CN115354194A - 一种增材修复用镍基高温合金材料及其应用 - Google Patents

一种增材修复用镍基高温合金材料及其应用 Download PDF

Info

Publication number
CN115354194A
CN115354194A CN202211082897.8A CN202211082897A CN115354194A CN 115354194 A CN115354194 A CN 115354194A CN 202211082897 A CN202211082897 A CN 202211082897A CN 115354194 A CN115354194 A CN 115354194A
Authority
CN
China
Prior art keywords
percent
nickel
alloy
repair
additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211082897.8A
Other languages
English (en)
Inventor
刘纪德
樊大华
张志鹏
李金国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN202211082897.8A priority Critical patent/CN115354194A/zh
Publication of CN115354194A publication Critical patent/CN115354194A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Plasma & Fusion (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明公开了一种增材修复用镍基高温合金材料及其应用,属于镍基高温合金零件增材修复技术领域。按重量百分含量计,该合金化学成分为:B:0.001‑0.03%;C:0.005‑0.055%;Cr:12‑20%;Mo:2.0‑3.0%;Nb:5‑5.8%;Ti:0.4‑1.2%;Al:1.8‑2.3%;Fe:9‑12%;Co:9‑12%;W:0.5‑1.5%;Ni为余量。该合金可作为进口IN718 plus等镍基高温合金零件增材修复用材料,可超声气体雾化法、旋转电极法等制成粉末增材产品,也可以采用锻造、轧制和拉丝等工艺加工成丝材产品,满足激光、电子束和电弧焊等不同增材修复方法要求。

Description

一种增材修复用镍基高温合金材料及其应用
技术领域
本发明涉及镍基高温合金零件增材修复技术领域,具体涉及一种增材修复用镍基高温合金材料及其应用,该增材修复用合金适用于镍基高温合金零件的修复和再利用。
背景技术
镍基高温合金具有优异的高温强度、抗蠕变能力和抗氧化腐蚀性能,被广泛应用于航空、航天、石油化工、能源等重要工业领域。由于叶片等高温合金零件多在高温、应力和腐蚀环境下工作,其服役环境极为特殊和苛刻,导致高温合金零件不可避免地出现损伤,进而导致零件的失效报废。为了降低成本提高效率,实现损伤零件的修复和再利用尤为关键。但是由于高温合金的合金化程度较高,往往含有较多的合金元素,导致这些材料的焊接性能极差,产生焊接冷、热裂纹的倾向性较高,增材修复难度极大,相关的修复材料研制和修复技术开发亟待突破。
高温合金在航空发动机等领域应用非常广泛,从压气机到尾喷口等零件均采用不同成分和结构的高温合金。而不同结构零件的失效方式也存在很大差异,因此可能会针对不同失效方式采用不同的修复工艺方法,对于修复材料的形式要求也不同,主要是针对粉末和丝材两种增材修复的材料形式。
专利(CN 114686732 A)公开了一种高温合金修复材料及制备方法、高温合金修复零件的增材再制造方法和再服役评价方法,该种材料含有Al、Ti、Nb、Ta等沉淀强化相形成元素,采用电极法制备了粉末材料并在等离子弧焊方面进行了应用。专利(CN 112962013A)公开了一种单晶高温合金扩散外延生长修复材料,该材料含有更多的沉淀强化元素,尤其是Ta元素,也只能制备成粉末状增材产品。专利(CN 103243242 B)公开了一种高温合金涡轮叶片修复材料及其修复工艺,该合金在使用时也只能采用线切割方法进行加工,未能实现拉拔成型,这也会一定程度上制约自动化增材修复的实现。
发明内容
针对上述现有技术中存在的不足之处,围绕修复技术对材料形式的多样性需求,本发明提供一种增材修复用镍基高温合金材料及其应用,该修复材料在满足一定强度要求的基础上,可以制备成粉末和丝材等多种形式,适合于超声气体雾化、旋转电极和拉拔等不同工艺技术。
为实现上述目的,本发明所采用的技术方案如下:
一种增材修复用镍基高温合金材料,其为镍基高温合金,按重量百分含量计,其化学成分为:
B:0.03-0.001%;C:0.005-0.055%;Cr:12-20%;Mo:2.0-3%;Nb:5-6%;Ti:0.4-1.2%;Al:1.4-2.3%;Fe:9-12%;Co:9-12%;W:0.5-1.5%;Ni为余量。
按重量百分含量计,该镍基高温合金材料化学成分优选为:
B:0.001-0.03%;C:0.005-0.055%;Cr:12-20%;Mo:2.0-3.0%;Nb:5-5.8%;Ti:0.4-1.2%;Al:1.8-2.3%;Fe:9-12%;Co:9-12%;W:0.5-1.5%;Ni为余量。
所述合金材料为粉末状或丝状;可采用超声气体雾化法或旋转电极法制成粉末状合金材料,采用传统丝材拉拔工艺制成丝状合金材料。
所述合金为粉末状时,其粒径为50~150μm,所述合金为丝材时其直径为1~2mm。
该增材修复用镍基高温合金材料用于镍基高温合金增材修复,修复方式为激光增材修复和/或电弧焊增材修复等。
本发明设计原理如下:
对于粉末材料的制备来说,液态合金的流动性越好粉末成品率越高。而合金元素配比是影响液态合金流动性的关键因素之一。为了提高液态金属流动性和粉末材料成品率,本发明在合金设计时考虑添加了一定量的硼元素。硼元素在镍基合金中具有较强的降低基体熔点的能力,如图1所示,适当含量的硼元素可以显著降低镍或者镍基合金的融化温度,进而提高合金的流动性。
镍基合金采用铸造-锻造(轧制)-拉拔工艺制备成丝材的过程中,合金内部由于铸造而形成的大量尺寸较大的Laves相是后期精锻或者热轧过程中,产品产生裂纹的主要原因。进一步的分析表明,这些大块状的Laves相是铸造过程中偏析导致的,富含Ti、Nb和Mo等元素(合金内必要的强化作用元素),当丝材制备过程中对样品进行高温精锻和热轧盘条时,这些Laves相未能溶解于基体内,仍保持大量的、尺寸较大的形态(图2)。Laves相性质脆硬,不能发生变形,因此常常导致其周围发生裂纹,随着变形的继续,裂纹发生延展和相互连接,进而导致大尺寸裂纹的形成和样品的最终断裂。为了制成较精细尺寸的丝材,必须对样品内部Laves相的形成加以抑制,根据Laves相的形成元素特征,对其形成倾向性进行控制。本发明中对形成Laves相的Ti、Nb和Mo等元素的含量进行下行控制,降低合金自身形成Laves相倾向性,较小其危害性。
为了提高增材修复后构件的整体性能,加入适量铬、钨、铁元素配合,一方面固溶强化合金,另一方面可以提高中间层合金的成形能力和抗高温氧化性能,同时加入一定量的Al元素,形成一定数量的沉淀强化相,补充Mo等元素含量偏低所导致的强度下降问题。
本发明的有益效果是:
1、本发明通过修复材料成分设计,解决目前高温合金增材修复用材料设计不合理,粉末或丝材成形性不好的问题,采用本发明合金材料对镍基高温合金进行增材修复,修复质量良好,方法简单有效。
2、增材修复后修复区域的抗拉强度达到母材90%以上。
附图说明
图1为Ni-B二元相图。
图2为大块状Laves相形态。
图3为实施例1样品微观组织。
图4为实施例3样品微观组织。
图5为实施例1样件图片。
具体实施方式
以下结合附图及实施例详述本发明。
本发明增材修复用合金以镍为基体,添加了特定量的B:0.03-0.001%、C:0.055-0.055%作为降熔点元素,添加了一定量的Cr:12-20%、Mo:2.0-3%;Fe:9-12%、Co:9-12%、W:0.5-1.5%作为固溶强化元素;添加Nb:5-6%、Ti:0.4-1.2%、Al:1.4-2.3%等元素做为沉淀强化元素。
以下实施例中所用合金制备方法为:将纯度大于99.99%的纯镍、铬、钨、硅、铁和镍-硼合金(镍-硼合金中硼为21wt.%)按所述比例配好后放入真空感应熔炼炉中熔炼成合金锭。采用高纯Ar气雾化法或旋转电极法制备粉末,或者采用传统拉拔法制备丝材。制备好的粉末或者丝材用于激光增材或者电弧增材制造。
实施例1:
本实施例中,激光增材修复用粉末合金成分按重量百分比计的组成为:B:0.02%;C:0.0085%;Cr:16%;Mo:2.5%;Nb:5.5%;Ti:1%;Al:2%;Fe:10%;Co:11%;W:1%;Ni为余量。将上述修复材料制成粒径为50~150μm的球形粉末,采用CO2激光实现修复区域的增材堆焊,增材修复工艺参数为功率2000W,扫描速度为200mm/min,送粉速率为20g/min,加工过程在惰性气体保护下进行,加工完成后,将部分基体和修复堆焊区域放入马弗炉中进行热处理,热处理制度为:1180℃保温2小时后空气中冷却;750℃保温6小时随炉冷去至室温。图3是热处理后样品金相组织照片,可以看出,修复区无裂纹和孔洞等缺陷,修复质量良好。
实施例2:
本实施例中,激光增材修复用粉末合金成分按重量百分比计的组成为:B:0.009%;C:0.01%;Cr:17%;Mo:2.4%;Nb:5.3%;Ti:0.7%;Al:2.1%;Fe:10%;Co:11%;W:1.1%;Ni为余量。将上述修复材料制成粒径为50~150μm的球形粉末,采用CO2激光实现修复区域的增材堆焊,增材修复工艺参数为:功率2200W,扫描速度为210mm/min.,送粉速率为20g/min.,加工过程在惰性气体保护下进行,加工完成后,将部分基体和修复堆焊区域放入马弗炉中进行热处理,热处理制度为:1180℃保温2小时后空气中冷却;750℃保温6小时随炉冷去至室温。上述处理后样品金相组织照片表明:修复区无裂纹和孔洞等缺陷,修复质量良好。
实施例3:
本实施例中,电弧增材修复用丝材合金成分按重量百分比计的组成为:B:0.002%;C:0.0075%;Cr:16%;Mo:2.0%;Nb:5%;Ti:0.4%;Al:2.2%;Fe:10%;Co:11%;W:1.3%;Ni为余量。将上述修复材料制成直径为1.2mm的丝材,采用电弧增材设备实现修复区域的增材堆焊,增材修复工艺参数为电流200A,扫描速度为150mm/min.,电压为25V.,加工过程在惰性气体保护下进行,加工完成后,将部分基体和修复堆焊区域放入马弗炉中进行热处理,热处理制度为:1180℃保温2小时后空气中冷却;750℃保温6小时随炉冷去至室温。图4是上述处理后样品金相组织照片,可以看出,修复区无裂纹和孔洞等缺陷,修复质量良好。
实施例4:
本实施例中,电弧增材修复用丝材合金成分按重量百分比组成为:B:0.002%;C:0.0075%;Cr:18%;Mo:2.05%;Nb:5.1%;Ti:0.45%;Al:2.1%;Fe:11%;Co:11%;W:1.4%;Ni为余量。将上述修复材料制成直径为1.2mm的丝材,采用电弧增材设备实现修复区域的增材堆焊,增材修复工艺参数为电流220A,扫描速度为170mm/min.,电压为27V.,加工过程在惰性气体保护下进行,加工完成后,将部分基体和修复堆焊区域放入马弗炉中进行热处理,热处理制度为:1180℃保温2小时后空气中冷却;750℃保温6小时随炉冷去至室温。上述处理后样品金相组织照片,可以看出,修复区无裂纹和孔洞等缺陷,修复质量良好。
对比例1:
本对比例中,电弧增材修复用丝材合金成分按重量百分比计的组成为:B:0.0025%;C:0.075%;Cr:16%;Mo:2.3%;Nb:6%;Ti:1.2%;Al:2%;Fe:10%;Co:11%;W:1.0%%;Ni为余量。欲将上述修复材料制成直径为1.2mm的丝材。制备丝材过程中,高温精锻时,样件表面和芯部出现大量裂纹,个别裂纹穿透样品厚度截面,导致样品断裂。图5为丝材制备过程中因裂纹而导致的断裂样品。

Claims (5)

1.一种增材修复用镍基高温合金材料,其特征在于:该材料为镍基高温合金,按重量百分含量计,其化学成分为:
B:0.001-0.03%;C:0.005-0.055%;Cr:12-20%;Mo:2.0-3.0%;Nb:5-6%;Ti:0.4-1.2%;Al:1.4-2.3%;Fe:9-12%;Co:9-12%;W:0.8-1.5%;Ni为余量。
2.根据权利要求1所述的增材修复用镍基高温合金材料,其特征在于:按重量百分含量计,该镍基高温合金材料化学成分为:
B:0.001-0.03%;C:0.005-0.055%;Cr:12-20%;Mo:2.0-3.0%;Nb:5-5.8%;Ti:0.4-1.2%;Al:1.8-2.3%;Fe:9-12%;Co:9-12%;W:0.5-1.5%;Ni为余量。
3.根据权利要求1或2所述的增材修复用镍基高温合金材料,其特征在于:所述合金为粉末状或丝状,可采用超声气体雾化法、旋转电极法制成粉末状合金材料,或采用拉拔制丝方法制备成丝状合金材料。
4.根据权利要求3所述的增材修复用镍基高温合金材料,其特征在于:所述合金为粉末状时,其粒径为50~150μm,所述合金为丝材时其直径为1~2mm。
5.根据权利要求1所述的增材修复用镍基高温合金材料的应用,其特征在于:该增材修复用镍基高温合金材料用于镍基高温合金增材修复,修复方式为激光增材修复和/或电弧焊增材修复等。
CN202211082897.8A 2022-09-06 2022-09-06 一种增材修复用镍基高温合金材料及其应用 Pending CN115354194A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211082897.8A CN115354194A (zh) 2022-09-06 2022-09-06 一种增材修复用镍基高温合金材料及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211082897.8A CN115354194A (zh) 2022-09-06 2022-09-06 一种增材修复用镍基高温合金材料及其应用

Publications (1)

Publication Number Publication Date
CN115354194A true CN115354194A (zh) 2022-11-18

Family

ID=84006689

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211082897.8A Pending CN115354194A (zh) 2022-09-06 2022-09-06 一种增材修复用镍基高温合金材料及其应用

Country Status (1)

Country Link
CN (1) CN115354194A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116690128A (zh) * 2023-08-09 2023-09-05 成都先进金属材料产业技术研究院股份有限公司 一种低合金高强钢-高温合金双金属复合管及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1197570A2 (en) * 2000-10-13 2002-04-17 General Electric Company Nickel-base alloy and its use in forging and welding operations
US20040079453A1 (en) * 2002-10-25 2004-04-29 Groh Jon Raymond Nickel-base alloy and its use in casting and welding operations
CN1653200A (zh) * 2002-05-13 2005-08-10 Ati资产公司 镍基合金
CN102625856A (zh) * 2009-08-20 2012-08-01 奥贝尔&杜瓦尔公司 镍基超耐热合金和由所述超耐热合金制成的部件
CN104561664A (zh) * 2014-12-09 2015-04-29 抚顺特殊钢股份有限公司 一种新型镍铁基高温合金gh4169d的冶炼工艺
RU2655483C1 (ru) * 2017-06-14 2018-05-28 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него
CN108315599A (zh) * 2018-05-14 2018-07-24 钢铁研究总院 一种高钴镍基高温合金及其制备方法
CN111485126A (zh) * 2020-04-07 2020-08-04 中国航发北京航空材料研究院 镍-铬-铁-钴基变形高温合金丝材制备方法
CN112921206A (zh) * 2021-01-20 2021-06-08 北京钢研高纳科技股份有限公司 增材制造用高γ′含量镍基高温合金粉末、其使用方法、镍基高温合金构件

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1197570A2 (en) * 2000-10-13 2002-04-17 General Electric Company Nickel-base alloy and its use in forging and welding operations
CN1653200A (zh) * 2002-05-13 2005-08-10 Ati资产公司 镍基合金
US20040079453A1 (en) * 2002-10-25 2004-04-29 Groh Jon Raymond Nickel-base alloy and its use in casting and welding operations
CN102625856A (zh) * 2009-08-20 2012-08-01 奥贝尔&杜瓦尔公司 镍基超耐热合金和由所述超耐热合金制成的部件
CN104561664A (zh) * 2014-12-09 2015-04-29 抚顺特殊钢股份有限公司 一种新型镍铁基高温合金gh4169d的冶炼工艺
RU2655483C1 (ru) * 2017-06-14 2018-05-28 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него
CN108315599A (zh) * 2018-05-14 2018-07-24 钢铁研究总院 一种高钴镍基高温合金及其制备方法
CN111485126A (zh) * 2020-04-07 2020-08-04 中国航发北京航空材料研究院 镍-铬-铁-钴基变形高温合金丝材制备方法
CN112921206A (zh) * 2021-01-20 2021-06-08 北京钢研高纳科技股份有限公司 增材制造用高γ′含量镍基高温合金粉末、其使用方法、镍基高温合金构件

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116690128A (zh) * 2023-08-09 2023-09-05 成都先进金属材料产业技术研究院股份有限公司 一种低合金高强钢-高温合金双金属复合管及其制备方法
CN116690128B (zh) * 2023-08-09 2023-10-13 成都先进金属材料产业技术研究院股份有限公司 一种低合金高强钢-高温合金双金属复合管及其制备方法

Similar Documents

Publication Publication Date Title
Godec et al. Hybrid additive manufacturing of Inconel 718 for future space applications
Zhao et al. Study on microstructure and mechanical properties of laser rapid forming Inconel 718
EP3647442B1 (en) High gamma prime nickel based superalloy, its use, and method of manufacturing of turbine engine components
CN113166855B (zh) 镍基超合金
EP3815816B1 (en) High gamma prime nickel based superalloy, its use, turbine components and method of manufacturing thereof
EP2853339B1 (en) Welding material for welding of superalloys
CA3048051A1 (en) High gamma prime nickel based weldable superalloy and method of repairing and manufacturing of turbine engine components using the same
CN106881540A (zh) 一种镍基合金、焊材
CN115354194A (zh) 一种增材修复用镍基高温合金材料及其应用
CN114032421B (zh) 一种增材制造用镍基高温合金、镍基高温合金粉末材料和制品
CN112962013B (zh) 一种单晶高温合金扩散外延生长修复材料及修复方法
JPH07138719A (ja) Ni基超合金鍛造品の鍛造方法
CN114934211B (zh) 镍基高温合金、镍基高温合金粉末和镍基高温合金构件
CN115074724B (zh) 使用V元素增强Ni基耐磨激光熔覆涂层及其制备方法
Gao et al. Interfacial reaction mechanism of TiBw/Ti6Al4V composites and Inconel 718 alloys by GTAW heat transmission
CN114481121A (zh) 一种表面修复与强化用高熵合金的激光熔覆方法
CN113249721A (zh) 一种提高Hastelloy c-276镍铬钼合金激光熔覆层性能的方法
JP3893133B2 (ja) Ni基合金部材およびその製造方法
CN115679179B (zh) 一种高熵合金及其在钛/钢复合板焊接中的应用
CN116690128B (zh) 一种低合金高强钢-高温合金双金属复合管及其制备方法
Gontcharov et al. Influence of Tantalum and Cobalt on the Weldability of New High Gamma Prime Nickel Based Superalloys for Repair and 3D AM of Turbine Engine Components
CN117551914A (zh) 一种镍基合金砂及其优化损伤区表面的方法
CN117568662A (zh) 一种钴基合金砂、制备及优化损伤区表面的方法
CN114799614A (zh) 兼具高温强韧性和抗焊接裂纹性能的Co-Al-W-Ta基高温合金及其焊接应用
CN114351004A (zh) 一种电弧增材用低成本钛合金丝材及其结构件的制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination