CN116414167A - 稳压器及其适用的电源转换装置 - Google Patents

稳压器及其适用的电源转换装置 Download PDF

Info

Publication number
CN116414167A
CN116414167A CN202111634471.4A CN202111634471A CN116414167A CN 116414167 A CN116414167 A CN 116414167A CN 202111634471 A CN202111634471 A CN 202111634471A CN 116414167 A CN116414167 A CN 116414167A
Authority
CN
China
Prior art keywords
voltage
bipolar junction
electrically connected
junction transistor
driving voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111634471.4A
Other languages
English (en)
Inventor
李冠霆
高振杰
林侑良
萧程嘉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delta Electronics Inc
Original Assignee
Delta Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delta Electronics Inc filed Critical Delta Electronics Inc
Priority to CN202111634471.4A priority Critical patent/CN116414167A/zh
Priority to US17/726,147 priority patent/US11735909B2/en
Priority to US18/212,816 priority patent/US12040607B2/en
Publication of CN116414167A publication Critical patent/CN116414167A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/561Voltage to current converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/06Modifications for ensuring a fully conducting state
    • H03K17/063Modifications for ensuring a fully conducting state in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/0812Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the control circuit
    • H03K17/08122Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/567Circuits characterised by the use of more than one type of semiconductor device, e.g. BIMOS, composite devices such as IGBT
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/60Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being bipolar transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Power Conversion In General (AREA)

Abstract

本案为一种稳压器,用以稳定开关组件的栅极‑源极电压,其中开关组件的源极接收第一驱动电压,稳压器包含:双极性接面型晶体管,其中双极性接面型晶体管的基极接收第二驱动电压,双极性接面型晶体管的集极电连接于开关组件的栅极;第一电阻,第一电阻的第一端电连接于集极与门极,第一电阻的第二端电连接于源极并接收第一驱动电压;以及第二电阻,第二电阻的第一端电连接于双极性接面型晶体管的射极,第二电阻的一第二端接收第三驱动电压;其中双极性接面型晶体管工作于主动区。

Description

稳压器及其适用的电源转换装置
技术领域
本案为一种稳压器,尤指一种可稳定P型金氧半场效晶体管的栅极-源极电压的稳压器及其适用的电源转换装置。
背景技术
目前大部分电子设备,皆需要电源转换装置来进行电能的转换,以电子设备为直流风扇马达为例,目前直流风扇马达应用条件越趋多元化,故直流风扇马达所接收的电压有较宽广的操作范围需求,然却也因电压范围的扩大,导致电源转换装置内的电子零件在异常突波电压冲击发生时容易损坏,因此必须在现有电源转换装置上进行优化设计,以能满足未来不同客户系统的使用需求。
更进一步说明,电源转换装置皆包含至少一桥臂开关电路,以利用桥臂开关电路的开关组件的切换运作来达成电能转换的目的,其中桥臂开关电路的两个开关组件可分别由N型金氧半场效晶体管或P型金氧半场效晶体管构成,而电源转换装置还包含驱动电路,以驱动桥臂开关电路运作。
然而传统电源转换装置的驱动电路皆采用分压电路设计,因此当桥臂开关电路的开关组件为P型金氧半场效晶体管,而驱动电路与P型金氧半场效晶体管的栅极及源极电连接时,采用分压电路架构的驱动电路无法有效抵抗不预期的异常突波电压冲击,因此一旦异常突波电压发生而导致驱动电路所接收的电压较高时,将容易造成为P型金氧半场效晶体管的栅极-源极电压无法维持操作在安全电压范围,使得P型金氧半场效晶体管容易损坏。反之,为了避免异常突波电压的冲击而改为提供较低的电压给驱动电路时,却又导致栅极-源极电压值过低而不在P型金氧半场效晶体管的导通下限规格内,使得电子设备无法正常运转,亦不符合目前宽广的电压范围需求的趋势。
因此,如何发展一种克服上述缺点的稳压器及其适用的电源转换装置,实为目前迫切的需求。
发明内容
本案为一种稳压器及其适用的电源转换装置,稳压器可稳定P型金氧半场效晶体管的栅极-源极电压,以保护P型金氧半场效晶体管不易因不预期的异常突波电压冲击而损坏,且可使电源转换装置符合目前宽广的输入电压范围需求的趋势。
为达上述目的,本案的一较佳实施例为提供一种电源转换装置,包含:系统电源,用以产生第一驱动电压;控制器,与系统电源电连接而由系统电源驱动;开关电路,包含第一开关组件,第一开关组件的源极与系统电源电连接而接收第一驱动电压,开关电路用以将第一驱动电压转换为输出电压;稳压器,用以稳定第一开关组件的栅极-源极电压,且包含:双极性接面型晶体管,其中双极性接面型晶体管的基极接收第二驱动电压,双极性接面型晶体管的集极电连接于第一开关组件的栅极;第一电阻,第一电阻的第一端电连接于集极与门极,第一电阻的第二端电连接于系统电源及源极并接收第一驱动电压;以及第二电阻,第二电阻的第一端电连接于双极性接面型晶体管的射极,第二电阻的第二端接收第三驱动电压;双极性接面型晶体管工作于主动区。
为达上述目的,本案的另一较佳实施例为提供一种稳压器,用以稳定第一开关组件的栅极-源极电压,其中第一开关组件的源极接收第一驱动电压,稳压器包含:双极性接面型晶体管,其中双极性接面型晶体管的基极接收第二驱动电压,双极性接面型晶体管的集极电连接于第一开关组件的栅极;第一电阻,第一电阻的第一端电连接于集极与门极,第一电阻的第二端电连接于源极并接收第一驱动电压;以及第二电阻,第二电阻的第一端电连接于双极性接面型晶体管的射极,第二电阻的第二端接收第三驱动电压;其中双极性接面型晶体管工作于主动区。
为达上述目的,本案的再一较佳实施例为提供一种电源转换装置,包含:系统电源,用以产生第一驱动电压;控制器,与系统电源电连接而由系统电源驱动,且输出第二驱动电压及第三驱动电压;开关电路,包含至少一开关桥臂,且至少一开关桥臂包含P型金氧半场效晶体管,开关电路用以将第一驱动电压转换为输出电压;至少一稳压器,每一稳压器用以稳定对应的P型金氧半场效晶体管的栅极-源极电压,每一稳压器包含:双极性接面型晶体管,其中双极性接面型晶体管的基极电连接于控制器而接收第二驱动电压,双极性接面型晶体管的集极电连接于对应的P型金氧半场效晶体管的栅极;第一电阻,第一电阻的第一端电连接于集极及对应的P型金氧半场效晶体管的栅极,第一电阻的第二端电连接于系统电源及对应的P型金氧半场效晶体管的源极并接收第一驱动电压;以及第二电阻,第二电阻的第一端电连接于双极性接面型晶体管的射极,第二电阻的第二端电连接于控制器而接收第三驱动电压;其中双极性接面型晶体管工作于主动区。
附图说明
图1为本案第一较佳实施例的电源转换装置的电路架构示意图;
图2为未使用图1所示的稳压器的传统电源转换装置所接收的输入电压与电子设备的运作电流的波形模拟示意图;
图3为图1所示的电源转换装置所接收的输入电压与电子设备的运作电流的波形模拟示意图;
图4为本案第二较佳实施例的电源转换装置的电路架构示意图;
图5为本案第三较佳实施例的电源转换装置的电路架构示意图。
附图标号说明:
1、1B、1C:电源转换装置
Vo:输出电压
2:系统电源
3:控制器
4:稳压器
5:开关电路
V1:第一驱动电压
V4:第一控制电压
Q1:第一开关组件
Q2:双极性接面型晶体管
R1:第一电阻
R2:第二电阻
V2:第二驱动电压
V3:第三驱动电压
3:控制器
A、B:区域
C:异常突波发生的情况
6:降压器
V5:第二控制电压
具体实施方式
体现本案特征与优点的一些典型实施例将在后段的说明中详细叙述。应理解的是本案能够在不同的实施例上具有各种的变化,其皆不脱离本案的范围,且其中的说明及附图在本质上当作说明之用,而非用于限制本案。
请参阅图1,其为本案第一较佳实施例的电源转换装置的电路架构示意图。本实施例的电源转换装置1可转换所接收的输入电压(未图标)为输出电压Vo,以驱动电子设备(未图标)运作,其中电子设备可为但不限于直流风扇马达。
电源转换装置1包含系统电源2、控制器3、稳压器4及开关电路5。系统电源2用以将电源转换装置1所接收的输入电压(未图标)转换为第一驱动电压V1。于其它实施例中,系统电源2更可将电源转换装置1所接收的输入电压转换为第一控制电压V4。
开关电路5与系统电源2电连接而接收第一驱动电压V1,且包含由P型金氧半场效晶体管构成的第一开关组件Q1,第一开关组件Q1的源极与系统电源2电连接而接收第一驱动电压V1,第一开关组件Q1的漏极则可与电子设备电连接,开关电路5通过第一开关组件Q1的切换运作将第一驱动电压V1转换为输出电压Vo,并于漏极输出输出电压Vo,以驱动电子设备运作。于一些实施例中,开关电路5还包含第二开关组件(未图标),第一开关组件Q1可与第二开关组件串联连接,以构成开关桥臂,藉以稳定开关电路5的导通电压,其中第一开关组件Q1可为全桥电路的其中的一侧的开关桥臂中的上桥臂,第二开关组件可为开关桥臂中的下桥臂。当然开关电路5除了包含第一开关组件Q1及第二开关组件Q2外,还可包含其它开关组件,使开关电路5包含两个开关桥臂而为全桥开关电路,或使开关电路5包含三个以上的开关电路。
稳压器4用以稳定开关电路5的第一开关组件Q1的栅极-源极电压,且包含双极性接面型晶体管Q2、第一电阻R1及第二电阻R2。第一电阻R1的第一端电连接于第一开关组件Q1的栅极,第一电阻R1的第二端与系统电源2及第一开关组件Q1的源极电连接,并接收第一驱动电压V1。第二电阻R2的第一端电连接于双极性接面型晶体管Q2的射极,第二电阻R2的第二端接收第三驱动电压V3。
双极性接面型晶体管Q2的基极接收第二驱动电压V2,双极性接面型晶体管Q2的集极与第一开关组件Q1的栅极及第一电阻R1的第一端电连接。于一些实施例中,如图1所示,双极性接面型晶体管Q2可为NPN双极性接面型晶体管,但不此以为限,亦可为PNP双极性接面型晶体管。
控制器3可为但不仅限于包含微控制器单元(microcontroller unit),且控制器3与系统电源2、双极性接面型晶体管Q2的基极及第二电阻R2的第二端电连接,且控制器3由系统电源2输出的第一控制电压V4来驱动,此外,双极性接面型晶体管Q2的基极所接收的第二驱动电压V2及第二电阻R2的第二端所接收的第三驱动电压V3可分别由控制器3提供。
于本实施例中,控制器3更控制双极性接面型晶体管Q2工作于主动区(或称放大区),即控制器3输出第二驱动电压V2及第三驱动电压V3来使双极性接面型晶体管Q2的基极-射极电压顺偏而基极-集极电压逆偏,使双极性接面型晶体管Q2工作于主动区,藉此双极性接面型晶体管Q2的射极电流可呈现稳定,又因双极性接面型晶体管Q2的集极电流大致相等于双极性接面型晶体管Q2的射极电流,故双极性接面型晶体管Q2的集极电流亦呈现稳定,因此当系统电源2输出的第一驱动电压V1(即第一开关组件Q1的源极电压)例如因不预期的异常突波而上升时,第一开关组件Q1的栅极电压也随之上升,且第一开关组件Q1的栅极-源极电压会因为双极性接面型晶体管Q2的射极电流稳定的关系而稳定,故稳压器4可保护为P型金氧半场效晶体管的第一开关组件Q1不易因不预期的异常突波电压冲击而损坏,且使电源转换装置1所接收的输入电压无须调降而符合目前宽广的输入电压范围需求的趋势。
请参阅图2及图3,其中图2为未使用图1所示的稳压器的传统电源转换装置所接收的输入电压与电子设备的运作电流的波形模拟示意图,图3为图1所示的电源转换装置所接收的输入电压与电子设备的运作电流的波形模拟示意图。首先,在图2及图3中,各自分为A区域跟B区域,A区域显示了异常突波发生的情况(由方框C标示),B区域则将A区域异常突波发生时的波形放大显示。由于传统电源转换装置并不具有类似于本案图1所示的稳压器4,故当传统电源转换装置所接收的输入电压因不预期的异常突波而上升至例如60V以上时,开关电路5的第一开关组件Q1的栅极-源极电压将高于一般P型金氧半场效晶体管的栅极-源极电压的耐压值20V,导致第一开关组件Q1损坏,使得电子设备无法运作而电子设备的运作电流降为0。反之,由于本案的电源转换装置1包含稳压器4,且稳压器4的双极性接面型晶体管Q2被控制在工作于主动区(或称放大区),故当输入电压因不预期的异常突波而上升至例如85V以上时,开关电路5的第一开关组件Q1的栅极-源极电压仅约为15.6V(或是更低,可通过第一电阻R1以及第二电阻R2进行设计调配),低于一般P型金氧半场效晶体管的栅极-源极电压的耐压值,故第一开关组件Q1不会损坏,使得电子设备仍可正常运作而电子设备的运作电流维持在正常值。由此可知如,本案的电源转换装置1通过稳压器4可提升抑制异常突波电压冲击的能力。更甚者,经仿真实验,在电子设备的操作电压为24V的条件下,传统电源转换装置的操作电压范围仅约在14V~34V,反观本案的电源转换装置1的操作电压范围通过稳压器4的设置可达到约10V~50V,提升了约84%左。在电子设备的操作电压为48V的条件下,传统电源转换装置的操作电压范围仅约在36V~75V,反观本案的电源转换装置1的操作电压范围可达到约20V~85V,提升了约54%左右。
请参阅图4,其为本案第二较佳实施例的电源转换装置的电路架构示意图。本实施例的电源转换装置1B的电路结构及做动皆相似于图1所示的电源转换装置1,本实施例的电源转换装置1B的双极性接面型晶体管Q2的基极不与控制器3电连接,而是改与系统电源2电连接,因此双极性接面型晶体管Q2所接收的第二驱动电压V2不再由控制器3提供,第二驱动电压V2改由系统电源2转换电源转换装置1所接收的输入电压而提供至双极性接面型晶体管Q2的基极。
请参阅图5,其为本案第三较佳实施例的电源转换装置的电路架构示意图。本实施例的电源转换装置1C的电路结构及做动皆相似于图1所示的电源转换装置1,惟本实施例的电源转换装置1C还包含降压器6,电连接于系统电源2及控制器3,用以将系统电源2输出的第一控制电压V4降压为第二控制电压V5,以提供给控制器3进行运作。此外,本实施例的电源转换装置1C的双极性接面型晶体管Q2的基极不与控制器3电连接,而是改与降压器6电连接,因此双极性接面型晶体管Q2所接收的第二驱动电压V2不再由控制器3提供,第二驱动电压V2是改由降压器6提供至双极性接面型晶体管Q2。
当然,前述提及的稳压器4并不限于应用在电源转换装置中,凡是有保护P型金氧半场效晶体管不遭受异常突波电压冲击而损坏的需求,皆可使用本案的稳压器4。另外,当开关电路5包含复数个P型金氧半场效晶体管时,则电源转换装置可包含复数个稳压器4,每一稳压器4用以稳定对应的P型金氧半场效晶体管的栅极-源极电压。
综上所述,本案为一种稳压器及其适用的电源转换装置,其中稳压器的双极性接面型晶体管工作于主动区,使得双极性接面型晶体管的射极电流呈现稳定,如此一来,即便系统电源输出的第一驱动电压因不预期的异常突波而上升时,第一开关组件的栅极电压将随之上升,第一开关组件的栅极-源极电压也会因为双极性接面型晶体管的射极电流稳定的关系而稳定,使得为P型金氧半场效晶体管的第一开关组件不易因不预期的异常突波电压冲击而损坏,且使电源转换装置所接收的输入电压也无须调降而符合目前宽广的输入电压范围需求的趋势。

Claims (12)

1.一种电源转换装置,包含:
系统电源,用以产生第一驱动电压;
控制器,与所述系统电源电连接而由所述系统电源驱动;
开关电路,包含第一开关组件,所述第一开关组件的源极与所述系统电源电连接而接收所述第一驱动电压,所述开关电路用以将所述第一驱动电压转换为输出电压;以及
稳压器,用以稳定所述第一开关组件的栅极-源极电压,且包含:
双极性接面型晶体管,其中所述双极性接面型晶体管的基极接收第二驱动电压,所述双极性接面型晶体管的集极电连接于所述第一开关组件的栅极;
第一电阻,所述第一电阻的第一端电连接于所述集极及所述栅极,所述第一电阻的第二端电连接于所述系统电源及所述源极并接收所述第一驱动电压;以及
第二电阻,所述第二电阻的第一端电连接于所述双极性接面型晶体管的射极,所述第二电阻的第二端接收第三驱动电压;
其中所述双极性接面型晶体管工作于主动区。
2.根据权利要求1所述的电源转换装置,其中所述第一开关组件由P型金氧半场效晶体管构成。
3.根据权利要求1所述的电源转换装置,其中所述开关电路还包含第二开关组件,所述第一开关组件与所述第二开关组件串联连接,以构成开关桥臂。
4.根据权利要求1所述的电源转换装置,其中所述控制器与所述第二电阻的所述第二端电连接,且所述第三驱动电压由所述控制器输出。
5.根据权利要求4所述的电源转换装置,其中所述控制器与所述双极性接面型晶体管的所述基极电连接,且所述第二驱动电压由所述控制器输出。
6.根据权利要求4所述的电源转换装置,其中所述双极性接面型晶体管的所述基极与所述系统电源电连接,且所述第二驱动电压由所述系统电源输出。
7.根据权利要求4所述的电源转换装置,其中所述系统电源还输出第一控制电压,且所述电源转换装置还包含降压器,电连接于所述系统电源及所述控制器,用以将所述第一控制电压降压为第二控制电压,以驱动所述控制器运作,且所述双极性接面型晶体管的所述基极与所述降压器电连接,所述第二驱动电压由所述降压器输出。
8.根据权利要求1所述的电源转换装置,其中所述双极性接面型晶体管为NPN双极性接面型晶体管。
9.一种稳压器,用以稳定第一开关组件的栅极-源极电压,其中所述第一开关组件的源极接收第一驱动电压,所述稳压器包含:
双极性接面型晶体管,其中所述双极性接面型晶体管的基极接收第二驱动电压,所述双极性接面型晶体管的集极电连接于所述第一开关组件的栅极;
第一电阻,所述第一电阻的第一端电连接于所述集极及所述栅极,所述第一电阻的第二端电连接于所述源极并接收所述第一驱动电压;以及
第二电阻,所述第二电阻的第一端电连接于所述双极性接面型晶体管的射极,所述第二电阻的第二端接收第三驱动电压;
其中所述双极性接面型晶体管工作于主动区。
10.根据权利要求9所述的稳压器,其中所述双极性接面型晶体管为NPN双极性接面型晶体管。
11.根据权利要求9所述的稳压器,其中所述第一开关组件由P型金氧半场效晶体管构成。
12.一种电源转换装置,包含:
系统电源,用以产生第一驱动电压;
控制器,与所述系统电源电连接而由所述系统电源驱动,且输出第二驱动电压及第三驱动电压;
开关电路,包含至少一开关桥臂,且至少一所述开关桥臂包含P型金氧半场效晶体管,所述开关电路用以将所述第一驱动电压转换为输出电压;
至少一稳压器,每一所述稳压器用以稳定对应的所述P型金氧半场效晶体管的栅极-源极电压,每一所述稳压器包含:
双极性接面型晶体管,其中所述双极性接面型晶体管的基极电连接于所述控制器而接收所述第二驱动电压,所述双极性接面型晶体管的集极电连接于对应的所述P型金氧半场效晶体管的栅极;
第一电阻,所述第一电阻的第一端电连接于所述集极及对应的所述P型金氧半场效晶体管的所述栅极,所述第一电阻的第二端电连接于所述控制器及对应的所述P型金氧半场效晶体管的所述源极并接收所述第一驱动电压;以及
第二电阻,所述第二电阻的第一端电连接于所述双极性接面型晶体管的射极,所述第二电阻的第二端电连接于所述控制器而接收第三驱动电压;
其中所述双极性接面型晶体管工作于主动区。
CN202111634471.4A 2021-12-29 2021-12-29 稳压器及其适用的电源转换装置 Pending CN116414167A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202111634471.4A CN116414167A (zh) 2021-12-29 2021-12-29 稳压器及其适用的电源转换装置
US17/726,147 US11735909B2 (en) 2021-12-29 2022-04-21 Voltage stabilizer and power conversion device using same
US18/212,816 US12040607B2 (en) 2021-12-29 2023-06-22 Voltage stabilizer and power conversion device using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111634471.4A CN116414167A (zh) 2021-12-29 2021-12-29 稳压器及其适用的电源转换装置

Publications (1)

Publication Number Publication Date
CN116414167A true CN116414167A (zh) 2023-07-11

Family

ID=86896237

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111634471.4A Pending CN116414167A (zh) 2021-12-29 2021-12-29 稳压器及其适用的电源转换装置

Country Status (2)

Country Link
US (2) US11735909B2 (zh)
CN (1) CN116414167A (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6606227B2 (en) * 2001-02-12 2003-08-12 Delphi Technologies, Inc. High voltage battery cutout circuit for a motor vehicle electrical system
US7139157B2 (en) * 2004-07-30 2006-11-21 Kyocera Wireless Corp. System and method for protecting a load from a voltage source
US8981736B2 (en) * 2010-11-01 2015-03-17 Fairchild Semiconductor Corporation High efficiency, thermally stable regulators and adjustable zener diodes
CN108075460B (zh) 2016-11-15 2021-10-29 恩智浦有限公司 具有反馈控制的浪涌保护电路
TWI711915B (zh) 2019-09-16 2020-12-01 奇源科技有限公司 高壓穩壓器
US20220069569A1 (en) * 2020-08-26 2022-03-03 Jute Industrial Co., Ltd. Motor vehicle circuit protection device and motor vehicle circuit including the same

Also Published As

Publication number Publication date
US20230208132A1 (en) 2023-06-29
US12040607B2 (en) 2024-07-16
US20230335987A1 (en) 2023-10-19
US11735909B2 (en) 2023-08-22

Similar Documents

Publication Publication Date Title
US10063224B2 (en) Driver circuit and semiconductor module having same
US7990202B2 (en) System and method for driving bipolar transistors in switching power conversion
US20230122458A1 (en) Low dropout linear regulator and control circuit thereof
CN109217858B (zh) 晶体管装置的过电压保护
US6703874B2 (en) Gate driver for MOS control semiconductor devices
US20200295745A1 (en) High-side gate driver
US20200350814A1 (en) Negative voltage generation circuit and power conversion device using same
KR950015945A (ko) 스위칭전원장치
JP6122542B1 (ja) アクティブクランプ回路
CN116414167A (zh) 稳压器及其适用的电源转换装置
CN116700416A (zh) 一种高压转低压的线性稳压电路及电子设备
CN110601512A (zh) 一种分立式高边驱动电路系统
TWM597013U (zh) 寬輸入電壓範圍的輔助電源供應電路
CN221080915U (zh) 适用于高边mos管驱动电源的欠压保护电路
CN110706977A (zh) 一种pwm控制型继电器
CN221202367U (zh) 一种直流伺服电源电路及电源
CN220754344U (zh) 适用于降压型控制器的短路保护电路
CN210297253U (zh) 一种提高芯片输入耐压的保护电路
CN116449906B (zh) 一种稳压器的控制电路、pcb板以及稳压器
CN115411701B (zh) 功率控制电路、电压调整电路、电子装置及芯片
US20240120828A1 (en) Power protection circuit and power converting system
CN115167608B (zh) 反向电压保护电路、电压调整电路、电子装置及芯片
CN220066872U (zh) 一种短路过电压保护电路
CN217087757U (zh) 一种控制芯片及电源变换器
CN216437532U (zh) 一种驱动电路及其照明设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination