CN116407634A - 增加Slack蛋白C端含量的物质的应用 - Google Patents

增加Slack蛋白C端含量的物质的应用 Download PDF

Info

Publication number
CN116407634A
CN116407634A CN202310263806.9A CN202310263806A CN116407634A CN 116407634 A CN116407634 A CN 116407634A CN 202310263806 A CN202310263806 A CN 202310263806A CN 116407634 A CN116407634 A CN 116407634A
Authority
CN
China
Prior art keywords
slack
protein
terminal
epilepsy
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310263806.9A
Other languages
English (en)
Inventor
黄卓
袁田
王一帆
金雨晨
徐帅
张恒
陈倩
李娜
马欣玥
宋慧芳
彭超
杨辉
耿泽
董洁
段桂芳
孙崎
杨洋
杨帆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN202310263806.9A priority Critical patent/CN116407634A/zh
Publication of CN116407634A publication Critical patent/CN116407634A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/08Antiepileptics; Anticonvulsants

Landscapes

  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Pain & Pain Management (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明提供了一种增加Slack蛋白C端含量的物质的应用,涉及药物技术领域。所述的应用为增加Slack蛋白C端含量的物质在制备治疗、辅助治疗和/或预防癫痫的药物中的应用。所述治疗癫痫的药物是以Slack突变体和NaV1.6相互作用界面为靶点,Slack突变体C端和电压门控钠离子通道NaV1.6的N和/或C端相互作用,本发明发现电压门控钠通道NaV1.6介导钠内流激活Slack,两者形成通道复合物。在体内小鼠实验和体外细胞实验结果中发现,上调Slack蛋白C端表达的物质可减少Slack突变体的电流幅值,降低小鼠模型的癫痫易感性,具有治疗癫痫的效果。

Description

增加Slack蛋白C端含量的物质的应用
技术领域
本发明涉及药物技术领域,具体涉及一种增加Slack蛋白C端含量的物质的应用。
背景技术
癫痫是一种严重影响人类健康的慢性神经系统疾病,癫痫并非是单一表型和单一病因的疾病,而是具有高遗传易感性和多种危险因素的复杂疾病,癫痫与神经元同步性放电增加,放电异常,神经网络整体兴奋性升高相关。根据遗传基础,癫痫可分为继发性癫痫和遗传性癫痫。继发性癫痫主要由脑外伤、中风、感染、脑部肿瘤等原因所引起。遗传性癫痫则是由于致癫痫遗传基因突变所导致,主要在婴幼儿时期发病。随着基因测序技术的发展,遗传性癫痫受到越来越多的关注。全基因组测序表明,30-50%的癫痫患者具有遗传突变,涉及离子通道、突触蛋白和转录调节因子等60多种基因,多数为de-novo突变。离子通道控制着神经元的电信号传导,调控神经网络的兴奋-抑制平衡,是遗传性癫痫中主要的单基因缺陷,包括钠离子通道、钾离子通道、钙离子通道等。
钾离子通道中,编码钠离子激活的钾离子通道Slack的KCNT1基因错义突变可导致一系列癫痫综合征,还可能伴随智力障碍等。目前已鉴定出50多个致病突变位点,基本都为功能增强表型(gain of function,GOF)。最常见的癫痫发作分为两类:常染色体显性或散发性睡眠相关的高运动性癲痫[autosomal dominant or sporadic sleep-relatedhypermotor epilepsy,(AD)SHE]和婴儿癫痫伴游走性局灶发作(Epilepsy of infancywith migrating focal seizures,EIMFS)。
KCNT1相关癫痫患者中难治性癫痫比例较高,对常规抗癫痫药反应性差,并伴有严重的发育功能障碍,有待开发治疗药物。针对其功能增强表型,治疗策略是筛选高选择性的通道抑制剂。奎尼丁是Slack通道抑制剂,可有效逆转多种KCNT1致病突变导致的电流增加,进而用于KCNT1突变癫痫的临床治疗,减少了部分患者的癫痫发作。然而,后续发现了奎尼丁治疗无效的突变位点,临床上多种KCNT1突变对奎尼丁治疗反应不敏感。作为抗心律失常药物,奎尼丁可抑制心脏的hERG通道,易导致QT间期延长,治疗中部分病人未达到癫痫发作减少效果时出现心脏疾病的风险。受QT间期延长等心脏安全性风险的限制,奎尼丁治疗期间需监测血药浓度,超过18.5μM易产生毒性效应。
中国专利CN202080013384.4中公开了大麻二酚在治疗由KCNT1基因的突变引起的癫痫中的用途。该专利中所使用的CBD呈大麻属的高度纯化的提取物的形式,使得CBD以总提取物大于98%(w/w)存在,并且该提取物的其他组分被表征。CBD可以与一种或更多种其他抗癫痫药物同时使用,也可以以单一剂型提供组合。但大麻二酚对人体具有一定的毒副作用。
目前还未有关于增加Slack蛋白C端含量的物质通过减少Slack突变体的电流幅值,降低癫痫易感性,以治疗癫痫的相关报道。
发明内容
本发明的术语和声明:
在本发明中,冠词“一个”、“一种”和“所述”:除非以其它方式明确地限定到一个(种)对象,否则包括复数的对象。
在本发明中,术语“蛋白质”是指至少两个共价连接的氨基酸,其包括蛋白质、多肽、寡肽和肽。该术语还包括蛋白质的表达后修饰,如糖基化、乙酰化、磷酸化等。该术语还包括对天然蛋白质或多肽的氨基酸序列的修饰如缺失、替换、插入后所得的变体。
在本发明中,术语“继发性癫痫”是指有明确病因的癫痫。继发性癫痫的病因包括先天性疾病、产前期和围生期损伤、热性惊厥后遗、颅脑损伤、颅内感染、中毒、颅内肿瘤、脑血管疾病、营养、代谢性疾病等因素。
在本发明中,术语“遗传性癫痫”是指脑部无明显器质性或代谢性异常表现,发作机制可能与遗传因素有关系,并以不同程度的意识障碍,自主神经症状和精神症状发作为主要表现的慢性神经系统疾病。
在本发明中,术语“Slack蛋白”是钠离子激活的钾离子通道蛋白。
在本发明中,术语“电压门控钠离子通道NaV1.6”是存在大多数神经元包括中枢神经系统和外周神经系统中的电压门控离子性通道,是中枢神经系统的钠通道之一。
在本发明中,术语“KCNT1基因”定位于染色体9q34.3,参与编码钠离子门控钾离子通道,在整个中枢神经系统中高度表达,对神经元兴奋性调节具有重要作用,在正常的神经电生理中,主要参与在单个动作电位或动作电位爆发后产生缓慢的后超极化。
在本发明中,术语“表达”,是指细胞在生命过程中,把储存在DNA顺序中的遗传信息经过转录和翻译,转变成具有生物活性的蛋白质分子。
在本发明中,术语“反义寡核苷酸”是指进行了某些化学修饰的短链核酸(由约15-25个核苷酸组成),它的碱基顺序排列与特定的靶标序列互补,进入细胞后可按照Watson-Crick碱基互补配对的原则与靶标序列形成双链结构。
在本发明中,术语“核酶”是指具有催化特定生物化学反应的功能的RNA分子。
在本发明中,术语“siRNA”是指能够抑制靶基因表达、包括正义RNA片段区域和反义RNA片段区域的核糖核酸(RNA)。
在本发明中,术语“miRNA”是指真核生物中广泛存在的一种长约21到23个核苷酸的核糖核酸(RNA)分子,可调节其他基因的表达。
在本发明中,术语“治疗有效量”是指服用后足以在某种程度上缓解所治疗的疾病或病症的一个或多个症状的至少一种药剂或化合物的量。其结果可以为迹象、症状或病因的消减和/或缓解,或生物系统的任何其它所需变化。可使用诸如剂量递增试验的技术测定适合于任意个体病例中的有效量。
在本发明中,术语“药学可接受的”是指某载体、运载物、稀释剂、辅料,和/或所形成的盐通常在化学上或物理上与构成某药物剂型的其它成分相兼容,并在生理上与受体相兼容。
本发明技术方案包括:
第一方面,本发明提供了增加Slack蛋白C端含量的物质在制备治疗、辅助治疗和/或预防癫痫的药物中的应用。
优选地,所述的增加Slack蛋白C端含量的物质为Slack蛋白C端和/或上调Slack蛋白C端表达的物质。
进一步优选地,所述的Slack蛋白C端为Slack 796-839蛋白片段。
第二方面,本发明提供了一种上调Slack蛋白C端表达的物质在制备治疗癫痫的药物中的应用。
优选地,所述的Slack蛋白C端包括Slack蛋白C端片段326-1238;
进一步优选地,所述的Slack蛋白C端为Slack 796-839蛋白片段。
优选地,所述的上调Slack蛋白C端表达的物质包括上调Slack蛋白C端合成的物质或抑制Slack蛋白C端降解的物质或促进Slack蛋白C端蛋白功能的物质。
具体的,所述的上调Slack蛋白C端表达的物质是以Slack突变体和电压门控钠离子通道NaV1.6相互作用界面为靶点。
进一步具体的,所述的Slack突变体和电压门控钠离子通道NaV1.6相互作用为Slack突变体C端和电压门控钠离子通道NaV1.6的N和/或C端相互作用。
具体的,所述的上调Slack蛋白C端表达的物质是通过破坏Slack突变体和电压门控钠离子通道NaV1.6相互作用而发挥作用的。
进一步具体的,所述的上调Slack蛋白C端合成的物质减少输送到Slack突变体的Na+
再进一步具体的,所述的上调Slack蛋白C端合成的物质用于降低Slack突变体的电流密度。
优选地,所述的药物包含第一活性成分,所述的第一活性成分选自合成的小分子、化学试剂、反义寡核苷酸、siRNA、miRNA、核酶、多肽、蛋白质中的至少一种。
进一步优选地,所述的多肽或蛋白质包括激素、细胞因子、抗体及其片段。
具体的,所述癫痫为继发性癫痫或遗传性癫痫。
进一步具体的,所述癫痫为遗传性癫痫。
再进一步具体的,所述癫痫为KCNT1突变相关的遗传性癫痫。
优选地,所述药物中还包括药学上可接受的载体,所述药学上可接受的载体选自稀释剂、粘合剂、表面活性剂、润滑剂、填充剂、崩解剂、稳定剂中的至少一种。
再进一步优选地,所述稀释剂包括但不限于淀粉、乳糖、葡萄糖、氯化钠、尿素。
再进一步优选地,所述粘合剂包括但不限于糊精、蔗糖、阿拉伯胶、乙基纤维素、聚乙烯醇、预胶化淀粉、麦芽糖糊精、聚乙二醇、羧甲基纤维素、聚乙烯比咯烷酮、明胶、羟丙基纤维素和羟丙基甲基纤维素。
再进一步优选地,所述表面活性剂包括但不限于聚氧化乙烯山梨聚糖脂肪酸酯、硬脂酸单甘油酯、十二烷基硫酸钠、十六烷醇。
再进一步优选地,所述润滑剂包括但不限于单硬脂酸甘油酯、滑石粉、硬脂酸锌、硬脂富马酸钠、聚乙二醇、单月桂蔗糖酸酯、聚乙二醇、月桂醇硫酸钠、月桂醇硫酸镁、聚氧乙烯单硬脂酸酯、十二烷基硫酸镁。
再进一步优选地,所述填充剂包括但不限于木糖醇、麦芽糖、山梨醇、乳糖、蔗糖、糊精、甘露醇、葡萄糖、淀粉、海藻酸钠、赤藓糖、海带多糖粉末、微晶纤维素、琼脂粉末、碳酸钙和碳酸氢钠。
再进一步优选地,所述崩解剂包括但不限于羧甲基淀粉钠、交联乙烯吡咯烷酮、低取代羟丙基甲基、交联羧甲基纤维素钠。
再进一步优选地,所述稳定剂包括但不限于人类血清蛋白、L-氨基酸、糖及纤维素衍生物。
第三方面,本发明提供了一种治疗、辅助治疗和/或预防癫痫的药物,其特征在于,所述的药物中包含治疗有效量的增加Slack蛋白C端含量的物质。
优选地,所述的增加Slack蛋白C端含量的物质为Slack蛋白C端和/或上调Slack蛋白C端表达的物质。
进一步优选地,所述的Slack蛋白C端为Slack 796-839蛋白片段。
具体的,所述的治疗癫痫的药物是以Slack突变体和NaV1.6相互作用界面为靶点。
具体的,所述的上调Slack蛋白C端表达的物质的作用机制是干扰Slack突变体和NaV1.6相互作用。
进一步具体的,上调的Slack蛋白C端表达的物质通过干扰Slack突变体和NaV1.6相互作用,进而导致Slack突变体的电流密度下降。
优选地,所述药物中包括药学上可接受的载体,所述的药学上可接受的载体选自稀释剂、粘合剂、表面活性剂、润滑剂、填充剂、崩解剂、稳定剂中的至少一种。
第四方面,本发明提供了上述的药物和其他治疗癫痫的药物在制备治疗癫痫的药物中的应用。
优选地,所述的其他治疗癫痫的药物选自卡马西平、奥卡西平、氯硝西泮、地西泮、苯巴比妥、苯妥英钠、扑米酮、丙戊酸钠、加巴喷丁、拉莫三嗪、左乙拉西坦、氨己烯酸中的至少一种。
优选地,所述的药物可口服给药、非胃肠道给药、通过吸入喷雾给药、局部给药、直肠给药、鼻给药、颊给药、阴道给药或通过植入的贮药装置给药。本发明药物可含有任何常用的无毒可药用载体、辅料或赋形剂。
优选地,所述的药物的剂型包括片剂、胶囊剂、颗粒剂、丸剂、滴丸剂、糖浆剂、粉剂、散剂、栓剂、滴剂、气雾剂、乳剂、注射剂和混悬剂。
第五方面,本发明提供了一种治疗癫痫的方法,所述的方法包括向患者施用增加Slack蛋白C端含量的物质。
优选地,所述的增加Slack蛋白C端含量的物质为Slack蛋白C端和/或上调Slack蛋白C端表达的物质。
进一步优选地,所述的Slack蛋白C端为Slack 796-839蛋白片段。
具体的,所述的上调Slack蛋白C端表达的物质是以Slack突变体和电压门控钠离子通道NaV1.6相互作用界面为靶点。
进一步具体的,所述的Slack突变体和电压门控钠离子通道NaV1.6相互作用为Slack突变体C端和电压门控钠离子通道NaV1.6的N和/或C端相互作用。
具体的,所述癫痫为继发性癫痫或遗传性癫痫。
进一步具体的,所述癫痫为遗传性癫痫。
再进一步具体的,所述癫痫为KCNT1突变相关的遗传性癫痫。
本发明的有益效果包括:
本发明发现电压门控钠通道NaV1.6介导钠内流激活Slack,两者形成通道复合物,Slack通道C端和NaV1.6的N和/或C端相互作用。在体外细胞模型和体内小鼠模型中表明过表达Slack通道C端可减少Slack突变体的电流幅值,降低SlackG288S过表达小鼠模型的癫痫易感性,具有潜在治疗效果。基于Slack通道C端破坏Slack-NaV1.6相互作用有望成为KCNT1相关癫痫的创新疗法。
附图说明
图1为共表达Slack和NaV1.6的HEK293细胞中记录的电流轨迹图,100ms预脉冲为-90mV;
图中为共表达Slack和NaV1.6的HEK293细胞记录的电流轨迹图,胞外钠浓度[Na+]out为140mM,胞内钠浓度[Na+]in为5mM。
图2为共表达Slack和NaV1.6的HEK293细胞中记录的电流轨迹图,100ms预脉冲为-40mV;
图中为共表达Slack和NaV1.6的HEK293细胞记录的电流轨迹图,胞外钠浓度[Na+]out为140mM,胞内钠浓度[Na+]in为5mM。
图3为Slack的电流-电压曲线图;
图中为Slack与NaV1.6共表达时,-90mV或-40mV的预脉冲诱发的Slack的I-V曲线。
图4为共表达Slack和NaV1.6的HEK293细胞中记录的电流轨迹图;
其中,浴液中没有利鲁唑,胞外钠浓度[Na+]out为140mM,胞内钠浓度[Na+]in为5mM。
图5为共表达Slack和NaV1.6的HEK293细胞中记录的电流轨迹图;
其中,浴液中利鲁唑的浓度为20μM,胞外钠浓度[Na+]out为140mM,胞内钠浓度[Na+]in为5mM。
图6为Slack的电流-电压曲线图;
图中为向浴液中未添加利鲁唑和添加20μM利鲁唑,Slack与NaV1.6共表达的I-V曲线。
图7为300pA激发时,Scn8a+/+神经元和Scn8a+/-神经元中产生的后超极化电位图;
图中,**p<0.01;未配对双尾学生t检验。
图8为100Hz脉冲激发时,Scn8a+/+神经元和Scn8a+/-神经元中产生的后超极化电位图;
图中,**p<0.01;未配对双尾学生t检验。
图9为海马CA1中的免疫荧光图;
图中,Slack、NaV1.2、NaV1.6为绿色,AnkG为红色,DAPI为蓝色。
图10为新皮质中的免疫荧光图;
图中,Slack、NaV1.2、NaV1.6为绿色,AnkG为红色,DAPI为蓝色。
图11为细胞裂解物中的Slack和NaV1.6的免疫共沉淀结果图。
图12为大鼠脑组织裂解物中Slack和NaV1.6的免疫共沉淀结果图。
图13为显示荧光基团标记的Slack和NaV1.6的示意图;
图中,mTFP1和mVenus分别与Slack(Slack-mTFP1)和NaV1.6(NaV1.6-mVenus)的C末端区域融合。
图14为Slack-mTFP1和NaV1.6-mVenus在HEK293T细胞中共表达的FRET成像图;
图中,从细胞边缘测量的发射光谱(红色虚线箭头)用于FRET效率计算。
图15为FRET效率统计图;
图中,mTFP+mVenus是指mTFP1和mVenus在HEK293T细胞中共表达,Slack-mTFP1+Nav1.6-mVenus是指Slack-mTFP1和Nav1.6-mVenus在HEK293T细胞中共表达,***p<0.0001,非配对双尾学生t检验。
图16为从共表达荧光基团标记的离子通道的细胞测量的FRET效率统计图;
图中,将效率值绘制为mTFP1和mVenus之间的荧光强度比(Fc/Fy)的函数,每个符号代表一个单元格,实心曲线表示产生最佳拟合的FRET模型,虚线曲线表示FRET效率高或低5%的模型。
图17为从共表达荧光基团的细胞测量的FRET效率统计图;
图中,将效率值绘制为mTFP1和mVenus之间的荧光强度比(Fc/Fy)的函数,每个符号代表一个单元格,实心曲线表示产生最佳拟合的FRET模型,虚线曲线表示FRET效率高或低5%的模型。
图18为人类NaV通道α亚基的结构域示意图。
图19为人类Slack通道亚基的结构域示意图。
图20为Slack和NaV1.6末端结构域的免疫共沉淀结果图;
图中,在共表达3×Flag标记的Slack(Slack-3×Flag)和3×HA标记的NaV1.6末端(3×HA-NaV1.6-N或3×HA-NaV1.6-C)的HEK293T细胞裂解物中,3×Flag标签与Slack的C端融合,3×HA标签与NaV1.6片段的N端融合。
图21为Slack的C末端与NaV1.6末端的免疫共沉淀结果图;
图中,在HEK293T细胞裂解物中,Myc标记的Slack的C末端(Slack-C-Myc)与3×HA标记的NaV1.6末端(3×HA-NaV1.6-N或3×HA-NaV1.6-C)的免疫共沉淀,3×HA标签与NaV1.6片段的N端区域融合,Myc标签与Slack片段的C端区域融合。
图22为电流轨迹示意图;
图上为共表达SlackG288S突变体和NaV1.5/6NC的电流轨迹;
图中为HEK293T细胞中共表达SlackG288S、NaV1.5/6NC和Slack的C端的电流轨迹示例;
图下为HEK293T细胞中共表达SlackG288S、NaV1.5/6NC和过表达Slack 796-839片段的电流轨迹示例。
图23为+100mV时各组的电流密度统计图,图中**p<0.01,***p<0.001,单因素方差分析,Bonferroni事后检验。
图24为电流轨迹示意图;
图上为HEK293T细胞中共表达SlackR398Q突变体和NaV1.5/6NC的电流轨迹示例;
图下为HEK293T细胞中共表达SlackR398Q突变体、NaV1.5/6NC和Slack的C端的电流轨迹示例。
图25为+100mV时各组的电流密度统计图,图中,*p<0.05,***p<0.001,单因素方差分析,Bonferroni事后检验。
图26为腺相关病毒(AAV)表达体系结构示意图。
图27为实验流程图和免疫荧光图。
图28为注射KA后,GFP对照组、SlackG269S+GFP组和SlackG269S+Slack-C组的癫痫发作总分统计图;图中,*p<0.05,**p<0.01;#p<0.05,##p<0.01;两因素重复测量方差分析,Bonferroni事后检验。
图29为GFP对照组、SlackG269S+GFP组和SlackG269S+Slack-C组注射KA后2小时内每只小鼠的总发作分数统计图,图中,*p<0.05,**p<0.01;单因素方差分析,Bonferroni事后检验。
图30为GFP对照组、SlackG269S+GFP组和SlackG269S+Slack-C组注射KA后2小时内I-V级、VI-IX级癫痫发作小鼠的百分比统计图,图中,*p<0.05;Fisher精确检验。
具体实施方式
实验材料的购买厂家及货号:
利鲁唑(riluzole)购自Meilunbio公司,货号为M1106A;
卡英酸(KA)购自Sigma-Aldrich公司,货号为K0250;
C57BL/6小鼠和SD大鼠购自维通利华公司;
仪器:共聚焦显微镜购自CarlZeiss公司,型号为LSM 510META NLO。
实施例1
实验步骤:
共表达Slack和NaV1.6的HEK293细胞中记录电流:
(1)在HEK293细胞中共表达Slack和NaV1.6;
(2)对HEK293细胞进行全细胞膜片钳记录,记录HEK293细胞的电流轨迹。
HEK293细胞中共表达Slack和NaV1.6包括以下步骤:
在35mm小皿内放置8mm×8mm的玻片,进行细胞传代。传代24h后转染,细胞密度约30-50%。准备两个1.5mL EP管,各加入100μL Opti-
Figure BDA0004134148880000111
I减血清培养基,分别稀释质粒和Lipofectamine 2000(Introvigen),静置5min,随后两管混匀,静置15min。将小皿中培养基用2mL Opti-/>
Figure BDA0004134148880000112
I减血清培养基替换,加入质粒和Lipofectamine混合液,并混匀。置于培养箱中,3.5h后更换为完全培养基。表达18-36h后进行膜片钳实验。
对HEK293细胞进行全细胞膜片钳记录包括以下步骤:
细胞电生理记录使用EPC10放大器(HEKA Electronic)和对应的PatchMaster软件。细胞转染18-36小时后,浴槽(chamber)提前加入细胞外液,取出玻片置于浴槽中并压紧,放在X-cite 120Olympus荧光显微镜(Olympus)下,挑选单个细胞。用DMZ通用电极拉制仪(Zeitz Instruments)拉制并抛光玻璃电极(BioSpikes)。
随后,向电极中注入细胞内液,轻轻弹出电极尖端的气泡,将电极固定于夹持器上,细胞内液与记录电极(银丝)接触。使用显微操作器MP-285(Sutter Instrument)控制电极下移接触细胞外液,稍稍给予正压,以排出电极尖端可能粘附的杂质。持续下降电极,调整前后左右位置,接触细胞表面并压出合适的凹陷时,给予负压,形成GΩ封接。补偿电极电容(C-fast),调整钳制电压(holding potential,HP)后,再施以短促的负压,形成全细胞记录模式。内面向外(inside-out)记录方法稍有不同,形成10GΩ以上封接后,迅速抬高电极离开细胞,甚至可抬出液面,短暂暴露与空气后再迅速插入细胞外液中,维持GΩ封接。之后,补偿细胞膜电容(C-slow)和漏电流(leak current),串联电阻(Rseries,Rs)补偿60%-90%。
施加特定电压脉冲以记录细胞电流,采样频率为20-50kHz。在细胞外液施加利鲁唑时,使用重力灌流给药系统(ALA Scientific Instruments)。实验中全细胞(whole-cell)模式记录HEK293细胞时所用电极电阻为1.5-3.0MΩ;全细胞模式记录原代细胞时所用电极电阻为3.5-5.0MΩ;内面向外(inside-out)模式记录时所用电极电阻为8.0-10.0MΩ。所有实验均在室温环境中进行。
测量全细胞电流的脉冲程序如下:细胞钳制电位(holding potential)为-90mV,测量时-90mV钳制100ms,阶跃电压从-120mV至+100mV,时长600ms,间隔10mV,再回到钳制电位-90mV,100ms,频率0.2Hz。
NaV1.6杂合敲除包括以下步骤:
本研究使用的NaV1.6杂合敲除C3HeB/FeJ小鼠来自复旦大学舒友生教授的慷慨赠送。其NaV1.6杂合敲除小鼠来自Jackson实验室(Bar Harbor,Maine,USA)。
小鼠海马CA1锥体神经元的sAHP幅值检测包括以下步骤:
从6-8周龄的C57BL/6小鼠海马获取水平切片。首先,用异氟烷将小鼠麻醉,用预先氧饱和(95%O2/5%CO2持续通气,维持pH=7.2)并预冷至冰水混合的切片液进行心脏灌流,从左心室灌入约15mL,持续时间约2min,至脏器和四肢变白。迅速取出大脑并浸入预先氧饱和并预冷的切片液中,静置4-5min。将鼠脑置于冰切片液润湿的滤纸上,对其形状进行修整,切除小脑和脑干。接下来,将鼠脑腹侧向下固定在振动切片机(WPI)的切片槽(预冷)内,槽内倒入冰切片液,持续通入95%O2/5%CO2,将大脑切成厚度为300μm的水平切片。大脑切片在含氧(95%O2/5%CO2)的人工脑脊液中孵育30min。孵育完成后,将大脑切片转移到含人工脑脊液(外液)的浴槽中,温度保持在34-36℃。在Olympus BX51WI显微镜(Olympus)的×60水浸物镜下,使用Multiclamp 700B放大器(Molecular Devices)和Digidata 1400A数模转换器,在全细胞模式下记录海马CA1锥体神经元。
首先,根据大脑切片中海马CA1椎体神经元形态来选择细胞,拉制好的电极(电极电阻为5.0-8.0MΩ)中注入电极内液,轻轻弹出气泡,使用显微操作器MPC-200(SutterInstrument)将电极移动至神经元胞体表面,下压形成合适的凹陷时,以轻柔负压形成GΩ封接,钳制电压设置为-70mV,补偿电极电容。随后,继续间断性给予负压破膜,补偿膜电容和串联电阻(80%以上),形成全细胞记录模式,向细胞注入一定时长和大小的电流以记录膜电位变化。记录时,外液补充50μM(2R)-amino-5-phosphonovaleric acid(APV)、10μM 6-cyano-7-nitro-quinoxaline-2,3-dione,10μM bicuculline和1μM CGP 55845。采样频率为50kHz,滤过频率为10kHz。使用pClamp 10.0(Molecular Devices)收集和分析数据。串联电阻控制在10-30MΩ,补偿60-80%。如果在记录过程中串联电阻增加超过20%,则该数据被舍弃。
引发神经元的缓慢后超极化电位(sAHP)所用的脉冲程序为:300pA电流脉冲(图7)或100Hz序列脉冲(图8)。sAHP幅值计算为动作电位波谷与神经元静息膜电位之间的差值。
实验结果:
Slack通道是钠离子激活的钾离子通道,产生外向钾电流,贡献了动作电位的后超极化电位(afterhyperpolarization,AHP),维持神经元放电频率。NaV1.6是电压门控钠通道,产生内向钠电流。当从-90mV的100ms预脉冲(pre)诱发时,从共表达Slack和NaV1.6的HEK293细胞记录的示例电流轨迹如图1所示。当从-40mV的100ms预脉冲诱发来使NaV1.6通道快失活时,HEK293细胞记录的电流轨迹如图2所示。当Slack与NaV1.6共表达时,-90mV和-40mV的预脉冲诱发的Slack电流的I-V曲线如图3所示。从图1-3中可以看出,用去极化电压失活可以阻断NaV1.6介导的钠内流,可显著降低Slack电流幅值。
在浴液中未添加利鲁唑,共表达Slack和NaV1.6的HEK293细胞中记录的电流轨迹如图4所示。在浴液中添加20μM利鲁唑的电流轨迹如图5所示。在向浴液中添加和未添加20μM利鲁唑,Slack与NaV1.6共表达的I-V曲线如图6所示。从图4-6中可以看出,利鲁唑可以阻断NaV1.6介导的钠内流,降低Slack电流幅值。上述实验结果表明在体外NaV1.6可以激活内源的Slack通道。
从图7中可以看出,动作电位在300pA时激发,随后在Scn8a+/+(WT)和Scn8a+/-神经元中产生sAHP。与Scn8a+/+相比,Scn8a+/-神经元中sAHP的振幅降低。从图8中可以看出,在100Hz脉冲引发动作电位,随后在Scn8a+/+和Scn8a+/-神经元中引发sAHP。与Scn8a+/+相比,Scn8a+/-神经元中sAHP的振幅降低。NaV1.6杂合敲除也明显降低了小鼠海马CA1锥体神经元的AHP幅值,表明在体内NaV1.6可以激活内源的Slack通道。
上述结果表明,NaV1.6通道介导钠内流激活Slack通道。
实施例2
实施例2中我们进一步的检测了电压门控钠通道NaV1.2、NaV1.6和Slack在海马和新皮质的细胞分布情况。
检测NaV1.2、NaV1.6和Slack在海马和新皮质的细胞分布情况的检测包括以下步骤:
组装灌流装置,连接水泵出水管和静脉注射针。进水管端依次放入去离子水和PBS中,开启水泵以排尽气泡。戊巴比妥钠腹腔注射,麻醉小鼠,固定于笼盖上。用剪刀剪开小鼠胸腔和隔膜,暴露出心脏,止血钳固定上部。剪开右心耳,从左心室插入注射针头,快速灌注PBS溶液30mL,随后快速灌注0.5%多聚甲醛+0.5%蔗糖10mL,再慢灌20mL。灌注结束后,拔出注射针,取下止血钳,迅速取出小鼠全脑,放入0.5%多聚甲醛+0.5%蔗糖溶液中,2h后更换为30%蔗糖的PBS溶液,放置48h。随后,将脑从蔗糖溶液中取出,放入正己烷中浸泡约20s使脑变硬。随即捞出,放入自制锡箔容器,加包埋剂没过鼠脑,置于装有干冰的冰盒中,在-80℃冰箱冷冻8min。随后用冰冻切片机获得厚度20μm的低温冠状脑片。准备免疫染色步骤:
1)通透:免疫组化笔画圈标记脑片,0.01M磷酸盐缓冲液(PBS)洗涤3次,每次10min。0.5% PBST溶液(0.5% Triton X-100溶于0.01M PBS溶液)通透30min,随后加入0.01M PBS溶液,置于水平摇床上洗涤脑片3次,每次10min。
2)封闭:配制封闭液:5%正常山羊血清溶于0.1% PBST中,封闭2h。
3)孵育一抗:0.1% PBST(0.1% Triton X-100溶于0.01M PBS溶液)稀释一抗:AnkG(1:100,Santa Cruz,sc-31778)、Slack(1:100,NeuroMab,73-051)、NaV1.2(1:200,Alomone,ASC-002)、NaV1.6(1:200,Alomone,ASC-006)。4℃孵育一抗过夜。孵育完成后取出,室温过渡2h后,0.01M PBS洗涤3次,每次10min。
4)孵育二抗:0.1% PBST稀释二抗:Alexa 488偶联山羊抗兔IgG(Abcam)和Alexa594耦连山羊抗小鼠IgG(Abcam)。20-25℃孵育二抗2h,0.01M PBS洗涤3次,每次10min(避光)。
5)封片和拍摄:DAPI Fluoromount-GTM抗荧光淬灭封片剂(solarbio)进行封片,盖上盖玻片,边缘涂指甲油,激光扫描共聚焦显微镜拍摄图像。
大脑皮层和海马组织的提取和匀浆包括以下步骤:
取成年SD大鼠皮层及海马组织于1.5mL EP管,在冰上研磨获得组织匀浆,加入GPCR提取试剂(Pierce)和蛋白酶抑制剂裂解30min,在4℃以16000g离心20min,收集上清,即组织蛋白裂解液。使用BCA蛋白定量试剂盒(Pierce)定量。
检测免疫沉淀的操作步骤:
将组织或细胞蛋白上清液与5μg Slack抗体(Neuromab)或NaV1.6抗体(Alomone)在4℃持续旋转孵育12h。加入40μL蛋白G Dynabeads(Invitrogen)并继续孵育至第二天。随后用PBS洗涤珠子3次。在洗涤过程中,用DynaMag收集珠子。随后,将珠子重悬于1×SDS-PAGE上样缓冲液中,并在37℃孵育30min,从珠子中洗脱剩余的蛋白质。最后,来自将免疫沉淀或组织的样品进行Western blot检测:
1)配制8%分离胶和4%浓缩胶。
2)上样:蛋白样品加入上样缓冲液,于37℃变性30min,离心后上样。
3)电泳:90V恒压电泳30min,130V电泳80min,至溴酚蓝迁移到电泳槽底部。
4)电转:预先准备2张滤纸膜和1张硝酸纤维素膜(PALL)浸泡于电转液中。在凝胶夹阴极(黑色)板上依序放上泡沫、纸膜和NC膜,切割出分离胶倒扣于NC膜上,再依序放置纸膜、泡沫,轻轻赶出气泡,扣紧凝胶夹。电转槽中倒电转液,加入冰板。电转槽置于冰内,300mA电转100-120min。
5)封闭:电转结束后取出NC膜,浸泡在含有5%脱脂奶粉的Tris-Tween缓冲盐溶液(TBST溶液)(0.02M Tris、0.137M NaCl和0.1% Tween 20)中,于水平摇床上摇15min,以封闭非特异性结合位点。
6)孵育一抗:封闭结束后,用TBST溶液洗去NC膜上的封闭液。准备带隔室的塑料盒,将NC膜剪成合适大小的条带,放入隔室。每隔室加入3mL稀释后一抗,置于4℃水平摇床过夜。之后回收一抗,用TBST溶液洗涤三次,每次5-10min。
7)孵育二抗:辣根过氧化物酶(HRP)标记的二抗(1:5000)稀释后,每隔室加入3mL,置于水平摇床上孵育1.5h。之后回收二抗,用TBST溶液洗涤三次,每次5-10min。
8)曝光:用Immobilon Western化学发光HRP底物(Millipore)配制发光液,剪开塑料膜,条带置于其上,均匀滴加发光液,盖上塑料膜,用Tanon化学发光图像分析系统成像。
实验结果:
电压门控钠通道NaV1.2、NaV1.6和Slack在海马分布情况如图9所示,图9左上为Slack蛋白的免疫荧光图,图9中为AnkG蛋白的免疫荧光图,图9右上为Slack蛋白和AnkG蛋白融合的免疫荧光图,图9中左为NaV1.2的免疫荧光图,图9中右为NaV1.2和AnkG蛋白融合的免疫荧光图,图9左下为NaV1.6的免疫荧光图,图9中,右下为NaV1.6和AnkG蛋白融合的免疫荧光图。电压门控钠通道NaV1.2、NaV1.6和Slack在新皮质的细胞分布情况如图10所示。图10左上为Slack蛋白的免疫荧光图,图10中为AnkG蛋白的免疫荧光图,图10右上为Slack蛋白和AnkG蛋白融合的免疫荧光图,图10中左为NaV1.2的免疫荧光图,图10中右为NaV1.2、AnkG蛋白和DAPI融合的免疫荧光图,图10左下为NaV1.6的免疫荧光图,图10中,右下为NaV1.6、AnkG蛋白和DAPI融合的免疫荧光图。
NaV和AnkG的共定位指示,NaV1.2和NaV1.6定位于神经元的轴突初始段。Slack通道也定位于这些神经元的轴突初始段,上述实验结果表明Slack通道位于NaV1.6通道附近,并支持两者潜在的相互作用。共聚焦显微镜图像从C57BL/6小鼠的冠状动脉脑切片获得。
此外,图11-12的结果表明,大鼠皮层和海马组织的匀浆中,以及Slack和NaV1.6共转染的HEK293T细胞中,NaV1.6与Slack产生了免疫沉淀,输入量相当于免疫共沉淀总裂解物的10%。说明Slack与NaV1.6在体内存在物理相互作用,形成了通道复合物。
为了验证Slack和NaV1.6在活细胞内的相互作用,我们在HEK293T细胞中进行了FRET试验。
FRET试验的具体操作步骤:
使用NikonTE2000-U显微镜(Nikon)进行发射光谱成像。激发光由Ar激光器产生。与NaV1.6融合的荧光蛋白mVenus和与Slack融合的mTFP1分别被500nm和400-440nm的激光线激发。计算机驱动的机械快门(Uniblitz)控制曝光时间。光谱仪(Acton SpectraPro2150i)与感光耦合元件(CCD)相机(Roper Cascade 128B)联用,每个细胞用两个滤光片(激发片、二向色片)(Chroma)收集光谱图像:cube I,D436/20,455dclp;cube II,HQ500/20,Q515lp。该实验条件下,未转染细胞自身产生的荧光可忽略不计。使用MetaMorph软件(Universal Imaging)进行荧光成像和分析。用户设计的宏自动采集明场细胞图像、荧光细胞图像和光谱图像。发射光谱收集自细胞膜区域,将光谱仪狭缝穿过细胞并记录细胞膜位置的荧光强度(图14,红色虚线)。这种方法可以很好地保存光谱和位置信息,可靠地量化细胞膜区域的FRET效率,并根据从同一图像的空白区域估计的背景光进行校正。
FRET数据量化方式如先前研究所述,根据mVenus发射荧光的增加计算表观FRET效率。简而言之,测量Ratio A0和Ratio A以计算FRET效率。Ratio A0表示在供体激发波长激发和在受体激发波长激发时,mVenus的发射荧光强度之间的比率。本研究中在mVenus发射波长峰值处计算。测量Ratio A0可以抵消由许多实验因素引起的荧光强度变化。对于mTFP1,同Ratio A0方法一致,计算在供体激发波长激发和在受体激发波长激发时,mTFP1的发射荧光强度之间的比率,即Ratio A。如果发生FRET,则Ratio A应高于Ratio A0。Ratio A和Ratio A0之间的差异与FRET效率成正比,取决于mTFP1和mVenus的消光系数之比。
实验结果:
将mTFP1和mVenus分别与Slack和NaV1.6的C端区域进行基因融合具体如图13所示,图13中左侧为mTFP1与Slack的C端区域进行基因融合,图13中右侧为mVenus与NaV1.6的C端区域进行基因融合。通过对NaV1.6-mVenus和Slack-mTFP1共表达的细胞的发射光谱进行成像(在质膜区域测量),结果如图14所示,图14上为Slack-mTFP1共表达的细胞的发射光谱的成像结果,图14为NaV1.6-mVenus共表达的细胞的发射光谱的成像结果,从图14中可以看出检测到正的FRET信号。共表达NaV1.6和Slack的HEK293T细胞的质膜区域显示的FRET效率值比共表达单独的mVenus和mTFP1蛋白的阴性对照高,结果如图15-17所示,上述表明活细胞膜上Slack通道和NaV1.6通道在空间上非常接近(小于10nm),支持两者的相互作用。
实施例3
实施例3中我们进一步检测了Slack和NaV1.6相互作用的具体片段,在HEK293T细胞中共表达相应片段并进行了免疫沉淀实验。
免疫沉淀实验包括以下步骤:
用转染试剂Megatran 1.0(Origene)将编码通Slack蛋白片段和NaV1.6蛋白片段的质粒共同转染到HEK293T细胞中,转染操作依照说明书。转染30小时后,弃去培养基,PBS洗涤2次,用GPCR提取试剂裂解细胞30min,随后用细胞刮刮取细胞,收集于1.5mL EP管中,在4℃以16000g离心20min,收集上清,即细胞蛋白裂解液。使用BCA蛋白定量试剂盒(Pierce)定量。后续沉淀与检测步骤同实施例2,使用的标签抗体为:Flag(1:500,Abbkine,ABT2010),HA(1:500,Abbkine,ABT2040)。
实验结果:
人类NaV通道α亚基的结构域如图18所示,图18中,N-terminus代表NaV通道的N端,C-terminus代表NaV通道的C端,DⅠ、DⅡ、DⅢ、DⅣ分别代表第一、第二、第三、第四跨膜结构域。人类Slack通道亚基的结构域如图19所示。图19中,N-terminus代表Slack通道的N端,C-terminus代表Slack通道的C端,RCK1和RCK2为钾离子电导调节结构域,进一步检测了Slack和NaV1.6相互作用的具体片段,在HEK293T细胞中共表达相应片段并进行了免疫沉淀实验。结果如图20-21所示,图20中结果表明NaV1.6通道N、C端均和Slack产生免疫沉淀。图21中表明Slack通道C端和NaV1.6通道N、C端均产生免疫沉淀,说明存在物理相互作用。
实施例4
基于NaV1.6介导钠内流可激活内源的Slack,Slack-NaV1.6复合物增加Slack突变体的电流,并通过提高胞内钠离子浓度([Na+]in)而加重突变体的功能增强表型。在存在Slack-NaV1.6复合物的体系中,Slack的C端和Slack通道本身竞争,破坏Slack-NaV1.6的相互作用,可能会减少输送到Slack突变体的Na+,从而降低癫痫相关Slack突变体的电流。
为此,本发明在共表达癫痫相关Slack突变体(G288S,R398Q)和钠通道的HEK293T细胞中表达Slack的C端,并测量了全细胞电流密度。
Slack突变体G288S、Slack突变体R398Q和钠通道嵌合体NaV1.5/6NC的构建包括以下步骤:
质粒构建均采用Gibson assembly方法:
1)线性化载体。载体质粒用限制性核酸内切酶处理,获得线性化载体。测量载体浓度。
2)设计引物扩增Slack序列片段。对于Slack突变体的构建,在预期突变位点处、载体连接处设计2对引物,经PCR反应扩增2个DNA片段,将片段引入突变位点和Gibsonassembly所需的同源序列。测量2片段浓度。对于钠通道嵌合体NaV1.5/6NC(NaV1.5通道的N端和C端分别替换为NaV1.6通道N端和C端,以替代功能性NaV1.6通道)的构建,则设计3对引物,PCR反应和片段浓度测量同上。
3)片段与载体的连接。载体、片段及Gibson混合液在50℃孵育40min,连接成环状DNA。Gibson组装反应体系如下:
Figure BDA0004134148880000191
4)连接产物经感受态细菌转化、挑取单克隆、测序验证和质粒提取,获得目标质粒。
测量电流密度的具体操作步骤:
全细胞电流记录步骤同实施例1。电流密度(pA/pF)计算方式为全细胞电流(pA)与该细胞膜电容(pF)的比值。
AAV病毒构建与注射包括以下步骤:
腺相关病毒(AAVs)和阴性EGFP对照来自上海吉凯基因有限公司。将全长SlackG269S序列(1-1238)连接到修饰后的CV232(CAG-MCS-HA-PolyA)腺相关病毒载体上。Slack蛋白的C端序列(残基326-1238)和阴性对照连接到GV634(CAG-MCS-3×Flag-T2A-EGFP-SV40-PolyA)腺相关病毒载体上。本研究中使用的病毒滴度>1011TU/ml。
对于背侧CA1处的病毒注射,将3周龄的C57BL/6J小鼠用异氟醚麻醉并置于立体定向仪(RWD Life Science Co.,Ltd.)上。使用带有30号针头(RWD Life Science Co.,Ltd.)的5μL微型注射器(Hamilton),通过微型注射器泵(RWD Life Science Co.,Ltd.)以10nL/min的速度,在每侧CA1区域注射600nL病毒。立体坐标为:距前囟2.5mm(前-后),2mm(内-外),±1.5mm(背-腹)。每次注射后将注射器留在原位5min,然后缓慢抽出。暴露的皮肤通过手术缝合,并将小鼠放回笼中恢复。后续所有实验均经过至少3周的恢复后进行。
卡英酸诱导的颞叶癫痫模型的构建包括以下步骤:
卡英酸(Sigma-Aldrich)腹腔注射6-8周小鼠,以产生IV级及以上的癫痫发作。使用的卡英酸剂量为28mg/kg。
癫痫发作级别具体的分级标准:
为了评估癫痫易感性,使用改良的Racine、Pinal和Rovner量表对癫痫发作进行评级。(1)面部运动;(2)点头;(3)前肢挛缩;(4)背伸(翻身);(5)失去平衡和跌倒;(6)反复翻身和失败;(7)剧烈跳跃和奔跑;(8)第7级,且有顿挫感;(9)死亡。发作后2小时,使用戊巴比妥钠(30mg/kg;Sigma-Aldrich)来终止癫痫发作。
实验结果:
SlackG288S的结果如图22-23所示,从图22-23中可以看出,SlackG288S使得电流密度增加,在共表达SlackG288S和NaV1.5/6NC的HEK293T细胞中,Slack的C端或Slack 796-839的表达降低了电流密度。SlackR398Q的结果如图24-25所示,从图24-25中可以看出,SlackR398Q使得电流密度增加,在共表达SlackR398Q和NaV1.5/6NC的HEK293T细胞中,Slack的C端的表达降低了电流密度。上述结果表明,表达Slack通道C端可以逆转SlackG288S和SlackR398Q诱导的全细胞电流密度增加。
在体内癫痫模型中,用腺相关病毒(AAV)将SlackG269S引入C57BL/6N小鼠,来模拟人类癫痫相关突变SlackG288S。腺相关病毒的体系结构如图26所示。图26中,(1)为过表达融合HA标签、且携带G269S突变的Slack蛋白(SlackG269S-HA)的AAV病毒结构示意图;(2)为过表达融合3×Flag标签的Slack的C端(Slack-C-3×Flag)的AAV病毒结构示意图;(3)为过表达GFP的阴性对照病毒结构示意图。过表达SlackG269S或GFP阴性对照的AAV9分别立体定向注射到3周大的C57BL/6N小鼠的海马CA1区,AAV注射后第5周检测注射混合病毒(1)和(2)的小鼠的病毒转染效果,具体如图27所示,图27左侧为SlackG269S-HA的免疫荧光图,图27中为Slack-C-3×Flag的免疫荧光图,图27右侧为SlackG269S-HA、Slack-C-3×Flag和DAPI融合的免疫荧光图。
AAV注射后的3-5周,使用卡英酸(KA)诱导的颞叶癫痫模型来量化小鼠的癫痫易感性。该模型中小鼠腹腔注射28mg/kg卡英酸,诱发IV级及以上的癫痫发作,观察记录2小时。以10分钟为间隔评估KA诱导癫痫发作级别的时间进程,结果如图28所示,发现过表达SlackG269S导致小鼠的癫痫发作级别显著高于GFP对照组。计算了每只小鼠的癫痫级别总分以指征癫痫发作的严重程度。结果如图29所示,从图29中可以看出,表达SlackG269S的小鼠比表达GFP的小鼠发作更严重。从图30中可以看出,癫痫发作最大等级为VI-IX级的小鼠比例增加,从9.1%(GFP)增加到58.3%(SlackG269S)。上述结果表明SlackG269S过表达显著提高了小鼠的癫痫易感性。
为了评估破坏Slack-NaV1.6相互作用的潜在治疗效果,在小鼠CA1脑区同时注射了过表达SlackG269S与Slack通道C端(残基326-1238)的病毒。在SlackG269S过表达小鼠中,额外表达Slack通道C端显著降低了癫痫发作级别、癫痫发作严重程度和VI-IX级发作的小鼠的百分比,结果如图28-30所示。上述结果表明,过表达Slack通道C端可以防止SlackG269S过表达所诱发的癫痫发作,降低癫痫易感性。
最后应当说明的是,以上内容仅用以说明本发明的技术方案,而非对本发明保护范围的限制,本领域的普通技术人员对本发明的技术方案进行的简单修改或者等同替换,均不脱离本发明技术方案的实质和范围。

Claims (17)

1.增加Slack蛋白C端含量的物质在制备治疗、辅助治疗和/或预防癫痫的药物中的应用。
2.根据权利要求1所述的应用,其特征在于,所述的增加Slack蛋白C端含量的物质为Slack蛋白C端和/或上调Slack蛋白C端表达的物质。
3.根据权利要求1-2任一项所述的应用,其特征在于,所述的Slack蛋白C端为Slack796-839蛋白片段。
4.上调Slack蛋白C端表达的物质在制备治疗、辅助治疗和/或预防癫痫的药物中的应用。
5.根据权利要求4所述的应用,其特征在于,所述的Slack蛋白C端为Slack 796-839蛋白片段。
6.根据权利要求4所述的应用,其特征在于,所述的癫痫为KCNT1突变相关的遗传性癫痫。
7.根据权利要4所述的应用,其特征在于,所述的上调Slack蛋白C端表达的物质是以Slack突变体和电压门控钠离子通道NaV1.6相互作用界面为靶点。
8.根据权利要求7所述的应用,其特征在于,所述的Slack突变体和电压门控钠离子通道NaV1.6相互作用为Slack突变体C端和电压门控钠离子通道NaV1.6的N和/或C端相互作用。
9.一种治疗、辅助治疗和/或预防癫痫的药物,其特征在于,所述的药物中包含治疗有效量的增加Slack蛋白C端含量的物质。
10.根据权利要求9所述的药物,其特征在于,所述的增加Slack蛋白C端含量的物质为Slack蛋白C端和/或上调Slack蛋白C端表达的物质。
11.根据权利要求9-10任一项所述的药物,其特征在于,所述的Slack蛋白C端为Slack796-839蛋白片段。
12.权利要求9-11任一项所述的药物和其他治疗癫痫的药物在制备治疗癫痫的药物中的应用。
13.一种治疗癫痫的方法,其特征在于,所述的方法包括向患者施用增加Slack蛋白C端含量的物质。
14.根据权利要求13所述的方法,其特征在于,所述的增加Slack蛋白C端含量的物质为Slack蛋白C端和/或上调Slack蛋白C端表达的物质。
15.根据权利要求13-14任一项所述的方法,其特征在于,所述的Slack蛋白C端为Slack796-839蛋白片段。
16.根据权利要求14所述的方法,其特征在于,所述的上调Slack蛋白C端表达的物质是以Slack突变体和电压门控钠离子通道NaV1.6相互作用界面为靶点。
17.根据权利要求16所述的方法,其特征在于,所述的Slack突变体和电压门控钠离子通道NaV1.6相互作用为Slack突变体C端和电压门控钠离子通道NaV1.6的N和/或C端相互作用。
CN202310263806.9A 2023-03-17 2023-03-17 增加Slack蛋白C端含量的物质的应用 Pending CN116407634A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310263806.9A CN116407634A (zh) 2023-03-17 2023-03-17 增加Slack蛋白C端含量的物质的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310263806.9A CN116407634A (zh) 2023-03-17 2023-03-17 增加Slack蛋白C端含量的物质的应用

Publications (1)

Publication Number Publication Date
CN116407634A true CN116407634A (zh) 2023-07-11

Family

ID=87054159

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310263806.9A Pending CN116407634A (zh) 2023-03-17 2023-03-17 增加Slack蛋白C端含量的物质的应用

Country Status (1)

Country Link
CN (1) CN116407634A (zh)

Similar Documents

Publication Publication Date Title
Groneberg et al. Intestinal peptide transport: ex vivo uptake studies and localization of peptide carrier PEPT1
US20100105625A1 (en) Product and Methods for Diagnosis and Therapy for Cardiac and Skeletal Muscle Disorders
EP2575853B1 (en) Methods and pharmaceutical composition for the treatment of a feeding disorder with early-onset in a patient
Perronnet et al. Upregulation of brain utrophin does not rescue behavioral alterations in dystrophin-deficient mice
Uezu et al. Essential role for InSyn1 in dystroglycan complex integrity and cognitive behaviors in mice
Wang et al. Effects of JIP3 on epileptic seizures: evidence from temporal lobe epilepsy patients, kainic-induced acute seizures and pentylenetetrazole-induced kindled seizures
Zhang et al. Cholecystokinin signaling can rescue cognition and synaptic plasticity in the APP/PS1 mouse model of Alzheimer’s disease
Paulussen et al. Thymosin beta 4 mRNA and peptide expression in phagocytic cells of different mouse tissues
Kukułowicz et al. The SLC6A15–SLC6A20 Neutral Amino Acid Transporter Subfamily: Functions, Diseases, and Their Therapeutic Relevance
CN111135311A (zh) Ecm1在预防和/或治疗肝纤维化相关疾病中的应用
EA011092B1 (ru) Пептид, обладающий стресс-протекторным действием, фармацевтическая композиция на его основе и способ ее применения
CN116407634A (zh) 增加Slack蛋白C端含量的物质的应用
US20100112600A1 (en) Methods and compositions for modulating synapse formation
FI3526244T3 (en) PEPTIDES DERIVED FROM NTSR3 PROPEPTIDE AND THEIR USE IN THE TREATMENT OF DEPRESSION
Lee et al. Targeting cathepsin S promotes activation of OLF1-BDNF/TrkB axis to enhance cognitive function
AU2002363524B2 (en) Methods for inhibiting proliferation of astrocytes and astrocytic tumor cells and for enhancing survival of neurons and uses thereof
Belloso Iguerategui Synaptic alterations in the hippocampus of an animal model of progressive parkinsonism and the effect of dopaminergic treatments
Zavalin Two Tales of Cortical GABAergic System Development
JP2008271784A (ja) 新規薬剤デリバリー系
US20210236438A1 (en) Compounds and methods for the treatment of autism spectrum disorder and other neurological or psychiatric disorders
Karimi Region-specific role of LRRTM1 in the organization of glutamatergic synapses in mediodorsal nucleus of the thalamus and hippocampal dorsal CA1 region
Laksitorini Examination of Wnt/β-catenin signaling in the blood-brain barrier: exploration in a human BBB culture model under normal and pathophysiological conditions
Dong The Role of Frizzled6 in Mouse Skin Polarity and Melanoma Metastasis
KR101634440B1 (ko) AMPA 수용체 GluA1의 인산화 억제제를 포함하는 정신질환의 예방 또는 치료용 약학조성물
KR20130009104A (ko) 항우울증 치료를 위한 뉴리틴 단백질

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination