤波原理,公式(2)可重写为:
(3)
再对公式(3)中的非线性相位项采用三阶泰勒展开,可以得到:
(4)
(5)
其中,;
将公式(3)中耦合项进一步调整为:
(6)
接着,将公式(6)带入公式(3)中,可以得到:
(7)
通过FFT和相位补偿等步骤,MIMO-SAR的图像重构结果可按下式进行表示:
(8)
综上,通过对目标回波模型进行处理可得到成像求解过程模型表示为:
(9)
接着在步骤S120中,首先根据成像过程模型也就是公式(9)构建替代原始ADMM模型中的大规模的传感矩阵的逆传感算子,并对原始ADMM求解模型进行优化。
在构建逆传感算子时,令
(10)
则成像求解过程模型公式(9)可表示为:
(11)
则公式(11)可以表示为,目标图像通过逆传感算子/>作用于三维散射数据即回波矩阵数据/>得到。
通过对公式(11)进行逆推,可以推导出对应的正传感算子,即可得到:
(12)
在公式(12),、/>和/>分别为/>、/>和/>的共轭。
接着,对原始ADMM求解模型进行优化,包括:在将逆传感算子代替ADMM中的大规模传感矩阵的基础上,构建基于ADMM的增广拉格朗日函数,并通过求解二次规划问题优化原始ADMM中对目标图像的求解方程,得到优化后的ADMM。
令表示向量化运算符,通过向量化表示回波矩阵模型,公式(1)可以重新写为:
(13)
在公式(13)和/>。/>表示大规模的传感矩阵,其矩阵元素来自于。
为增强重构图像的稀疏性,图像求解可以表示为含有正则项的线性最小二乘问题,即:
(14)
在公式(14)中,表示/>范数,/>表示/>范数,/>为正则化参数
基于ADMM理论,通过引入额外的辅助变量,公式(14)可拓展至下面的约束优化问题:
(15)
接着,构建相应的增广拉格朗日函数,即“
(16)
在公式(16)中,和/>分别为拉格朗日乘子和惩罚参数,/>为/>的共轭转置。
公式(16)给出的向量化模型可被矩阵化为:
(17)
在公式(17)中,表示矩阵化运算符,/>表示用于求解矩阵的迹。
采用构建得到的正传感算子代替公式(17)中的高维度传感矩阵/>,得到:
(18)
对求关于/>的一阶偏导并令其等于0,可以得到:
(19)
类似的,再对求关于/>的一阶偏导,可以求出/>的表达式:
(20)
在公式(20)中,为复数软阈值函数,其元素被定义为:
(21)
在公式(21)中,为位于第/>行第/>列的矩阵/>元素值,/>用于求解该元素的绝对值。
最后,优化后的ADMM对高精度图像的进行求解的迭代形式表示为:
(22)
在公式(22)中,表示需要求解的目标图像,/>和/>分别表示基于交替方向乘子理论引入的辅助变量以及拉格朗日乘子,/>表示惩罚参数,/>表示正则化参数,上标/>表示迭代次数。
最后,在步骤S130中,将探测得到的回波矩阵数据带入公式(22)中对目标图像进行迭代计算,并将惩罚参数和正则化参数/>初始化为/>,/>。同时,将辅助变量以及拉格朗日乘子/>分别初始化为与目标图像/>具有相同维度的零矩阵。
在根据公式(22)进行多次迭代计算后,将当前迭代得到的目标图像与前一次迭代计算得到的目标图像进行对比,若相似度大于百分之99,则停止迭代,当前迭代计算得到的目标图像即为高精度目标图像。
实际上步骤S110和步骤S120中的内容均为对如何对原始ADMM求解模型进行优化的过程,实际上,在根据实测回波矩阵数据进行成像时,可直接将回波矩阵数据带入优化后的ADMM模型也就是公式(22)中进行迭代求解,即可得到目标的高精度图像。
在本文中,还通过仿真实验证明本文所提方法(本方法)的有效性。
在仿真实验中,成像目标为图3所示的柠檬片模型,它的直径和厚度分别为12cm和2mm,目标的几何中心与阵列平面相距0.3m。图4为仿真实验中采用的MIMO天线阵列构型,它包含7个非均匀排布的发射阵元(图中Tx所示)和51个均匀排布的接收阵元(图中Rx所示),阵列总长度为0.3m。SAR扫描长度和扫描间距分别为0.3m和0.003m,整个MIMO-SAR阵列孔径位于m的二维平面上。系统的工作频率和采样频点数分别设置为30-36GHz和31个。
为验证本方法的有效性,这里分别采用BP算法,现有最先进的快速算法和本方法处理仿真回波数据,对应得到的三维成像结果及其沿方向的最大值投影如图5所示。三种算法的成像时间分别为1597.10s、1.63s和2.87s。从结果中可以看出在较高的动态范围下,所提方法在聚焦性和旁瓣抑制能力上相比于另两种算法具有相当大的优势,且仍然保证了与现有最先进的快速算法处于同一量级的高成像效率。
上述短距离毫米波MIMO-SAR的成像方法中,通过将由短距离毫米波MIMO-SAR系统对待成像目标探测接收到的目标回波矩阵,利用优化后的交替方向乘子模型对需要求解的目标图像进行迭代计算,直至得到的目标图像符合预设要求,则将当前迭代得到的目标图像作为最终的成像结果,其中在对交替方向乘子模型进行优化时,首先根据双向并矢格林函数建立短距离MIMO-SAR体制下的目标回波模型,并根据现有最新的MIMO-SAR快速成像算法推导出对应该算法成像求解模型,并根据该算法成像求解模型构建用于代替ADMM优化模型中大规模传感矩阵的逆传感算子。在此基础上构建基于ADMM的增广拉格朗日函数,通过求解二次规划问题来优化原始ADMM中对目标图像的求解方程,进而得到更新后的ADMM优化迭代步骤。该方法避免了大规模传感矩阵的求逆,显著降低了高精度图像求解所需的计算量,可以在保证高计算效率的前提下大幅度提高成像质量。
本方法采用的是主动式毫米波阵列雷达成像技术,与X射线不同,毫米波不仅能够实现良好的方位和距离分辨率,还具有一定的非电离特性和穿透能力,能够在实现高质量成像效果的同时不会对人们的生命健康构成威胁。因此,该技术在安全监测、医疗诊断和无损评估等领域具有良好的应用前景。
本方法应用MIMO-SAR体制对目标区域进行探测,作为一种新兴的阵列体制,MIMO-SAR采用一维实孔径MIMO线阵与SAR体制相结合的方式,进一步降低了收发天线单元个数,同时利用其良好的空间分集性实现了较高的成像质量。
应该理解的是,虽然图1的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图1中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
在一个实施例中,如图6所示,提供了一种短距离毫米波MIMO-SAR的成像装置,包括:回波矩阵数据获取模块200、成像求解过程模型构建模块210、交替方向乘子模型优化模块220和目标成像结果得到模块230,其中:
回波矩阵数据获取模块200,用于获取待成像目标的回波矩阵数据,所述回波矩阵数据由短距离毫米波MIMO-SAR系统对目标探测得到;
成像求解过程模型构建模块210,用于根据所述短距离毫米波MIMO-SAR系统中发射天线、接收天线和所述待成像目标在三维笛卡尔坐标系中的成像几何关系构建成像求解过程模型;
交替方向乘子模型优化模块220,用于根据所述成像求解过程模型构建逆传感算子,将所述逆传感算子代替交替方向乘子模型中的大规模传感矩阵,并对其进行优化后,得到优化后的交替方向乘子模型;
目标成像结果得到模块230,用于利用所述优化后的交替方向乘子模型以及回波矩阵数据对目标图像进行迭代求解,直至当前迭代及上一次迭代得到的目标图像之间的相似度符合预设值,则将当前迭代得到的目标图像作为最终成像结果。
关于短距离毫米波MIMO-SAR的成像装置的具体限定可以参见上文中对于短距离毫米波MIMO-SAR的成像方法的限定,在此不再赘述。上述短距离毫米波MIMO-SAR的成像装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
在一个实施例中,提供了一种计算机设备,该计算机设备可以是终端,其内部结构图可以如图7所示。该计算机设备包括通过系统总线连接的处理器、存储器、网络接口、显示屏和输入装置。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种短距离毫米波MIMO-SAR的成像方法。该计算机设备的显示屏可以是液晶显示屏或者电子墨水显示屏,该计算机设备的输入装置可以是显示屏上覆盖的触摸层,也可以是计算机设备外壳上设置的按键、轨迹球或触控板,还可以是外接的键盘、触控板或鼠标等。
本领域技术人员可以理解,图7中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,提供了一种计算机设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现以下步骤:
获取待成像目标的回波矩阵数据,所述回波矩阵数据由短距离毫米波MIMO-SAR系统对目标探测得到;
根据所述短距离毫米波MIMO-SAR系统中发射天线、接收天线和所述待成像目标在三维笛卡尔坐标系中的成像几何关系构建成像求解过程模型;
根据所述成像求解过程模型构建逆传感算子,将所述逆传感算子代替交替方向乘子模型中的大规模传感矩阵,并对其进行优化后,得到优化后的交替方向乘子模型;
利用所述优化后的交替方向乘子模型以及回波矩阵数据对目标图像进行迭代求解,直至当前迭代及上一次迭代得到的目标图像之间的相似度符合预设值,则将当前迭代得到的目标图像作为最终成像结果。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现以下步骤:
获取待成像目标的回波矩阵数据,所述回波矩阵数据由短距离毫米波MIMO-SAR系统对目标探测得到;
根据所述短距离毫米波MIMO-SAR系统中发射天线、接收天线和所述待成像目标在三维笛卡尔坐标系中的成像几何关系构建成像求解过程模型;
根据所述成像求解过程模型构建逆传感算子,将所述逆传感算子代替交替方向乘子模型中的大规模传感矩阵,并对其进行优化后,得到优化后的交替方向乘子模型;
利用所述优化后的交替方向乘子模型以及回波矩阵数据对目标图像进行迭代求解,直至当前迭代及上一次迭代得到的目标图像之间的相似度符合预设值,则将当前迭代得到的目标图像作为最终成像结果。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink) DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。
Claims (7)
1.短距离毫米波MIMO-SAR的成像方法,其特征在于,所述方法包括:
获取待成像目标的回波矩阵数据,所述回波矩阵数据由短距离毫米波MIMO-SAR系统对目标探测得到;
根据所述短距离毫米波MIMO-SAR系统中发射天线、接收天线和所述待成像目标在三维笛卡尔坐标系中的成像几何关系构建成像求解过程模型,具体包括:根据双向并矢格林函数以及所述短距离毫米波MIMO-SAR系统中发射天线、接收天线和所述待成像目标在三维笛卡尔坐标系中的成像几何关系得到目标回波模型,对所述目标回波模型进行处理得到所述成像求解过程模型;
根据所述成像求解过程模型构建逆传感算子,将所述逆传感算子代替交替方向乘子模型中的大规模传感矩阵,并对其进行优化后,得到优化后的交替方向乘子模型,其中,根据所述成像求解过程模型构建逆传感算子包括:
令
,
则所述成像求解过程模型可表示为:
,
则上式可以表示为,目标图像通过逆传感算子/>作用于三维散射数据即回波矩阵数据/>得到,IFT表示逆傅里叶变换,FT表示傅里叶变换;
所述优化后的交替方向乘子模型表示为:
,
上式中,表示需要求解的目标图像,/>和/>分别表示基于交替方向乘子理论引入的辅助变量以及拉格朗日乘子,/>表示惩罚参数,/>表示正则化参数,上标/>表示迭代次数,为复数软阈值函数;
利用所述优化后的交替方向乘子模型以及回波矩阵数据对目标图像进行迭代求解,直至当前迭代及上一次迭代得到的目标图像之间的相似度符合预设值,则将当前迭代得到的目标图像作为最终成像结果。
2.根据权利要求1所述的成像方法,其特征在于,在对所述目标图像利用优化后的交替方向乘子模型进行第一次迭代计算时,将所述惩罚参数设置为,正则化参数/>,将辅助变量/>以及拉格朗日乘子/>分别设为与目标图像/>具有相同维度的零矩阵。
3.根据权利要求2所述的成像方法,其特征在于,所述短距离毫米波MIMO-SAR系统中的天线阵采用一维实孔径MIMO线阵。
4.根据权利要求3所述的成像方法,其特征在于,
所述目标回波模型表示为:
,
其中,,
在上式中,表示待求解的目标图像,/>表示信号的空间波数,/>表示位于的发射阵元到目标散射点/>的距离,/>表示位于/>的发射阵元到目标散射点/>的距离;
所述成像求解过程模型表示为:
。
5.根据权利要求4所述的成像方法,其特征在于,在对所述交替方向乘子模型进行优化时,还包括:
在将所述逆传感算子代替交替方向乘子模型中的大规模传感矩阵的基础上,构建基于交替方向乘子模型的增广拉格朗日函数,并通过求解二次规划问题优化原始交替方向乘子模型中对目标图像的求解方程,得到所述优化后的交替方向乘子模型。
6.短距离毫米波MIMO-SAR的成像装置,其特征在于,所述装置包括:
回波矩阵数据获取模块,用于获取待成像目标的回波矩阵数据,所述回波矩阵数据由短距离毫米波MIMO-SAR系统对目标探测得到;
成像求解过程模型构建模块,用于根据所述短距离毫米波MIMO-SAR系统中发射天线、接收天线和所述待成像目标在三维笛卡尔坐标系中的成像几何关系构建成像求解过程模型,具体包括:根据双向并矢格林函数以及所述短距离毫米波MIMO-SAR系统中发射天线、接收天线和所述待成像目标在三维笛卡尔坐标系中的成像几何关系得到目标回波模型,对所述目标回波模型进行处理得到所述成像求解过程模型;
交替方向乘子模型优化模块,用于根据所述成像求解过程模型构建逆传感算子,将所述逆传感算子代替交替方向乘子模型中的大规模传感矩阵,并对其进行优化后,得到优化后的交替方向乘子模型,其中,根据所述成像求解过程模型构建逆传感算子包括:
令
,
则所述成像求解过程模型可表示为:
,
则上式可以表示为,目标图像通过逆传感算子/>作用于三维散射数据即回波矩阵数据/>得到,IFT表示逆傅里叶变换,FT表示傅里叶变换;
所述优化后的交替方向乘子模型表示为:
,
上式中,表示需要求解的目标图像,/>和/>分别表示基于交替方向乘子理论引入的辅助变量以及拉格朗日乘子,/>表示惩罚参数,/>表示正则化参数,上标/>表示迭代次数,为复数软阈值函数;
目标成像结果得到模块,用于利用所述优化后的交替方向乘子模型以及回波矩阵数据对目标图像进行迭代求解,直至当前迭代及上一次迭代得到的目标图像之间的相似度符合预设值,则将当前迭代得到的目标图像作为最终成像结果。
7.一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至5中任一项所述方法的步骤。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310700078.3A CN116449368B (zh) | 2023-06-14 | 2023-06-14 | 短距离毫米波mimo-sar的成像方法、装置及设备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310700078.3A CN116449368B (zh) | 2023-06-14 | 2023-06-14 | 短距离毫米波mimo-sar的成像方法、装置及设备 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116449368A CN116449368A (zh) | 2023-07-18 |
CN116449368B true CN116449368B (zh) | 2023-08-25 |
Family
ID=87122253
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310700078.3A Active CN116449368B (zh) | 2023-06-14 | 2023-06-14 | 短距离毫米波mimo-sar的成像方法、装置及设备 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116449368B (zh) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103336278A (zh) * | 2013-05-13 | 2013-10-02 | 西安电子科技大学 | 多视角观测下前视三维sar成像方法 |
US9176226B1 (en) * | 2012-03-14 | 2015-11-03 | The Boeing Company | Radar tomography using doppler-based projections |
CN109959933A (zh) * | 2019-04-12 | 2019-07-02 | 江西理工大学 | 一种基于压缩感知的多基线圆迹合成孔径雷达成像方法 |
WO2019162452A1 (en) * | 2018-02-23 | 2019-08-29 | Robert Bosch Gmbh | Scalable graph slam for hd maps |
CN113050089A (zh) * | 2021-03-22 | 2021-06-29 | 中国人民解放军国防科技大学 | 基于距离衰减补偿的快速成像方法、装置和计算机设备 |
CN113281714A (zh) * | 2021-05-06 | 2021-08-20 | 中国民航大学 | 基于雷达微多普勒特征增强的鸟类目标探测方法 |
CN115755093A (zh) * | 2022-11-02 | 2023-03-07 | 南京理工大学 | 一种远距离复杂场景的激光雷达三维成像方法 |
CN115877380A (zh) * | 2022-11-29 | 2023-03-31 | 中国人民解放军空军工程大学 | 一种sar多运动目标成像方法、装置和存储介质 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9753892B2 (en) * | 2014-02-20 | 2017-09-05 | Mitsubishi Electric Research Laboratories, Inc. | Method for solving quadratic programs for convex sets with linear equalities by an alternating direction method of multipliers with optimized step sizes |
US20190339380A1 (en) * | 2016-06-22 | 2019-11-07 | Duke University | Multiple-input-multiple-output (mimo) imaging systems and methods for performing massively parallel computation |
CN111860612B (zh) * | 2020-06-29 | 2021-09-03 | 西南电子技术研究所(中国电子科技集团公司第十研究所) | 无监督高光谱图像隐低秩投影学习特征提取方法 |
-
2023
- 2023-06-14 CN CN202310700078.3A patent/CN116449368B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9176226B1 (en) * | 2012-03-14 | 2015-11-03 | The Boeing Company | Radar tomography using doppler-based projections |
CN103336278A (zh) * | 2013-05-13 | 2013-10-02 | 西安电子科技大学 | 多视角观测下前视三维sar成像方法 |
WO2019162452A1 (en) * | 2018-02-23 | 2019-08-29 | Robert Bosch Gmbh | Scalable graph slam for hd maps |
CN109959933A (zh) * | 2019-04-12 | 2019-07-02 | 江西理工大学 | 一种基于压缩感知的多基线圆迹合成孔径雷达成像方法 |
CN113050089A (zh) * | 2021-03-22 | 2021-06-29 | 中国人民解放军国防科技大学 | 基于距离衰减补偿的快速成像方法、装置和计算机设备 |
CN113281714A (zh) * | 2021-05-06 | 2021-08-20 | 中国民航大学 | 基于雷达微多普勒特征增强的鸟类目标探测方法 |
CN115755093A (zh) * | 2022-11-02 | 2023-03-07 | 南京理工大学 | 一种远距离复杂场景的激光雷达三维成像方法 |
CN115877380A (zh) * | 2022-11-29 | 2023-03-31 | 中国人民解放军空军工程大学 | 一种sar多运动目标成像方法、装置和存储介质 |
Non-Patent Citations (1)
Title |
---|
非均匀MIMO-SAR体制基于衰减补偿的快速成像算法;陈旭 等;微波学报;第37卷(第4期);第1-6页 * |
Also Published As
Publication number | Publication date |
---|---|
CN116449368A (zh) | 2023-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113050089B (zh) | 基于距离衰减补偿的快速成像方法、装置和计算机设备 | |
CN107589399A (zh) | 基于多采样虚拟信号奇异值分解的互质阵列波达方向估计方法 | |
CN114677494B (zh) | 基于剖分网格的雷达探测能力计算方法、装置及设备 | |
CN107390215A (zh) | 一种高速超分辨率mimo阵列成像方法 | |
Zhang et al. | Enhanced two-step deep-learning approach for electromagnetic-inverse-scattering problems: Frequency extrapolation and scatterer reconstruction | |
CN108710758A (zh) | 基于嵌套阵和协方差矩阵重构的自适应波束形成算法 | |
JP2023513650A (ja) | 相互相関テンソルに基づく三次元の互いに素のキュービックアレイの到来方向推定方法 | |
Yao et al. | Applying convolutional neural networks for the source reconstruction | |
CN107302391A (zh) | 基于互质阵列的自适应波束成形方法 | |
CN110554384A (zh) | 一种基于微波信号的成像方法 | |
CN107942326B (zh) | 一种具有高通用性的二维主动毫米波成像方法 | |
Jin et al. | A hybrid SBR/MoM technique for analysis of scattering from small protrusions on a large conducting body | |
Wang et al. | A 3D convolutional neural network based near-field acoustical holography method with sparse sampling rate on measuring surface | |
CN112016037A (zh) | 一种互质面阵中基于降维Capon求根的二维测向估计方法 | |
CN116449368B (zh) | 短距离毫米波mimo-sar的成像方法、装置及设备 | |
CN111896929B (zh) | 非均匀mimo雷达的dod/doa估计算法 | |
Yang et al. | Two‐Dimensional Multiple‐Snapshot Grid‐Free Compressive Beamforming Using Alternating Direction Method of Multipliers | |
CN114859353B (zh) | 基于辐射场等效测量的孔径编码成像系统建模方法和装置 | |
CN114740470A (zh) | 基于属性散射模型的微波波前调制前视成像方法和装置 | |
Chew et al. | The recursive aggregate interaction matrix algorithm for multiple scatterers | |
CN114966687A (zh) | 基于低秩和非局部自相似的稀疏isar成像方法及系统 | |
Hu et al. | High resolution 3D imaging in MIMO radar with sparse array | |
Wu et al. | Fast two‐dimensional sparse signal gridless recovery algorithm for MIMO array SAR 3D imaging | |
CN114942443B (zh) | 基于mimo-sar的介质目标快速成像方法和装置 | |
CN114676627B (zh) | 一种基于U-Net神经网络的混合电磁目标重构方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |