CN116445163B - 一种纯红色上转换发光纳米材料及其制备方法 - Google Patents

一种纯红色上转换发光纳米材料及其制备方法 Download PDF

Info

Publication number
CN116445163B
CN116445163B CN202310419528.1A CN202310419528A CN116445163B CN 116445163 B CN116445163 B CN 116445163B CN 202310419528 A CN202310419528 A CN 202310419528A CN 116445163 B CN116445163 B CN 116445163B
Authority
CN
China
Prior art keywords
red
solution
conversion luminescent
pure red
conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310419528.1A
Other languages
English (en)
Other versions
CN116445163A (zh
Inventor
乔旭升
冀皓丽
陈东
董文坤
凌世生
戴晓茹
王思源
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Anxiu Biotechnology Co ltd
Zhejiang University ZJU
Original Assignee
Hangzhou Anxiu Biotechnology Co ltd
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Anxiu Biotechnology Co ltd, Zhejiang University ZJU filed Critical Hangzhou Anxiu Biotechnology Co ltd
Priority to CN202310419528.1A priority Critical patent/CN116445163B/zh
Publication of CN116445163A publication Critical patent/CN116445163A/zh
Application granted granted Critical
Publication of CN116445163B publication Critical patent/CN116445163B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7772Halogenides
    • C09K11/7773Halogenides with alkali or alkaline earth metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • C01G15/006Compounds containing, besides gallium, indium, or thallium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开了一种强度较高且单色性优异的稀土掺杂红色上转换发光纳米颗粒及其制备方法。本发明以CuScInF8为基质,稀土离子Er3+作为发光中心占据Sc3+格位,Cu2+离子分布于Er3+周围作为蓝绿波段离子猝灭中心,通过在In3+的格位掺杂Mg2+增强晶格畸变,可实现增强Er3+的红峰发射的目标,可以获得单色性较好且强度较高的红色上转换发光纳米颗粒。本发明解决了稀土掺杂上转换发光纳米晶杂峰较多、单色性差的问题。本发明的纳米颗粒形貌均匀性好,颗粒尺寸约在40nm左右,可以在980nm近红外激发波长下实现色纯度高达90%以上的红色上转换发光,且发光强度大范围可调,在生物检测荧光编码微球上显示出重要应用前景。

Description

一种纯红色上转换发光纳米材料及其制备方法
技术领域
本发明涉及纳米领域;具体涉及一种纯红色上转换发光纳米材料及其制备方法,特别是稀土掺杂CuScInF8红色上转换发光纳米材料及其制备方法。
背景技术
上转换发光是一种非线性反斯托克斯光学过程,其中稀土离子通过吸收两个或多个近红外低能光子,可发射可见或紫外波段的高能光子。稀土掺杂上转换纳米颗粒(UCNP)具有独特的光学性质,如窄带发射、大的反斯托克斯位移、高化学稳定性和光稳定性、长荧光寿命、高信噪比(S/N),对生物样品光损伤小、穿透深度大。具有单发射峰的纯色上转换发光纳米颗粒,作为荧光编码微球的功能单元,在高通量、高灵敏、快速生物荧光检测领域具有重要的应用前景。
镧系稀土离子是上转换发光最常见的发光中心,然而由于镧系离子激发态能级非常丰富,造成镧系掺杂纳米晶在可见光波段通常显示出多峰发射光谱,这成为获得单色性或色纯度佳的红色上转换发光材料的主要难点。为此,常常采用Er3+作为发光中心,通过掺杂其他离子猝灭Er3+的绿峰发射提高其红色发光的色纯度,然而,在猝灭绿峰发射的同时也会降低红峰发射的强度,导致红峰发射强度不高且不稳定的现象。因此,本专利提出来一种更加有效的稀土纯红色上转换发光策略。
发明内容
本发明以CuScInF8晶格作为基质,Er3+离子作为发光中心占据Sc3+格位,Cu2+离子分布于Er3+周围作为蓝绿波段离子猝灭中心,通过在In3+的格位掺杂Mg2+增强晶格畸变,可实现增强Er3+的红峰发射的目标,获得单色性较好且强度较高的红色上转换发光纳米颗粒。该新型的纯红色上转换发光纳米材料纳米晶均匀性、稳定性都较好,红色光强度和单色性都较高。
本发明提供的一种纯红色上转换发光纳米材料,其结构通式为:CuSc1-xIn1-yF8:xEr3+,yMg2+,其中x+y=0.2,y=0-0.02,所述x为Er掺杂的摩尔浓度,y为Mg掺杂的摩尔浓度,1-x为Sc掺杂的摩尔浓度,1-y为In掺杂的摩尔浓度。
优选地,该纯红色上转换发光纳米材料结构式为CuSc0.81In0.99F8:0.19Er3+,0.01Mg2+
另一方面,本发明还提供一种纯红色上转换发光纳米材料的制备方法,包括如下步骤:
S1.按照化学计量比例取氯化钪,氯化铟,氯化铒,氯化镁,与5ml三辛基氧化膦
(TOPO)和15ml三辛胺在50ml三颈烧瓶中混合,在Ar气氛下加热至150℃下搅拌形成均一溶液,然后冷却至50℃;
S2.向烧瓶中缓慢加入10ml含CuCl2和NH4F的甲醇溶液;常温下混合搅拌30min;
S3.将溶液缓慢加热蒸发甲醇,排净后,在100℃下脱气10min;
S4.在Ar气氛下迅速升温至290℃,并保持1h;
S5.待溶液自然冷却至室温后,用乙醇从溶液中析出纳米晶,用乙醇/环己烷溶液(体积比3:1)洗涤3次,得纯红色上转换发光纳米材料。
优选的,步骤S1-S5均在通风橱中操作。
步骤S1中,三辛基氧化膦(TOPO)的体积为5ml,三辛胺的体积为15ml。
步骤S2中,甲醇溶液含2mmol CuCl2和10mmol NH4F。
通过本发明制备方法制备纯红色上转换发光纳米材料,可以稳定CuScInF8基质,制备工艺简单,制备出的纯红色上转换发光纳米材料米晶均匀性、稳定性都较好,红色光强度和单色性都较高。
有益效果:
本发明以CuScInF8晶格作为基质,Er3+离子作为发光中心占据Sc3+格位,Cu2+离子分布于Er3+周围作为蓝绿波段离子猝灭中心,通过在In3+的格位掺杂Mg2+增强晶格畸变,可实现增强Er3+的红峰发射的目标,可以获得单色性较好且强度较高的红色上转换发光纳米颗粒。在980nm波长的激发下,Er3+主要发射出541nm(4S3/2-4I15/2)和650nm(4F9/2-4I15/2)的绿色和红色发射峰。掺杂Cu2+后,Er3+4S3/2会与Cu2+3P1能级发生交叉驰豫,同时Cu2+的发光猝灭浓度较低,导致较易在低浓度Cu2+掺杂的条件下同时猝灭Er3+和Cu2+的绿色发光,由此获得良好的纯色红光上转换发射。
本发明掺杂Er3+和Cu2+后因掺杂浓度过高会出现浓度猝灭导致发光强度不高的现象,为了提高发光强度,掺杂Mg2+作为敏化剂,与Er3+发生能量传递过程,大大增强了Er3+的红峰强度。
本发明制备方法工艺简单,使用控温仪精确控制温度,并且在通风橱中进行,可以避免外界影响对温度的波扰,从而制备过程可实现对温度的精确控制,本发明所制备的纳米颗粒形貌均匀性好,颗粒尺寸约在40nm左右,可以在980nm近红外激发波长下实现几乎纯净的红色上转换发光,且较低功率下就可以得到较高的发光强度,提高了发光效率。
附图说明
图1是本发明实施例三中制备的CuScInF8纯红色上转换发光纳米材料基质的XRD图。
图2是本发明具体实施例一至实施例五中980nm激光激发不同Er3+、Mg2+离子浓度组合掺杂CuScInF8样品上转换荧光光谱图。
图3是本发明实施例三中制备的CuScInF8纯红色上转换发光纳米材料基质的TEM图,颗粒尺寸约在40nm左右。
图4是本发明对比例和实施例一至五中980nm激光激发不同Er3+、Mg2+离子浓度组合掺杂CuScInF8样品CIE1931色坐标图。
具体实施方式
为了更好地理解本发明,下面结合附图及实施例进一步阐述本发明的内容,本发明技术方案不局限于以下所列举的具体实施例。
对比例:
为证实本专利基质结构对提高红色色纯度的有益作用,在对比例中使用常用的NaYF4作为基质,掺杂Er、Mg。
将0.8mmol氯化钇,0.19mmol氯化铒,0.01mmol氯化镁,5ml三辛基氧化膦(TOPO)和15ml三辛胺在50ml三颈烧瓶中混合,在Ar气氛下加热至150℃下搅拌形成均一溶液。
等上一步所得透明溶液冷却至50℃时,向烧瓶中缓慢加入10ml含NaCl(2mmol)和NH4F(10mmol)的甲醇溶液,并在常温下混合搅拌30min。
在搅拌条件下将上一步所得到的溶液缓慢加热蒸发甲醇,待甲醇排净后,在100℃下脱气10min。
在搅拌条件下在氩气气氛下迅速加热升温至290℃,持续搅拌并保温一小时;
等上一步所得溶液冷却到室温后停止搅拌,用乙醇从溶液中析出纳米晶,用乙醇/环己烷溶液(体积比3:1)洗涤3次,即得到红色上转换发光纳米材料NaYF4:0.19Er3+,0.01Mg2+
实施例一:
将0.8mmol氯化钪,1mmol氯化铟,0.2mmol氯化铒,0mmol氯化镁(即未添加氯化镁),5ml三辛基氧化膦(TOPO)和15ml三辛胺在50ml三颈烧瓶中混合,在Ar气氛下加热至150℃下搅拌形成均一溶液。
等上一步所得透明溶液冷却至50℃时,向烧瓶中缓慢加入10ml含CuCl2(2mmol)和NH4F(10mmol)的甲醇溶液,并在常温下混合搅拌30min。
在搅拌条件下将上一步所得到的溶液缓慢加热蒸发甲醇,待甲醇排净后,在100℃下脱气10min。
在搅拌条件下在氩气气氛下迅速加热升温至290℃,持续搅拌并保温一小时;
等上一步所得溶液冷却到室温后停止搅拌,用乙醇从溶液中析出纳米晶,用乙醇/环己烷溶液(体积比3:1)洗涤3次,即得到纯红色上转换发光纳米材料CuSc0.8InF8:0.2Er3+
实施例二:
将0.805mmol氯化钪,0.995mmol氯化铟,0.195mmol氯化铒,0.005mmol氯化镁,5ml三辛基氧化膦(TOPO)和15ml三辛胺在50ml三颈烧瓶中混合,在Ar气氛下加热至150℃下搅拌形成均一溶液。
等上一步所得透明溶液冷却至50℃时,向烧瓶中缓慢加入10ml含CuCl2(2mmol)和NH4F(10mmol)的甲醇溶液,并在常温下混合搅拌30min。
在搅拌条件下将上一步所得到的溶液缓慢加热蒸发甲醇,待甲醇排净后,在100℃下脱气10min。
在搅拌条件下在氩气气氛下迅速加热升温至290℃,持续搅拌并保温一小时;
等上一步所得溶液冷却到室温后停止搅拌,用乙醇从溶液中析出纳米晶,用乙醇/环己烷溶液(体积比3:1)洗涤3次,即得到单红色上转换荧光标记颗粒CuSc0.805In0.995F8:0.195Er3+,0.005Mg2+
实施例三:
将0.81mmol氯化钪,0.99mmol氯化铟,0.19mmol氯化铒,0.01mmol氯化镁,5ml三辛基氧化膦(TOPO)和15ml三辛胺在50ml三颈烧瓶中混合,在Ar气氛下加热至150℃下搅拌形成均一溶液。
等上一步所得透明溶液冷却至50℃时,向烧瓶中缓慢加入10ml含CuCl2(2mmol)和NH4F(10mmol)的甲醇溶液,并在常温下混合搅拌30min。
在搅拌条件下将上一步所得到的溶液缓慢加热蒸发甲醇,待甲醇排净后,在100℃下脱气10min。
在搅拌条件下在氩气气氛下迅速加热升温至290℃,持续搅拌并保温一小时;
等上一步所得溶液冷却到室温后停止搅拌,用乙醇从溶液中析出纳米晶,用乙醇/环己烷溶液(体积比3:1)洗涤3次,即得到单红色上转换荧光标记颗粒CuSc0.81In0.99F8:0.19Er3+,0.01Mg2+
实施例四:
将0.815mmol氯化钪,0.985mmol氯化铟,0.185mmol氯化铒,0.015mmol氯化镁,5ml三辛基氧化膦(TOPO)和15ml三辛胺在50ml三颈烧瓶中混合,在Ar气氛下加热至150℃下搅拌形成均一溶液。
等上一步所得透明溶液冷却至50℃时,向烧瓶中缓慢加入10ml含CuCl2(2mmol)和NH4F(10mmol)的甲醇溶液,并在常温下混合搅拌30min。
在搅拌条件下将上一步所得到的溶液缓慢加热蒸发甲醇,待甲醇排净后,在100℃下脱气10min。
在搅拌条件下在氩气气氛下迅速加热升温至290℃,持续搅拌并保温一小时;
等上一步所得溶液冷却到室温后停止搅拌,用乙醇从溶液中析出纳米晶,用乙醇/环己烷溶液(体积比3:1)洗涤3次,即得到单红色上转换荧光标记颗粒CuSc0.815In0.985F8:0.185Er3+,0.015Mg2+
实施例五:
将0.82mmol氯化钪,0.98mmol氯化铟,0.18mmol氯化铒,0.02mmol氯化镁,5ml三辛基氧化膦(TOPO)和15ml三辛胺在50ml三颈烧瓶中混合,在Ar气氛下加热至150℃下搅拌形成均一溶液。
等上一步所得透明溶液冷却至50℃时,向烧瓶中缓慢加入10ml含CuCl2(2mmol)和NH4F(10mmol)的甲醇溶液,并在常温下混合搅拌30min。
在搅拌条件下将上一步所得到的溶液缓慢加热蒸发甲醇,待甲醇排净后,在100℃下脱气10min。
在搅拌条件下在氩气气氛下迅速加热升温至290℃,持续搅拌并保温一小时;
等上一步所得溶液冷却到室温后停止搅拌,用乙醇从溶液中析出纳米晶,用乙醇/环己烷溶液(体积比3:1)洗涤3次,即得到单红色上转换荧光标记颗粒CuSc0.82In0.98F8:0.18Er3+,0.02Mg2+
实施例六:发光性能试验
将对比例和实施例一至实施例五所制备的纳米颗粒在980nm激光激发下发射光谱,其相关波长、强度和色纯度见表一所示。
表一:
由表一可得,实施例三制备的红色上转换荧光标记颗粒CuSc0.81In0.99F8:0.19Er3+,0.01Mg2+,在660nm左右拥有最强的荧光和最高的色纯度,其色纯度高至95.25%。其基质的XRD图为图1所示,TEM图如图3所示。
实施例一至五制备的红色上转换荧光标记颗粒,在980nm激光激发下发射光谱如图2所示,由图2可以看出:在CuScInF8基质中掺杂Er3+后,显示出绿色(540nm,左边小峰)和红色(660nm,右边高峰)两种颜色的上转换发光(实施例一),再掺杂Mg2+后,绿峰得到抑制的同时红色上转换荧光强度有显著升高(实施例二、三),色纯度得到提高,但是随着Mg2+掺杂量的增加,红峰强度又呈现下降的趋势(实施例四、五),因此最佳掺杂浓度组合应为:CuSc0.81In0.99F8:0.19Er3+,0.01Mg2+(实施例三)。如图4中对比例和实施例一至五中980nm激光激发不同Er3+、Mg2+离子浓度组合掺杂CuScInF8样品CIE1931色坐标图显示,对比例的红色单色并不明显,实施例一至实施例五的单红色纯度较高,都达到了84%以上,其中实施例三的单红色纯度最高,达到95.25%。
如图2和图4所示,实施例三中的纯红色上转换荧光标记材料CuSc0.81In0.99F8:0.19Er3+,0.01Mg2+在980nm近红外激发下的发射光谱,与实施例一、二、四、五在980nm近红外激发下的发射曲线相比,实施例三在660nm左右拥有最强的荧光和最高的色纯度,其色纯度高至95.25%,成功实现了单红色上转换发光的目标。
本发明所设计合成的单红色上转换荧光标记材料可应用于荧光标记、生物检测等领域,既可以满足不同检测条件及检测要求,又可以得出精度强,准确性高的检测结果。

Claims (6)

1.一种纯红色上转换发光纳米材料,其特征在于,其结构通式为: CuSc1-xIn1-yF8: xEr3 +,yMg2+,其中x+y=0.2,y=0-0.02,所述x为Er掺杂的摩尔浓度,y为Mg掺杂的摩尔浓度。
2.根据权利要求1所述的纯红色上转换发光纳米材料,其特征在于,其结构式为CuSc0.81In0.99F8: 0.19Er3+,0.01Mg2+
3.如权利要求1或2的纯红色上转换发光纳米材料的制备方法,其特征在于,包括如下步骤:
S1. 按照化学计量比例取氯化钪,氯化铟,氯化铒,氯化镁,与三辛基氧化膦( TOPO )和三辛胺在50ml三颈烧瓶中混合,在Ar气氛下加热至150℃下搅拌形成均一溶液,然后冷却至50℃;
S2.向烧瓶中缓慢加入含CuCl2和NH4F的甲醇溶液,常温下混合搅拌30min;
S3.将搅拌后的溶液缓慢加热蒸发甲醇,待甲醇排净后,在100℃下脱气10min;
S4.在Ar气氛下迅速升温至290℃,并保持1h;
S5.待溶液自然冷却至室温后,用乙醇从溶液中析出纳米晶,用乙醇/环己烷溶液洗涤3次,乙醇与环己烷的体积比为3:1,得纯红色上转换发光纳米材料。
4.根据权利要求3所述的纯红色上转换发光纳米材料的制备方法,其特征在于,步骤S1-S5均在通风橱中操作。
5.根据权利要求3所述的纯红色上转换发光纳米材料的制备方法,其特征在于,步骤S1中,三辛基氧化膦( TOPO )的体积为5ml,三辛胺的体积为15ml。
6.根据权利要求3所述的纯红色上转换发光纳米材料的制备方法,其特征在于,步骤S2中,甲醇溶液含2 mmol CuCl2和10 mmol NH4F。
CN202310419528.1A 2023-04-19 2023-04-19 一种纯红色上转换发光纳米材料及其制备方法 Active CN116445163B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310419528.1A CN116445163B (zh) 2023-04-19 2023-04-19 一种纯红色上转换发光纳米材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310419528.1A CN116445163B (zh) 2023-04-19 2023-04-19 一种纯红色上转换发光纳米材料及其制备方法

Publications (2)

Publication Number Publication Date
CN116445163A CN116445163A (zh) 2023-07-18
CN116445163B true CN116445163B (zh) 2024-02-27

Family

ID=87123370

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310419528.1A Active CN116445163B (zh) 2023-04-19 2023-04-19 一种纯红色上转换发光纳米材料及其制备方法

Country Status (1)

Country Link
CN (1) CN116445163B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5541012A (en) * 1992-05-08 1996-07-30 Nippon Telegraph And Telephone Corporation Infrared-to-visible up-conversion material
CN108359458A (zh) * 2018-01-15 2018-08-03 湖州师范学院 一种多孔稀土掺杂Li4ZrF8上转换纳米晶及其制备方法
CN113072939A (zh) * 2020-01-03 2021-07-06 中国科学院福建物质结构研究所 生物体内可降解上转换无机纳米材料及制备方法和应用
WO2021134786A1 (zh) * 2020-01-03 2021-07-08 中国科学院福建物质结构研究所 生物体内可降解上转换无机纳米材料及制备方法和应用
CN113403072A (zh) * 2021-06-21 2021-09-17 上海应用技术大学 一种孔洞结构的稀土掺杂氟化铪锂基上转换发光纳米材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6654161B2 (en) * 1998-11-25 2003-11-25 University Of Central Florida Dispersed crystallite up-conversion displays

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5541012A (en) * 1992-05-08 1996-07-30 Nippon Telegraph And Telephone Corporation Infrared-to-visible up-conversion material
CN108359458A (zh) * 2018-01-15 2018-08-03 湖州师范学院 一种多孔稀土掺杂Li4ZrF8上转换纳米晶及其制备方法
CN113072939A (zh) * 2020-01-03 2021-07-06 中国科学院福建物质结构研究所 生物体内可降解上转换无机纳米材料及制备方法和应用
WO2021134786A1 (zh) * 2020-01-03 2021-07-08 中国科学院福建物质结构研究所 生物体内可降解上转换无机纳米材料及制备方法和应用
CN113403072A (zh) * 2021-06-21 2021-09-17 上海应用技术大学 一种孔洞结构的稀土掺杂氟化铪锂基上转换发光纳米材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BaY2F8 doped with Er3+: An upconverter materials for photovoltaic application;A. Boccolini et al.;《Journal of applied physics》;第114卷;第064904(1-6)页 *
Crytsal Structure of Copper(II) Fluorindate(III) Cu(InF4)2.10H2O;R. L. Davidovich et al.;《Journal of Structure Chemistry》;第58卷(第7期);第1436-1439页 *
Yb3+/Er3+共掺杂 BaY2F8 纳米颗粒的水热合成与上转换发光;乔旭升 等;《材料科学与工程学报》;第28卷(第5期);第663-666、669页 *

Also Published As

Publication number Publication date
CN116445163A (zh) 2023-07-18

Similar Documents

Publication Publication Date Title
Peng et al. Combustion synthesis and photoluminescence of SrAl2O4: Eu, Dy phosphor nanoparticles
Packiyaraj et al. Structural and photoluminescence studies of Eu3+ doped cubic Y2O3 nanophosphors
Song et al. Gd 2 O 2 S: Yb, Er submicrospheres with multicolor upconversion fluorescence
Suo et al. Mechanism and stability of spectrally pure green up-conversion emission in Yb 3+/Ho 3+ co-doped Ba 5 Gd 8 Zn 4 O 21 phosphors
Kumar et al. Dysprosium activated strontium aluminate phosphor: A potential candidate for WLED applications
Zheng et al. Bright white upconversion emission from Yb3+, Er 3+, and Tm3+-codoped Gd 2 O 3 nanotubes
KR101792800B1 (ko) 색조절이 가능한 상향변환 나노형광체 및 그 제조방법
CN110229348B (zh) 一种具有蓝光上转换的Er3+/Tm3+-MOFs荧光材料及其制备方法
Zheng et al. Multicolor tunable luminescence and laser-sensitization induced upconversion enhancement in Ln-doped Gd 2 O 3 crystals for anti-counterfeiting
Pang et al. One-step synthesis of water-soluble hexagonal NaScF 4: Yb/Er nanocrystals with intense red emission
Xue et al. Research on a persistent red tone fluorescent polyacrylonitrile fiber with coaxial structure based on Sr2MgSi2O7: Eu2+, Dy3+ and Y2O2S: Eu3+, Mg2+, Ti4+
Sahu et al. Europium doped di-calcium magnesium di-silicate orange–red emitting phosphor by solid state reaction method
Yang et al. Optical performance study of Sr2ZnSi2O7: Eu2+, Dy3+, SrAl2O4: Eu2+, Dy3+ and Y2O2S: Eu3+, Mg2+, Ti4+ ternary luminous fiber
De et al. Effect of OH− on the upconversion luminescent efficiency of Y2O3: Yb3+, Er3+ nanostructures
Ashwini et al. Near UV-light excitable SrAl2O4: Eu3+ nanophosphors for display device applications
CN109943336A (zh) 一种稀土离子掺杂氯氧化铋半导体材料及其制备方法
Verma et al. Photoluminescent and thermoluminescent studies of Dy 3+ and Eu 3+ doped Y 2 O 3 phosphors
Melato et al. Effect of Ho3+ concentration on the structure, morphology and optical properties of Ba0. 5Mg0. 5Al2O4 nanophosphor
Tamrakar et al. Structural and luminescence behavior of Gd2O3: Er3+ phosphor synthesized by solid state reaction method
Lewandowski et al. Structural and luminescent study of TeO2-BaO-Bi2O3-Ag glass system doped with Eu3+ and Dy3+ for possible color-tunable phosphor application
Gupta et al. Crystallographic and luminescence studies of Gd2Si2O7: Er3+ nanomaterials for NUV energized lighting applications
Kokate et al. Visible emission characteristics in Tb3+-doped KNa3Al4Si4O16 phosphor
Zhang et al. White up-conversion luminescence power and efficiency in Yb 3+-, Er 3+-and Tm 3+-doped BaIn 6 Y 2 O 13
Wang et al. Color-tunable photoluminescence and persistent luminescence in a single LiYGeO4: Tb3+ phosphor
CN116445163B (zh) 一种纯红色上转换发光纳米材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant