CN116440927A - 一种银修饰硫化钼纳米花的制备方法 - Google Patents

一种银修饰硫化钼纳米花的制备方法 Download PDF

Info

Publication number
CN116440927A
CN116440927A CN202310454288.9A CN202310454288A CN116440927A CN 116440927 A CN116440927 A CN 116440927A CN 202310454288 A CN202310454288 A CN 202310454288A CN 116440927 A CN116440927 A CN 116440927A
Authority
CN
China
Prior art keywords
mos
modified
silver
silver nitrate
ethyl alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310454288.9A
Other languages
English (en)
Inventor
杨丰
罗晶
吴汉水
史慧军
吕其洋
吴昊天
蔡芷盈
车驰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jingdezhen Ceramic Institute
Original Assignee
Jingdezhen Ceramic Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jingdezhen Ceramic Institute filed Critical Jingdezhen Ceramic Institute
Priority to CN202310454288.9A priority Critical patent/CN116440927A/zh
Publication of CN116440927A publication Critical patent/CN116440927A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/051Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种银修饰硫化钼纳米花的制备方法,包括如下步骤:硝酸银溶液的配置:取0.087g硝酸银溶于27ml去离子水中,充分混合后备用;取适量MoS2粉末与硝酸银溶液于光催化仪器的适配石英管中,加入适量无水乙醇和柠檬酸钠,超声20min后向试管中加入转子,将石英试管放入光催化反应仪中,同时磁力搅拌,用500W汞灯进行照射,90min后,所得悬浊液经去离子水和无水乙醇各交替清洗3遍后,放入80℃干燥箱24h,得到Ag修饰MoS2纳米花粉末。本发明的催化剂具有高活性、超低贵金属含量、多种贵金属普适,具有高比表面积,有利于活性组分均匀分布,不仅能扩大光响应范围,还能抑制载流子的复合。

Description

一种银修饰硫化钼纳米花的制备方法
技术领域
本发明涉及催化剂制备技术领域,具体涉及一种银修饰硫化钼纳米花的制备方法。
背景技术
在硫族化合物中,二硫化钼(MoS2)以其成本低、稳定性高、无毒、表面积大、催化活性位点比例高等特点备受研究人员的青睐。超薄结构的二维MoS2由于这些优越的物理化学性能,在工业、农业、环境、医学制药、新能源等各个领域都表现出巨大潜能。主要应用于光电催化、废水处理、抗菌检测、环境修复、能量转换,存储设备、电化学传感器等众多方面。在科技发达而生态环境堪忧的未来世界将会是应用丰富广泛的功能材料。
在废水处理,降解污染物的方法中,半导体光催化剂是最受欢迎的一种,面对能源日益枯竭的地球来说,取之不尽用之不竭的太阳能成为科学家们竭力追求的新能源,除了解决能源危机,太阳普照大地,没有地域限制,能直接开发利用,不需要开采运输,而且在环境污染日益严重的今天,太阳能作为目前最清洁的能源之一,利用光催化剂开发不会引起污染,这一点是人们梦寐以求的。其中二氧化钛(TiO2)无疑是最成熟和最具代表性的光催化剂,但其宽禁带(3.2eV)直接限制了其对可见光的响应。与宽带TiO2不同,MoS2是一种窄带隙(1.29eV~1.9eV)的可见光半导体,很容易被可见光激发。MoS2具有典型的三明治结构,由三原子厚区(S–Mo–S)和合适的带隙组成,促进了电荷载体的快速传输,使MoS2成为可见光范围内具有宽光谱吸收的光催化剂的最佳候选材料。但二硫化钼由于其较窄的禁带宽度、较差的导电性以及较快的电子空穴复合率限制了其发展,因此人们致力于进一步优化二硫化钼的性能,例如改变其自身的结构,包括层数、尺寸以及空位的控制;又或者是调制混合结构,包括金属/非金属元素的掺杂、表面修饰金属、构建异质结等。然而,这些工艺具有功耗高、对设备要求高,运行成本高、流程复杂、容易生成杂质、实验操作具有危险性等特点。
如发明专利202020807061.4中的方法需要反复抽真空和反复用气体冲洗,制备时间长,并且合金中容易引入杂质。Investigatingtheinfluenceof silverstateonelectronicpropertiesofAg/Ag2O/TiO2heterojunctions preparedbyphotodeposition中试剂的选择又具有危害性,苯醌作为超氧自由基的清除剂,具有高毒性、易挥发、升华,刺激性气味等特性。对眼睛、皮肤、黏膜,特别对眼角膜有强烈刺激性,长期接触会引起眼球晶状体混浊、结膜炎、角膜溃疡等角膜障碍,严重情况下可导致皮肤组织坏死。专利202110722718.1中的方法工作效率低,消耗能量较大;研磨体与机体的摩擦损耗很大,并会沾污产物。
发明内容
为解决上述问题,本发明提供了一种银修饰硫化钼纳米花的制备方法,采用光致还原法成功制备了AgNPs-MoS2纳米复合材料,该催化剂具有高活性、超低贵金属含量、多种贵金属普适,具有高比表面积,有利于活性组分均匀分布,不仅能扩大光响应范围,还能抑制载流子的复合。
为实现上述目的,本发明采取的技术方案为:
一种银修饰硫化钼纳米花的制备方法,包括如下步骤:
S1、硝酸银溶液的配置:取0.085g硝酸银溶于27ml去离子水中,充分混合后备用;
S2、取适量MoS2粉末与硝酸银溶液于光催化仪器的适配石英管中,加入适量无水乙醇和柠檬酸钠,超声20min后向试管中加入转子,将石英试管放入光催化反应仪中,同时磁力搅拌,用500W汞灯进行照射,90min后,所得悬浊液经去离子水和无水乙醇各交替清洗3遍后,放入80℃干燥箱24h,得到Ag修饰MoS2纳米花粉末。
进一步地,以Ag:MoS2=5:100的比例量取MoS2粉末与硝酸银溶液,此时,所述步骤S2,包括如下步骤:
取20mgMoS2粉末与5ml硝酸银溶液于光催化仪器的适配石英管中,再加入20ml无水乙醇和0.1g柠檬酸钠,超声20min后向试管中加入转子,将石英试管放入光催化反应仪中,同时磁力搅拌调节转速为700r/min,使汞灯充分照射催化剂与溶液的混合物,Ag颗粒修饰地更加均匀,汞灯功率设置为500W。90min后,所得悬浊液经过去离子水和无水乙醇各交替清洗3遍后,放入80℃干燥箱24小时,得到Ag修饰MoS2纳米花粉末。
本发明提供了一种成本及设备要求低,合成操作简单快捷,低毒无污染,操作安全的方法。其机理系利用高能量紫外光照射反应溶液产生高还原能力之自由基,进而产生还原反应。具体地,其利用导电纳米材料Ag装饰二硫化钼,采用无水乙醇作为空穴捕获剂,柠檬酸钠作稳定剂,加快反应的进程以及Ag的沉积率,而无水乙醇低毒安全又能捕捉空穴的特性使得它成为光还原的优选溶剂,采用光致还原法成功制备了AgNPs-MoS2本发明的整个制备流程在光化学反应仪中进行,安全无毒,用无水乙醇作为空穴捕获剂,配合磁力搅拌器,使混合溶液搅拌均匀,充分反应,让光生电子和空穴有效分离,促进银离子在MoS2上的沉积。并且在紫外光的作用下发生的还原反应,无其他物质的增加,有效防止杂质的生成,方便又快捷。在催化、制氢、锂电池及气敏传感器等方面的性能也有巨大提升。纳米复合材料。该纳米复合材料具有高活性、超低贵金属含量、多种贵金属普适,具有高比表面积,有利于活性组分均匀分布,不仅能扩大光响应范围,还能抑制载流子的复合。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为Ag修饰MoS2纳米花(Ag:MoS2=5:100)的TEM图。
图2为本发明实施例1的纯MoS2和Ag-MoS2的XRD射线衍射图谱。
图3为本发明实施例1的Ag修饰MoS2的EDS能谱图。
图4为本发明实施例1的Ag修饰MoS2的元素分析图数据。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
实施例1
一种银修饰硫化钼纳米花的制备方法,包括如下步骤:
S1、硝酸银溶液的配置:取0.085g硝酸银溶于27ml去离子水中,充分混合后备用;
S2、取20mgMoS2粉末与5ml硝酸银溶液于光催化仪器的适配石英管中,再加入20ml无水乙醇和0.1g柠檬酸钠,超声20min后向试管中加入转子,将石英试管放入光催化反应仪中,同时磁力搅拌调节转速为700r/min,使汞灯充分照射催化剂与溶液的混合物,Ag颗粒修饰地更加均匀,汞灯功率设置为500W。90min后,所得悬浊液经过去离子水和无水乙醇各交替清洗3遍后,放入80℃干燥箱24小时,得到Ag修饰MoS2纳米花粉末。
图1为本发明实施例1所得的Ag修饰MoS2纳米花粉末的TEM图,由图可知,纳米Ag颗粒已成功修饰在了MoS2纳米花的表面。
图2为纯MoS2和Ag-MoS2的XRD射线衍射图谱,由图可知经过紫外光照射后形成的产物——Ag-MoS2峰位无明显变化,也无明显缺失,在少量贵金属修饰反应没有改变物质结构,没有发现其他来自金属氧化物、二元硫化物或未反应物的杂质峰,这表明它们具有较高的相纯度和良好的结晶度,如上述所说,并未引入杂质。
图3、图4为Ag修饰MoS2的EDS能谱图以及元素分析图数据,EDS证实了元素组成和掺杂剂的存在。由此图进一步证实了Ag颗粒负载生长在纳米花结构上.
本发明的整个制备流程在光化学反应仪中进行,安全无毒,用无水乙醇作为空穴捕获剂,配合磁力搅拌器,使混合溶液搅拌均匀,充分反应,让光生电子和空穴有效分离,促进银离子在MoS2上的沉积。并且在紫外光的作用下发生的还原反应,无其他物质的增加,有效防止杂质的生成,方便又快捷。在催化、制氢、锂电池及气敏传感器等方面的性能也有巨大提升。
本实施例中,被修饰的半导体材料也可进行更改(WO3、Cu2O、TiO2、ZnO、BiOBr),如:
硝酸银的制备:取0.085g硝酸银溶于27ml去离子水中,充分混合后备用。
可制备Ag/WO3不同质量比的复合催化剂,以Ag:WO3=5:100为例:
取20mgWO3粉末(实验室水热法自制)与5ml硝酸银溶液于光催化仪器的适配石英管中,再加入20ml无水乙醇,超声20min,使WO3更加分散,Ag修饰更加均匀,之后向试管中加入转子,将石英试管放入光催化反应仪中,同时磁力搅拌调节转速为700r/min,使汞灯充分照射催化剂与溶液的混合物,Ag颗粒修饰地更加均匀,汞灯功率设置为500W。90min后,所得悬浊液经过去离子水和无水乙醇各交替清洗3遍后,放入80℃干燥箱24小时,得到Ag修饰WO3纳米花粉末样品。
金属修饰的种类也很多,如金、铂、镍、钴等。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

Claims (3)

1.一种银修饰硫化钼纳米花的制备方法,其特征在于:包括如下步骤:
S1、硝酸银溶液的配置:取0.085g硝酸银溶于27ml去离子水中,充分混合后备用;
S2、取适量MoS2粉末与硝酸银溶液于光催化仪器的适配石英管中,加入适量无水乙醇和柠檬酸钠,超声20min后向试管中加入转子,将石英试管放入光催化反应仪中,同时磁力搅拌,用500W汞灯进行照射,90min后,所得悬浊液经去离子水和无水乙醇各交替清洗3遍后,放入80℃干燥箱24h,得到Ag修饰MoS2纳米花粉末。
2.如权利要求1所述的一种银修饰硫化钼纳米花的制备方法,其特征在于:以Ag:MoS2=5:100的比例量取MoS2粉末与硝酸银溶液。
3.如权利要求1所述的一种银修饰硫化钼纳米花的制备方法,其特征在于:所述步骤S2,包括如下步骤:
取20mg MoS2粉末与5ml硝酸银溶液于光催化仪器的适配石英管中,再加入20ml无水乙醇和0.1g柠檬酸钠,超声20min后向试管中加入转子,将石英试管放入光催化反应仪中,同时磁力搅拌调节转速为700r/min,使汞灯充分照射催化剂与溶液的混合物,Ag颗粒修饰地更加均匀,汞灯功率设置为500W。90min后,所得悬浊液经过去离子水和无水乙醇各交替清洗3遍后,放入80℃干燥箱24小时,得到Ag修饰MoS2纳米花粉末。
CN202310454288.9A 2023-04-25 2023-04-25 一种银修饰硫化钼纳米花的制备方法 Pending CN116440927A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310454288.9A CN116440927A (zh) 2023-04-25 2023-04-25 一种银修饰硫化钼纳米花的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310454288.9A CN116440927A (zh) 2023-04-25 2023-04-25 一种银修饰硫化钼纳米花的制备方法

Publications (1)

Publication Number Publication Date
CN116440927A true CN116440927A (zh) 2023-07-18

Family

ID=87123627

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310454288.9A Pending CN116440927A (zh) 2023-04-25 2023-04-25 一种银修饰硫化钼纳米花的制备方法

Country Status (1)

Country Link
CN (1) CN116440927A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102581299A (zh) * 2012-02-21 2012-07-18 金淞电器(九江)有限公司 一种贵金属纳米粒子的光化学制备方法
TW201330955A (zh) * 2012-01-20 2013-08-01 King Post Jiujiang Ind Co Ltd 貴金屬奈米粒子的製造方法
US20150158017A1 (en) * 2012-06-29 2015-06-11 Cnrs Metal sulphide-based composite photocatalyst for producing hydrogen
CN105664976A (zh) * 2016-01-13 2016-06-15 三峡大学 一种负载型二维层状硫化钼复合材料及其制备方法和应用
US20160193595A1 (en) * 2013-07-01 2016-07-07 Prashant Nagpal Nanostructured photocatalysts and doped wide-bandgap semiconductors
CN106994360A (zh) * 2017-04-05 2017-08-01 江苏大学 一种z构型可见光催化分解水复合材料的制备方法
CN107744818A (zh) * 2017-10-23 2018-03-02 南昌航空大学 二硫化钼负载银光催化剂的制备方法
CN109482201A (zh) * 2018-12-11 2019-03-19 西安理工大学 一种银掺杂二硫化钼纳米片光催化剂的制备方法
CN111974385A (zh) * 2020-09-24 2020-11-24 南京大学 一种高效光催化去除高浓度硝酸盐的光催化材料及其制备方法和应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201330955A (zh) * 2012-01-20 2013-08-01 King Post Jiujiang Ind Co Ltd 貴金屬奈米粒子的製造方法
CN102581299A (zh) * 2012-02-21 2012-07-18 金淞电器(九江)有限公司 一种贵金属纳米粒子的光化学制备方法
US20150158017A1 (en) * 2012-06-29 2015-06-11 Cnrs Metal sulphide-based composite photocatalyst for producing hydrogen
US20160193595A1 (en) * 2013-07-01 2016-07-07 Prashant Nagpal Nanostructured photocatalysts and doped wide-bandgap semiconductors
CN105664976A (zh) * 2016-01-13 2016-06-15 三峡大学 一种负载型二维层状硫化钼复合材料及其制备方法和应用
CN106994360A (zh) * 2017-04-05 2017-08-01 江苏大学 一种z构型可见光催化分解水复合材料的制备方法
CN107744818A (zh) * 2017-10-23 2018-03-02 南昌航空大学 二硫化钼负载银光催化剂的制备方法
CN109482201A (zh) * 2018-12-11 2019-03-19 西安理工大学 一种银掺杂二硫化钼纳米片光催化剂的制备方法
CN111974385A (zh) * 2020-09-24 2020-11-24 南京大学 一种高效光催化去除高浓度硝酸盐的光催化材料及其制备方法和应用
US20230372918A1 (en) * 2020-09-24 2023-11-23 Nanjing University Photocatalytic material for efficient photocatalytic removal of high-concentration nitrate, and preparation method and use thereof

Similar Documents

Publication Publication Date Title
Zhang et al. Fabrication of Ag decorated g-C3N4/LaFeO3 Z-scheme heterojunction as highly efficient visible-light photocatalyst for degradation of methylene blue and tetracycline hydrochloride
Kaur et al. Photodegradation of organic pollutants using heterojunctions: A review
Wang et al. Construction of Bi-assisted modified CdS/TiO2 nanotube arrays with ternary S-scheme heterojunction for photocatalytic wastewater treatment and hydrogen production
Nahyoon et al. Significant photocatalytic degradation and electricity generation in the photocatalytic fuel cell (PFC) using novel anodic nanocomposite of Fe, graphene oxide, and titanium phosphate
Wu et al. CeO2/Co3O4 porous nanosheet prepared using rose petal as biotemplate for photo-catalytic degradation of organic contaminants
Yang et al. Visible-light-driven photocatalytic degradation of 4-CP and the synergistic reduction of Cr (VI) on one-pot synthesized amorphous Nb2O5 nanorods/graphene heterostructured composites
Khan et al. C-doped ZnS-ZnO/Rh nanosheets as multijunctioned photocatalysts for effective H2 generation from pure water under solar simulating light
Yang et al. Architecting Z-scheme Bi2S3@ CoO with 3D chrysanthemums-like architecture for both photoeletro-oxidization and-reduction performance under visible light
Wu et al. Fabrication of CuS/CuO nanowire heterostructures on copper mesh with improved visible light photocatalytic properties
Gao et al. In situ growth of 2D/3D Bi2MoO6/CeO2 heterostructures toward enhanced photodegradation and Cr (VI) reduction
Gu et al. Heterojunction photocatalyst of cavity shaped Bi2S3/g-C3N4 for bisphenol a degradation: Regulation of internal electric field via assistance of interfacial functional groups
CN111250122A (zh) 一种纳米贵金属修饰的Ag/MXene/TiO2复合材料及其制备方法
Gao et al. Two-dimensional nickel nanosheets coupled with Zn0. 5Cd0. 5S nanocrystals for highly improved visible-light photocatalytic H2 production
CN107694580B (zh) 一种纳米复合硒化物及其制备方法
CN110508291B (zh) 一种Au-ZnIn2S4纳米阵列电极光催化固氮材料的制备方法
Liu et al. Synergistic effect of single-atom Cu and hierarchical polyhedron-like Ta3N5/CdIn2S4 S-scheme heterojunction for boosting photocatalytic NH3 synthesis
Chen et al. Co/S co-doped Mn3O4-based sulfur-oxide nano-flakes catalyst for highly efficient catalytic reduction of organics and hexavalent chromium pollutants
Gopi et al. Facile fabrication of bifunctional SnO–NiO heteromixture for efficient electrocatalytic urea and water oxidation in urea-rich waste water
Yuan et al. Efficient degradation of tetracycline hydrochloride by direct Z-scheme HKUST-1@ m-BiVO4 catalysts with self-produced H2O2 under both dark and light
CN113019364A (zh) 一种多孔二氧化钌-二氧化铈微球复合材料的制备方法
Xu et al. Efficient photocatalytic performance of direct Z-scheme photocatalyst Bi3TaO7/Mn0. 5Cd0. 5S for levofloxacin degradation under visible light irradiation
Sanni et al. Tailored synthesis of Ag/AgBr nanostructures coupled activated carbon with intimate interface interaction for enhanced photodegradation of tetracycline
Wang et al. Preparation of Mn0. 8Cd0. 2S/NiCo2S4 Z-scheme heterojunction composite for enhanced photocatalytic hydrogen production
Lal et al. Enhancing photocatalytic, photoelectrochemical hydrogen evolution, and dye degradation using p-type NiCo2O4 spinel photocatalyst synthesized via tapioca leaf extract mediated process
Yin et al. Enhanced charge transfer and photocatalytic carbon dioxide reduction of copper sulphide@ cerium dioxide pn heterojunction hollow cubes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination