CN116413243A - 基于双重信号的表面增强拉曼探针及其应用 - Google Patents

基于双重信号的表面增强拉曼探针及其应用 Download PDF

Info

Publication number
CN116413243A
CN116413243A CN202310100101.5A CN202310100101A CN116413243A CN 116413243 A CN116413243 A CN 116413243A CN 202310100101 A CN202310100101 A CN 202310100101A CN 116413243 A CN116413243 A CN 116413243A
Authority
CN
China
Prior art keywords
solution
enhanced raman
surface enhanced
raman probe
dual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310100101.5A
Other languages
English (en)
Inventor
吴龙
曾威
伍婷
李月青
张棂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hainan University
Sanya Research Institute of Hainan University
Original Assignee
Hainan University
Sanya Research Institute of Hainan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hainan University, Sanya Research Institute of Hainan University filed Critical Hainan University
Priority to CN202310100101.5A priority Critical patent/CN116413243A/zh
Publication of CN116413243A publication Critical patent/CN116413243A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明涉及食品安全检测技术领域,具体涉及一种基于双重信号的表面增强拉曼探针及其应用。基于双重信号的表面增强拉曼探针,是氯金酸和亚铁氰化钾修饰的银纳米颗粒;制备方法包括:取亚铁氰化钾溶液与氯金酸溶液,孵育1‑60min;用还原剂还原硝酸银,获得银纳米颗粒溶液,离心,去除上清液,加水重悬至原体积,得到银纳米颗粒重悬液;将溶液1加入银纳米颗粒重悬液中,孵育1‑60min;在8000~12000rpm转速下离心8~15min,去除上清液,洗涤,干燥后密封保存。提供了基于双重信号的表面增强拉曼探针在检测化合物方面的应用。本发明提高了目标物检测灵敏度,降低了分析方法的检测限,扩大了分析检测的线性范围。

Description

基于双重信号的表面增强拉曼探针及其应用
技术领域
本发明属于食品安全检测技术领域,特别涉及一种基于双重信号的表面增强拉曼探针及其应用。
背景技术
腺嘌呤属于嘌呤类有机化合物,其分子式为C5H5N5,是脱氧核糖核酸的重要组成部分,也是DNA和RNA上必不可少的碱基之一。腺嘌呤在能量传递、释放神经递质、细胞信号传递以及防止心率失常等生命过程中发挥着重要的作用。通过检测体液中腺嘌呤的变化可以预测DNA的损伤程度以及指示某些疾病的发生,如癌症和艾滋病等。因此,灵敏地分析检测腺嘌呤的含量具有重要的临床意义。
头孢曲松钠是是第三代头孢菌素类抗生素,其分子式为C18H16N8Na2O7S3·3H2O。目前,头孢曲松钠是使用最多的头孢菌素类抗生素之一,其具抑制或杀灭致病微生物的活性而广泛应用于临床上感染类疾病的治疗。然而,过量使用所造成的人体毒副作用以及滥用所导致的环境问题也受到人们的普遍关注。实现对头孢曲松钠的简单快速检测是评价抗生素药效及毒副作用的基本前提。
孔雀石绿被列入食品动物中禁止使用的药品及其他化合物清单,是一种曾经被用于水产养殖业杀菌驱虫的三苯基烷类有机物,但是其被人或者动物代谢而产生致癌性、致畸性和诱变性,对人体产生极大危害。我国规定在无公害水产品中不得检出孔雀石绿及其代代谢产物无色孔雀石绿。尽管如此,由于其价格低廉及杀菌效果良好,仍然存在水产养殖业中非法添加使用孔雀石绿的现象。因此,孔雀石绿的分析检测对人类健康具有重要意义。
目前,检测腺嘌呤、头孢曲松钠、孔雀石绿的手段主要有色谱法、荧光分析法、毛细管电泳法等,但这些方法样品主要依赖大型仪器、预处理要求高、步骤复杂、需专业人员操作、检测费用高、很难适应许多场合快速检测的需要,在应用上不能广泛推广。表面增强拉曼光谱技术已经成为快速检测技术发展趋势之一,具有快速、高灵敏、无损且低成本等优点,但是拉曼基底之间的可变性,使得表面增强拉曼光谱的不可重现性成为表面增强拉曼传感平台的主要障碍。因此,双重信号表面增强拉曼分析方法的发展有望解决目前表面增强拉曼不可重现性的问题。
发明内容
本发明为解决上述问题,提供一种基于双重信号的表面增强拉曼探针及其应用。
本发明第一目的是提供一种基于双重信号的表面增强拉曼探针,所述探针是氯金酸和亚铁氰化钾修饰的银纳米颗粒。
优选地,氯金酸、亚铁氰化钾和银纳米颗粒的摩尔比为(0.1-10):(0.1-10):(3×10-7)。
本发明第二目的是提供一种基于双重信号的表面增强拉曼探针的制备方法,包括如下步骤:
S1、取亚铁氰化钾溶液与氯金酸溶液,孵育1-60min,得到溶液1;
S2、用还原剂还原硝酸银,获得银纳米颗粒溶液,在8000~12000rpm转速下离心8~15min,去除上清液,加水重悬至原体积,得到银纳米颗粒重悬液;
S3、将步骤S1制备的溶液1加入步骤S2制备的银纳米颗粒重悬液中,孵育1-60min;在8000~12000rpm转速下离心8~15min,去除上清液,洗涤、干燥、密封,得到基于双重信号的表面增强拉曼探针。优选地,步骤S1中亚铁氰化钾与氯金酸的摩尔比为0.1-10:0.1-10、体积比为1-100:1-100。
优选地,银纳米颗粒重悬液与溶液1的体积比为1-5:1-4。
优选地,还原剂为盐酸羟胺、柠檬酸钠或硼氢化钠。
本发明第三目的是提供一种基于双重信号的表面增强拉曼探针在检测化合物方面的应用,所述化合物不含有氰基且不可与氰基发生反应。
优选地,化合物为腺嘌呤、头孢曲松钠和/或孔雀石绿。
优选地,化合物为孔雀石绿。
本发明第四目的是提供一种基于双重信号的表面增强拉曼光谱检测方法,包括如下步骤:
S11、取待测样品,进行前处理,离心,收集样品上清液;
S12、将权利要求1所述的基于双重信号的表面增强拉曼探针加入纯水中配制重悬液,与所述样品上清液共孵育1-60min,得到待检测溶液;
S13、进行所述待检测溶液拉曼光谱检测。
优选地,待测样品中包括腺嘌呤、头孢曲松钠和孔雀石绿中至少一种。
优选地,步骤S12中重悬液与样品上清液的体积比为1-5:1-3。
本发明有益效果:
(1)氯金酸和亚铁氰化钾修饰的银纳米颗粒的氰基信号强度具有明显的提升;
(2)能够达到提高拉曼基底修饰的基团拉曼信号强度提高的要求,提高对目标物检测的灵敏度,降低了分析方法的检测限,扩大了分析检测的线性范围;
(3)能够对待测样品中的电中性的腺嘌呤、带有负电荷的头孢曲松钠、带有正电荷的孔雀石绿进行分析检测。
附图说明
图1是本发明技术原理示意图。
图2是本发明拉曼探针经银纳米颗粒刻蚀前后透射电镜图。
图3是本发明不同组分制备的拉曼探针的拉曼光谱图;a组分为银纳米颗粒、氯金酸、亚铁氰化钾;b组分为银纳米颗粒、亚铁氰化钾;c组分为银纳米颗粒、氯金酸、铁氰化钾;d组分为银纳米颗粒、铁氰化钾。
图4是本发明不同浓度的腺嘌呤拉曼光谱图;Solid为腺嘌呤的拉曼光谱;Blank为空白的拉曼光谱。
图5是本发明的腺嘌呤标准曲线图。
图6是本发明不同浓度的头孢曲松钠拉曼光谱图;Solid为头孢曲松钠的拉曼光谱;Blank为空白的拉曼光谱。
图7是本发明的头孢曲松钠标准曲线图。
图8是本发明不同浓度头孔雀石绿的拉曼光谱图;Solid为孔雀石绿的拉曼光谱;Blank为空白的拉曼光谱。
图9是本发明的孔雀石绿标准曲线图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,而不构成对本发明的限制。
一种基于双重信号的表面增强拉曼探针,是氯金酸和亚铁氰化钾修饰的银纳米颗粒;优选地,氯金酸、亚铁氰化钾和银纳米颗粒的摩尔比为(0.1-10):(0.1-10):(3×10-7);
所述探针由下述方法制备:
S1、取亚铁氰化钾溶液与氯金酸溶液,孵育1-60min,得到溶液1;
S2、用还原剂还原硝酸银,获得银纳米颗粒溶液,在8000~12000rpm转速下离心8~15min,去除上清液,加水重悬至原体积,得到银纳米颗粒重悬液;
S3、将步骤S1制备的溶液1加入步骤S2制备的银纳米颗粒重悬液中,孵育1-60min;在8000~12000rpm转速下离心8~15min,去除上清液,洗涤、干燥、密封,得到基于双重信号的表面增强拉曼探针;
优选地,步骤S1中亚铁氰化钾与氯金酸的摩尔比为0.1-10:0.1-10、体积比为1-100:1-100;
优选地,亚铁氰化钾与氯金酸的摩尔比为1:2、体积比为3:1;
优选地,亚铁氰化钾与氯金酸的摩尔比为3:2、体积比为5:2;
优选地,银纳米颗粒重悬液与溶液1的体积比为1-5:1-4;
优选地,银纳米颗粒重悬液与溶液1的体积比为5:4;
优选地,还原剂为盐酸羟胺、柠檬酸钠或硼氢化钠。
一种基于双重信号的表面增强拉曼光谱检测方法,包括如下步骤:
S11、取待测样品,进行前处理,离心,收集样品上清液;
S12、将权利要求1所述的基于双重信号的表面增强拉曼探针加入纯水中配制重悬液,与所述样品上清液共孵育1-60min,得到待检测溶液;
S13、进行所述待检测溶液拉曼光谱检测;
优选地,步骤S12中重悬液与样品上清液的体积比为1-5:1-3;
优选地,待测样品中包括腺嘌呤、头孢曲松钠和孔雀石绿中至少一种;
优选地,所述待测样品为鱼肉。
如图1本发明中分析方法的技术原理示意图所示,首先合成银纳米颗粒(AgNPs)溶液,离心重悬放置4℃备用,其为银纳米颗粒重悬液;其次,将亚铁氰化钾(K4Fe(CN)6)和氯金酸(HAuCl4)进行孵育,反应一定时间后(得到溶液1),加入到一定量的银纳米颗粒重悬液中孵育反应,得到溶液2;然后,将溶液2离心、重悬,与目标物进行孵育反应,得到溶液3;最后,将溶液3进行拉曼光谱测定,根据其特征峰信号强度的比值确定目标物的浓度;
本发明的表面增强拉曼探针及其检测方法,可广泛应用于食品安全检测,检测食品或药品中的化合物,但也有部分物质不能用于检测;不能检测的目标物范围:易氧化银纳米颗粒的物质,如高锰酸钾等强氧化剂;含有氰基的有机或无机物质,如氰基甲酯等氰基类化合物;易取代银纳米颗粒表面氰基的物质;易与氰基发生反应的物质,如叠氮化钠等叠氮类化合物。
实施例1基于双重信号的表面增强拉曼探针的制备
制备基于双重信号的表面增强拉曼探针,具体步骤如下:
(1)亚铁氰化钾和氯金酸的孵育:取300μL 1mM亚铁氰化钾溶液与100μL2mM氯金酸溶液孵育5min,然后得到溶液1;
(2)银纳米颗粒的合成以及表面修饰:使用盐酸羟胺还原剂来还原硝酸银,获得银纳米颗粒溶液;取1000μL银纳米颗粒溶液于离心管中,10000rpm转速下离心10min,去除上清液,加水重悬至原体积,得银纳米颗粒重悬液;然后,将步骤(1)中制备的溶液1加入500μL银纳米颗粒重悬液中孵育20min,孵育后在10000rpm转速下离心10min,去除上清液、洗涤、干燥后密封保存,得到基于双重信号的表面增强拉曼探针。
图2示出了制备的拉曼探针的透射电镜图;该透射电镜图能够说明刻蚀后银纳米颗粒、氯金酸、亚铁氰化钾发生反应,产生形貌上的改变,间接说明氰基成功地修饰上银纳米颗粒表面。
实施例2基于双重信号的表面增强拉曼探针的制备
制备基于双重信号的表面增强拉曼探针,具体步骤如下:
(1)亚铁氰化钾和氯金酸的孵育:取200μL 3mM亚铁氰化钾溶液与80μL2mM氯金酸溶液孵育15min,然后得到溶液1;
(2)银纳米颗粒的合成以及表面修饰:使用柠檬酸钠还原剂来还原硝酸银,获得银纳米颗粒溶液;取1000μL银纳米颗粒溶液于离心管中,10000rpm转速下离心10min,去除上清液,加水重悬至原体积,得银纳米颗粒重悬液;然后,将步骤(1)中制备的溶液1加入400μL银纳米颗粒重悬液中孵育30min,孵育后在10000rpm转速下离心10min,去除上清液、洗涤、干燥后密封保存,得到基于双重信号的表面增强拉曼探针。
实施例3基于双重信号的表面增强拉曼探针拉曼信号强度测试
通过对比,测试本发明制备的基于双重信号的表面增强拉曼探针性能。实验分为4组(a、b、c、d),a为实验组,b、c、d为对照组,具体如下:
(1)亚铁氰化钾和氯金酸的孵育:取300μL 1mM亚铁氰化钾溶液与100μL 2mM氯金酸溶液孵育5min,然后得到溶液1;
(2)铁氰化钾和氯金酸的孵育:取300μL 1mM铁氰化钾溶液与100μL 2mM氯金酸溶液孵育5min,然后得到溶液2;
(3)银纳米颗粒的合成以及表面修饰:使用盐酸羟胺还原剂来还原硝酸银,获得银纳米颗粒溶液;取1000μL银纳米颗粒溶液于离心管中,10000rpm转速下离心10min,去除上清液,加水重悬至原体积,得银纳米颗粒重悬液;其次,将步骤(1)中制备的溶液1加入400μL银纳米颗粒重悬液中孵育30min,孵育后在10000rpm转速下离心10min,去除上清液后加纯水重悬至原体积,得到溶液a;接着,将300μL 1mM亚铁氰化钾溶液加入400μL银纳米颗粒重悬液中孵育30min,孵育后在10000rpm转速下离心10min,去除上清液后加纯水重悬至原体积,得到溶液b;然后,将步骤(2)中制备的溶液2加入400μL银纳米颗粒重悬液中孵育30min,孵育后在10000rpm转速下离心10min,去除上清液后加纯水重悬至原体积,得到溶液c;随后,将300μL 1mM铁氰化钾溶液加入400μL银纳米颗粒重悬液中孵育30min,孵育后在10000rpm转速下离心10min,去除上清液后加纯水重悬至原体积,得到溶液d;
(4)将(3)中的溶液a、b、c、d分别与300μL 2mM 4-巯基苯甲酸孵育20min;然后,用激光波长为785nm的拉曼仪器,激光功率为10%,范围200-3000cm-1,积分时间2s,累计次数3进行测定每组溶液的拉曼光谱。光谱图如图3所示,a组为本发明制备的拉曼探针,组分为银纳米颗粒、氯金酸、亚铁氰化钾;b组以银纳米颗粒为拉曼探针,利用亚铁氰化钾中的氰基做为拉曼信号标签,组分为银纳米颗粒、亚铁氰化钾;c组制备过程中将a组的亚铁氰化钾替换为铁氰化钾,组分为银纳米颗粒、氯金酸、铁氰化钾;d组分为银纳米颗粒、铁氰化钾;
4-MBA为4-巯基苯甲酸,用做模型分子来验证其体系的信号强度。
图3示出了不同组分制备的拉曼基底的拉曼光谱图;从图中可以看出,a组对银纳米颗粒的氰基拉曼信号强度的显著地提高,区别于b、c、d组对银纳米颗粒的氰基拉曼信号强度的组合;其一,通过对比a、b组的拉曼光谱,说明氯金酸对银纳米颗粒的氰基信号有显著地增强;其二,通过对比a、c组分的拉曼光谱,说明亚铁氰化钾对银纳米颗粒的氰基信号有显著地增强;其三,通过对比b、d组分的拉曼光谱,说明亚铁氰化钾与银纳米颗粒产生的氰基信号强于铁氰化钾的;其四,通过对比c、d组分的拉曼光谱,说明氯金酸对银纳米颗粒的氰基信号有微弱增强。综上,本发明制备的基于双重信号的表面增强拉曼探针实现的信号最强,效果最好。
实施例4双重信号的表面增强拉曼光谱分析方法的构建
一、腺嘌呤分析方法
腺嘌呤标准溶液的配制:将准确称取0.0014g腺嘌呤标准品溶于1000μL纯水中,配制成10mM腺嘌呤标准液;然后取不同体积的10mM腺嘌呤标准液,用纯水稀释成0.1、0.5、1.0、5.0、8.0、10.0、20.0μM溶液,溶液体积各1000μL。
将实施例1或实施例2制备的表面增强拉曼探针加入纯水中配制重悬液,与已经配制好的腺嘌呤标准溶液混合,室温下孵育1-60min;然后,用激光波长为785nm的拉曼仪器,激光功率为10%,范围200-3000cm-1,积分时间2s,累计次数3进行测定每组溶液的拉曼光谱,光谱图如图4所示;得到以腺嘌呤标准溶液浓度为横坐标,以氰基与腺嘌呤拉曼光谱信号强度的相除关系为纵坐标的标准曲线(图5)。从标准曲线的结果可知,线性范围为0.1-20μM,检出限(LOD)为0.074μM,信噪比值取为3。
二、头孢曲松钠分析
头孢曲松钠标准溶液的配制:将准确称取0.0060g头孢曲松钠标准品溶于1000μL纯水中,配制成10mM头孢曲松钠标准液;然后取不同体积的10mM头孢曲松钠标准液用纯水稀释成0.1、0.5、1.0、5.0、8.0、10.0、20.0μM溶液各1000μL。
将实施例1或实施例2制备的表面增强拉曼探针加入纯水中配制重悬液,与已经配制好的头孢曲松钠标准溶液混合,室温下孵育1-60min;然后,用激光波长为785nm的拉曼仪器,激光功率为10%,范围200-3000cm-1,积分时间2s,累计次数3进行测定每组溶液的拉曼光谱,光谱图如图6所示;得到以头孢曲松钠标准溶液浓度为横坐标,以氰基与头孢曲松钠拉曼光谱信号强度的相除关系为纵坐标的标准曲线(图7)。从标准曲线的结果可知,线性范围为0.1-10μM,检出限(LOD)为0.050μM,信噪比值取为3。
三、孔雀石绿分析
孔雀石绿标准溶液的配制:将准确称取0.0036g孔雀石绿标准品溶于1000μL纯水中,配制成10mM孔雀石绿标准液;然后取不同体积的10mM孔雀石绿标准液用纯水稀释成0.1、0.5、1.0、5.0、8.0、10.0、20.0μM溶液各1000μL。
将实施例1或实施例2制备的表面增强拉曼探针加入纯水中配制重悬液,与已经配制好的孔雀石绿标准溶液混合,室温下孵育1-60min;然后,用激光波长为785nm的拉曼仪器,激光功率为10%,范围200-3000cm-1,积分时间2s,累计次数3进行测定每组溶液的拉曼光谱,光谱图如图8所示;得到以孔雀石绿标准溶液浓度为横坐标,以氰基与孔雀石绿拉曼光谱信号强度的相除关系为纵坐标的标准曲线(图9)。从标准曲线的结果可知,线性范围为0.1-2.0μM,检出限(LOD)为0.032μM,信噪比值取为3。
四、检测样品应用
取溶液或肉类样品,进行前处理,离心,收集上清液;将本发明制备的表面增强拉曼探针与样品上清液共孵育1-60min,得到待检测溶液;测定所述待检测溶液的拉曼光谱,确定样品中所含物质及物质的含量;当样品可能同时存在腺嘌呤、头孢曲松钠和孔雀石绿中至少2种时,除了要根据拉曼光谱分析,还要做主成分分析PCA或者线性回归分析,最终确定样品中含有的物质。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制。本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。
以上本发明的具体实施方式,并不构成对本发明保护范围的限定。任何根据本发明的技术构思所做出的各种其他相应的改变与变形,均应包含在本发明权利要求的保护范围内。

Claims (12)

1.基于双重信号的表面增强拉曼探针,其特征在于:所述探针是氯金酸和亚铁氰化钾修饰的银纳米颗粒。
2.根据权利要求1所述的基于双重信号的表面增强拉曼探针,其特征在于:所述氯金酸、亚铁氰化钾和银纳米颗粒的摩尔比为(0.1-10):(0.1-10):(3×10-7)。
3.基于双重信号的表面增强拉曼探针的制备方法,其特征在于,包括如下步骤:
S1、取亚铁氰化钾溶液与氯金酸溶液,孵育1-60min,得到溶液1;
S2、用还原剂还原硝酸银,获得银纳米颗粒溶液,在8000~12000rpm转速下离心8~15min,去除上清液,加水重悬至原体积,得到银纳米颗粒重悬液;
S3、将步骤S1制备的溶液1加入步骤S2制备的银纳米颗粒重悬液中,孵育1-60min;在8000~12000rpm转速下离心8~15min,去除上清液,洗涤、干燥、密封,得到基于双重信号的表面增强拉曼探针。
4.根据权利要求3所述的基于双重信号的表面增强拉曼探针的制备方法,其特征在于:所述步骤S1中亚铁氰化钾与氯金酸的摩尔比为0.1-10:0.1-10、体积比为1-100:1-100。
5.根据权利要求4所述的基于双重信号的表面增强拉曼探针的制备方法,其特征在于:所述银纳米颗粒重悬液与溶液1的体积比为1-5:1-4。
6.根据权利要求5所述的基于双重信号的表面增强拉曼探针的制备方法,其特征在于:所述还原剂为盐酸羟胺、柠檬酸钠或硼氢化钠。
7.基于双重信号的表面增强拉曼探针在检测化合物方面的应用,所述化合物不含有氰基且不可与氰基发生反应。
8.根据权利要求7所述的应用,其特征在于:所述化合物为腺嘌呤、头孢曲松钠和/或孔雀石绿。
9.根据权利要求8所述的应用,其特征在于:所述化合物为孔雀石绿。
10.基于双重信号的表面增强拉曼光谱检测方法,其特征在于,包括如下步骤:
S11、取待测样品,进行前处理、离心,收集样品上清液;
S12、将权利要求1所述的基于双重信号的表面增强拉曼探针加入纯水中配制重悬液,与所述样品上清液共孵育1-60min,得到待检测溶液;
S13、进行所述待检测溶液拉曼光谱检测。
11.根据权利要求10所述的基于双重信号的表面增强拉曼光谱检测方法,其特征在于:所述待测样品中包括腺嘌呤、头孢曲松钠和孔雀石绿中至少一种。
12.根据权利要求11所述的基于双重信号的表面增强拉曼光谱检测方法,其特征在于:所述步骤S12中重悬液与样品上清液的体积比为1-5:1-3。
CN202310100101.5A 2023-02-11 2023-02-11 基于双重信号的表面增强拉曼探针及其应用 Pending CN116413243A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310100101.5A CN116413243A (zh) 2023-02-11 2023-02-11 基于双重信号的表面增强拉曼探针及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310100101.5A CN116413243A (zh) 2023-02-11 2023-02-11 基于双重信号的表面增强拉曼探针及其应用

Publications (1)

Publication Number Publication Date
CN116413243A true CN116413243A (zh) 2023-07-11

Family

ID=87053957

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310100101.5A Pending CN116413243A (zh) 2023-02-11 2023-02-11 基于双重信号的表面增强拉曼探针及其应用

Country Status (1)

Country Link
CN (1) CN116413243A (zh)

Similar Documents

Publication Publication Date Title
Shiang et al. Gold nanodot-based luminescent sensor for the detection of hydrogen peroxide and glucose
Wang et al. A SiO2@ MIP electrochemical sensor based on MWCNTs and AuNPs for highly sensitive and selective recognition and detection of dibutyl phthalate
He et al. A novel ratiometric SERS biosensor with one Raman probe for ultrasensitive microRNA detection based on DNA hydrogel amplification
CN104020198B (zh) 一种信号放大技术电化学传感器检测dna的方法
Jafari et al. Colorimetric biosensor for phenylalanine detection based on a paper using gold nanoparticles for phenylketonuria diagnosis
CN105510420A (zh) 一种基于磁珠分离和dna标记金纳米粒子探针检测atp含量的方法
Gao et al. An aptamer-based colorimetric assay for chloramphenicol using a polymeric HRP-antibody conjugate for signal amplification
Liu et al. Rapid, ultrasensitive and non-enzyme electrochemiluminescence detection of hydrogen peroxide in food based on the ssDNA/g-C3N4 nanosheets hybrid
Farahbakhsh et al. A novel aptasensing method for detecting bisphenol A using the catalytic effect of the Fe3O4/Au nanoparticles on the reduction reaction of the silver ions
Fu et al. A LAMP-based ratiometric electrochemical sensing for ultrasensitive detection of Group B Streptococci with improved stability and accuracy
Behyar et al. d-Penicillamine functionalized dendritic fibrous nanosilica (DFNS-DPA): synthesise and its application as an innovative advanced nanomaterial towards sensitive quantification of ractopamine
CN104020199B (zh) 一种基于适体识别作用电化学测定多巴胺的方法
Filik et al. Determination of tetracycline on the surface of a high-performance graphene modified screen-printed carbon electrode in milk and honey samples
Gao et al. Visual detection of alkaline phosphatase based on ascorbic acid-triggered gel-sol transition of alginate hydrogel
Lu et al. Ultrasensitive detection of patulin based on a Ag+-driven one-step dual signal amplification
CN108680567B (zh) 一种基于功能化核酸的化学发光传感器对赭曲霉毒素a的测定方法
Yu et al. Dual-Target Electrochemical Sensor Based on 3D MoS2-rGO and Aptamer Functionalized Probes for Simultaneous Detection of Mycotoxins
CN116413243A (zh) 基于双重信号的表面增强拉曼探针及其应用
CN111157501A (zh) 一种细胞内纳米银和银离子定量的测定方法
Vanegas et al. Biosensors for indirect monitoring of foodborne bacteria
Chen et al. Highly sensitive detection of Brucella in milk by cysteamine functionalized nanogold/4-Mercaptobenzoic acid electrochemical biosensor
Qiao et al. Phenylboronic acid derivative-modified (6, 5) single-wall carbon nanotube probes for detecting glucose and hydrogen peroxide
Wu et al. A dual-mode “signal-on” split-type aptasensor for bisphenol A via target-induced hybridization chain reaction amplification
CN103185737B (zh) 一种检测水样中铅离子的方法
Sianglam et al. Simultaneous preconcentration and fluorescence detection of ATP by a hybrid nanocomposite of magnetic nanoparticles incorporated in mixed metal hydroxide

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination