CN116408459A - 一种耐hf腐蚀不锈钢-镍基合金梯度过渡材料的制备方法 - Google Patents

一种耐hf腐蚀不锈钢-镍基合金梯度过渡材料的制备方法 Download PDF

Info

Publication number
CN116408459A
CN116408459A CN202310343116.4A CN202310343116A CN116408459A CN 116408459 A CN116408459 A CN 116408459A CN 202310343116 A CN202310343116 A CN 202310343116A CN 116408459 A CN116408459 A CN 116408459A
Authority
CN
China
Prior art keywords
ss316l
gradient
laser
stainless steel
base alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310343116.4A
Other languages
English (en)
Inventor
陈旭
张舒尧
戴海龙
张喆
石守稳
李亚晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN202310343116.4A priority Critical patent/CN116408459A/zh
Publication of CN116408459A publication Critical patent/CN116408459A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/09Mixtures of metallic powders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/38Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2207/00Aspects of the compositions, gradients
    • B22F2207/01Composition gradients
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明涉及一种耐HF腐蚀不锈钢‑镍基合金梯度过渡材料的制备方法,将不锈钢SS316L粉末和镍基合金IN625粉末按照不同比例混合,采用增材制造技术制备激光熔覆成分梯度材料,可有效实现SS316L和IN625的梯度过渡连接,由于SS316L在HF蒸汽环境下的优越耐腐蚀性,有效提高了成分梯度结构整体在HF环境下的腐蚀性能和经济性,具有较大的应用前景。

Description

一种耐HF腐蚀不锈钢-镍基合金梯度过渡材料的制备方法
技术领域
本发明属于成分梯度材料技术领域,涉及梯度材料的制备,特别涉及一种耐HF腐蚀不锈钢-镍基合金梯度过渡材料的制备方法。
背景技术
功能梯度材料(Functionally graded materials,FGM)是指成分、结构等沿某一方向逐渐变化的材料,通过引入渐变的组分或结构,消除异种或者不相容材料间的结合界面,减少零件的残余应力、热应力等,使材料平滑过渡,材料性能逐渐变化。这样不仅可以解决传统焊接异种接头材料因成分离散变化而导致裂纹的难题,而且同时提升材料的整体性能,如强度、韧性、耐腐蚀性、抗疲劳性能等,为复杂严苛环境下的材料选择与连接提供一个新思路。之前受限于制备方式,发展较为缓慢,随着制备方式的不断丰富与发展,FGM在航空航天、输油管道运输、半导体光电、核工业等领域具有广阔的应用前景。采用功能梯度材料既消除了传统复合材料中引发破坏的尖锐界面,又保持了复合材料的优良特性。
在制备FGM过程中,传统的制备方法主要有离心铸造、物理气相沉积、化学气相沉积、等离子喷涂、粉末冶金等。但这些制备方法都有各自的局限性,比如离心铸造适用于生成回转体形状材料,对于复杂结构件生产能力较差;气相沉积法不适合制备大厚度的块体并且合成速度较慢;等离子喷涂法孔隙率较大;粉末冶金工艺较为复杂、性能不稳定等。因此传统制备方式的不足严重掣肘了FGM的发展。
增材制造(Additive manufacturing,AM)通过原材料逐层堆积,无需模具辅助,借助CAD指导可以快速生成实体模型,这种离散-堆积的制备特点使得材料成分与组织在时间和空间上的控制更加方便,同时降低了复杂几何结构件的制造周期和工艺复杂性。因此,增材制造高度的定制化和自由度的特点,非常适于制备FGM。其中,基于同步送粉的增材制造激光直接能量沉积技术(L-DED)通过送粉过程中调节粉末成分,可以较为容易的改变材料的成分组成,更加灵活方便。
在应用背景方面,氟化氢(HF)是氟化工行业中最重要的中间体,几乎贯穿于精细化工产业链的所有流程。但是HF具有很强的腐蚀性和挥发性,挥发的HF与水蒸气等环境中残余水结合形成HF蒸汽环境,同样具有很强的腐蚀性。因此,在HF环境中,往往会形成多相态叠加(HF溶液、HF蒸汽)的强腐蚀性环境,对材料造成腐蚀损伤,单一材料往往难以满足服役条件,比如,成本较高(镍基合金)或者在某一个腐蚀环境下腐蚀较为剧烈。传统上往往采用焊接的方法将不同的材料进行连接,但是由于不同材料间的性能差异较大,焊接接头处容易产生焊接裂纹,对设备的完整性造成较大影响。
本方法选择增材制造制备成分梯度材料,将不同材料连接处进行梯度化,有效的解决了不同材料连接容易出现的裂纹问题,提升了整体的耐腐蚀性。
同时,不同材料在不同HF相态的腐蚀差异成为值得优化与讨论的问题。考虑结合增材制造制备功能梯度材料,可以更好的降低设备整体成本,同时保证设备的可靠性与安全性。
发明内容
本发明的目的在于克服现有技术的不足,提出一种耐HF腐蚀不锈钢-镍基合金梯度过渡材料的制备方法,在HF多相态的腐蚀环境下,在降低成本的同时,能够保证腐蚀速率较低,为梯度材料的应用提供新思路。
本发明解决其技术问题是通过以下技术方案实现的:
一种耐HF腐蚀不锈钢-镍基合金梯度过渡材料的制备方法,其特征在于:所述方法的步骤为:
S1、将SS316L及IN625的金属粉末按照一定比例进行均匀混合,得到四种不同组分的混合物料,四种混合物料分别为:80%SS316L+20%IN625、60%SS316L+40%IN625、40%SS316L+60%IN625、20%SS316L+80%IN625;
S2、将上述四种不同组分的混合物分别放置于真空烘干机中烘干,备用;
S3、在SS316L基板上通过增材制造激光沉淀材料,激光工作功率为功率800~1000w,打印过程中,激光搭接率50%,激光扫描速度400~600mm/min,喷嘴送粉量2~10g/min,激光的光斑直径为2~3mm,沉积层层高0.4-0.6mm;氮气保护气流量1~2L/min;针对梯度层中的4中成分与IN625材料,适当提高激光功率1000~1200W,先沉积40层SS316L;紧接着沉积共20层梯度层,该20层梯度层中,每种混合物料各5层;最后沉积40层IN625。
而且,所述梯度层中,每沉积一层,则旋转90度。
而且,所述SS316L及IN625的金属粉末颗粒直径为50~150μm。
本发明的优点和有益效果为:
本发明克服了两种材料直接连接容易导致的裂纹问题,提高连接强度,提高其在HF多相态的腐蚀环境下的耐腐蚀性;同时,SS316L的加入降低了设备的成本。
附图说明
图1为本发明激光直接能量沉积增材制造过程示意图;
图2为本发明的梯度过渡材料示意图;
图3为本发明的梯度过渡材料成分设计示意图;
图4为本发明梯度过渡材料制备成品实物图;
图5为本发明梯度过渡材料成品试样成分EDS测试结果图;
图6为本发明梯度过渡材料XRD测试结果图;
图7为本发明HF不同环境下的腐蚀示意图;
图8为本发明SS316L及IN625在HF溶液和HF蒸汽环境下的腐蚀速率结果图;
图9为本发明梯度过渡材料在复杂环境下的腐蚀速率结果图;
图10为本发明不同材料腐蚀速率-成本示意图。
具体实施方式
下面通过具体实施例对本发明作进一步详述,以下实施例只是描述性的,不是限定性的,不能以此限定本发明的保护范围。
一种耐HF腐蚀不锈钢-镍基合金梯度过渡材料的制备方法,其创新之处在于:所述方法的步骤为:
S1、将SS316L及IN625的金属粉末按照一定比例进行均匀混合,得到四种不同组分的混合物料,四种混合物料分别为:80%SS316L+20%IN625、60%SS316L+40%IN625、40%SS316L+60%IN625、20%SS316L+80%IN625;
S2、将上述四种不同组分的混合物分别放置于真空烘干机中烘干,备用;
S3、如图1所示,在SS316L基板上通过增材制造激光沉淀材料,激光工作功率为功率800~1000w,打印过程中,激光搭接率50%,激光扫描速度400~600mm/min,喷嘴送粉量2~10g/min,激光的光斑直径为2~3mm,沉积层层高0.4-0.6mm;氮气保护气流量1~2L/min;针对梯度层中的4中成分与IN625材料,适当提高激光功率1000~1200W,先沉积40层SS316L;紧接着沉积共20层梯度层,该20层梯度层中,每种混合物料各5层;最后沉积40层IN625,如图2、3所示。
而且,所述梯度层中,每沉积一层,则旋转90度,如图4所示。
而且,所述SS316L及IN625的金属粉末颗粒直径为50~150μm。
将本发明制备得的梯度过渡材料进行扫描电镜元素能谱分析,每0.5mm对5个主要元素Fe、Ni、Cr、Mo、Nb含量进行测试,三次测试结果取平均值。EDS结果如图5所示,可以看到化学成分逐渐变化,符合成分梯度变化设计预期。上述得到的材料主要组成为奥氏体相,在SS316L部分存在少量的残余铁素体相,第二相含量较少,不产生明显的宏观裂纹,XRD结果如图6所示,使用本方法可成功制备SS316L/IN625成分梯度过渡材料。
将本发明制备得的梯度过渡材料进行腐蚀试验,进行了7天常温的40%HF腐蚀试验。为了尽可能的还原HF的多相态腐蚀环境,除了单一的HF溶液环境和HF蒸汽环境,还设计了较为复杂的HF部分浸没腐蚀试验,腐蚀装置如图7所示。其中,镍基合金IN625部分浸没在HF溶液中,其余部分暴露在HF蒸汽环境下。所有试验均进行3次,取平均值以保证准确和规律性。
腐蚀试验结束后,在10%的H2SO4中洗去腐蚀产物,称量试验后的试片重量,腐蚀速率计算公式如下,
Figure BDA0004158624500000041
其中,△m为腐蚀前后的质量差;
A为试样表面积;
ρ为试样密度:SS316L为7.92g/cm2,IN625为8.442g/cm2,梯度过渡材料为8.18g/cm2
T为浸泡时间,168h。
两种基础材料SS316L和IN625在HF溶液和HF蒸汽中的腐蚀速率的结果如图8所示,SS316L在溶液中腐蚀较快,而在HF蒸汽环境下保持了与镍基合金IN625接近的腐蚀耐性。虽然镍基合金耐腐蚀,但是价格昂贵。考虑将两种材料的优点进行结合,即IN625在HF溶液中的耐腐蚀性与SS316L在HF蒸汽中的耐腐蚀性。通过更为复杂,接近实际工况的部分浸没试验,腐蚀速率结果如图9所示,可以看到,经过两种材料的梯度化设计,GT材料在HF环境复杂腐蚀体系中,保证材料整体腐蚀速率较低(0.59mm/y)的情况下,材料整体的经济性也得到了保证和折中。如图10所示,不同材料的腐蚀速率与成本图,GT材料达到了本发明设计的目的和初衷,有着较大的工程应用前景与意义。
尽管为说明目的公开了本发明的实施例和附图,但是本领域的技术人员可以理解:在不脱离本发明及所附权利要求的精神和范围内,各种替换、变化和修改都是可能的,因此,本发明的范围不局限于实施例和附图所公开的内容。

Claims (3)

1.一种耐HF腐蚀不锈钢-镍基合金梯度过渡材料的制备方法,其特征在于:所述方法的步骤为:
S1、将SS316L及IN625的金属粉末按照一定比例进行均匀混合,得到四种不同组分的混合物料,四种混合物料分别为:80%SS316L+20%IN625、60%SS316L+40%IN625、40%SS316L+60%IN625、20%SS316L+80%IN625;
S2、将上述四种不同组分的混合物分别放置于真空烘干机中烘干,备用;
S3、在SS316L基板上通过增材制造激光沉淀材料,激光工作功率为功率800~1000w,打印过程中,激光搭接率50%,激光扫描速度400~600mm/min,喷嘴送粉量2~10g/min,激光的光斑直径为2~3mm,沉积层层高0.4-0.6mm;氮气保护气流量1~2L/min;针对梯度层中的4中成分与IN625材料,适当提高激光功率1000~1200W,先沉积40层SS316L;紧接着沉积共20层梯度层,该20层梯度层中,每种混合物料各5层;最后沉积40层IN625。
2.根据权利要求1所述的耐HF腐蚀不锈钢-镍基合金梯度过渡材料的制备方法,其特征在于:所述梯度层中,每沉积一层,则旋转90度。
3.根据权利要求1所述的耐HF腐蚀不锈钢-镍基合金梯度过渡材料的制备方法,其特征在于:所述SS316L及IN625的金属粉末颗粒直径为50~150μm。
CN202310343116.4A 2023-04-03 2023-04-03 一种耐hf腐蚀不锈钢-镍基合金梯度过渡材料的制备方法 Pending CN116408459A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310343116.4A CN116408459A (zh) 2023-04-03 2023-04-03 一种耐hf腐蚀不锈钢-镍基合金梯度过渡材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310343116.4A CN116408459A (zh) 2023-04-03 2023-04-03 一种耐hf腐蚀不锈钢-镍基合金梯度过渡材料的制备方法

Publications (1)

Publication Number Publication Date
CN116408459A true CN116408459A (zh) 2023-07-11

Family

ID=87055862

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310343116.4A Pending CN116408459A (zh) 2023-04-03 2023-04-03 一种耐hf腐蚀不锈钢-镍基合金梯度过渡材料的制备方法

Country Status (1)

Country Link
CN (1) CN116408459A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117444230A (zh) * 2023-09-07 2024-01-26 武汉理工大学 一种钴基高温合金/不锈钢梯度复合材料及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117444230A (zh) * 2023-09-07 2024-01-26 武汉理工大学 一种钴基高温合金/不锈钢梯度复合材料及其制备方法

Similar Documents

Publication Publication Date Title
Li et al. Additive manufacturing of a new Fe-Cr-Ni alloy with gradually changing compositions with elemental powder mixes and thermodynamic calculation
CN110158008A (zh) 一种高熵合金涂层及其制备方法
CN116408459A (zh) 一种耐hf腐蚀不锈钢-镍基合金梯度过渡材料的制备方法
CN110076340A (zh) 钛合金连续梯度耐高温涂层及其制备方法
JPS595389B2 (ja) 拡散接合組立体
JP2018505334A (ja) タービンエンジン部品の製造方法
Park et al. Alloy design of Ni-based superalloy with high γ′ volume fraction suitable for additive manufacturing and its deformation behavior
CN109940309A (zh) 钎料活性材料、钎料组合物以及镍基合金的焊接方法和焊接件
CA3068159A1 (en) High gamma prime nickel based superalloy, its use, and method of manufacturing of turbine engine components
Kalyankar et al. Influence of torch oscillation on the microstructure of Colmonoy 6 overlay deposition on SS304 substrate with PTA welding process
CN113305285A (zh) 用于增材制造的镍基高温合金金属粉末
CN113042927A (zh) 一种低合金钢-不锈钢复合管及其制备方法
Yang et al. Microstructure and corrosion resistance of arc additive manufactured 316L stainless steel
Guo et al. Microstructural and intergranular corrosion properties of Inconel 625 superalloys fabricated using wire arc additive manufacturing
Gao et al. Microstructure and mechanical properties of 9Cr martensitic heat-resistant steel fabricated by wire and arc additive manufacture technology
Yu et al. Effect of composition gradient design on microstructure and mechanical properties of dual-wire plasma arc additively manufactured 316L/IN625 functionally graded materials
Zhang et al. QCr0. 8 Cu alloy/S06 stainless steel bimetal structure via In718 multi-interlayer fabricated by laser powder hybrid additive manufacturing
CN105671544A (zh) 利用熔覆粉末在激光熔覆中提高42CrMo钢耐磨性能的方法
Han et al. Microstructural evolution of the heat affected zone of a Co–Ti–W alloy upon laser cladding with a CoNiCrAlY coating
CN114074234A (zh) 一种高温组织稳定的耐蚀复型合金材料及其制备方法
CN110484916A (zh) 一种高速及超高速激光熔覆用镍基合金粉末
Chen et al. Influence of laser power and scan speed on the microstructure and properties of GH4169 alloy prepared by selective laser melting
CN115354194A (zh) 一种增材修复用镍基高温合金材料及其应用
CN113278968A (zh) 一种抗高温氧化的Al、Si复合添加改性镍基高温合金涂层及其制备方法
Ye et al. Microstructure and properties of CeO2 doped Ni-based coatings prepared by laser cladding

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination