CN116401039A - 异步的存储器解除分配 - Google Patents

异步的存储器解除分配 Download PDF

Info

Publication number
CN116401039A
CN116401039A CN202211583500.3A CN202211583500A CN116401039A CN 116401039 A CN116401039 A CN 116401039A CN 202211583500 A CN202211583500 A CN 202211583500A CN 116401039 A CN116401039 A CN 116401039A
Authority
CN
China
Prior art keywords
memory
processor
asynchronously
processors
graphics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211583500.3A
Other languages
English (en)
Inventor
V·B·科尼
S·A·古芬克尔
F·维什努斯沃卢普·拉梅什
H·T·霍夫曼
M·C·德洛姆
A·X·胡
S·A·B·琼斯
V·茹尔巴
W·Y·菲谢尔
R·默克达瑞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nvidia Corp
Original Assignee
Nvidia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nvidia Corp filed Critical Nvidia Corp
Publication of CN116401039A publication Critical patent/CN116401039A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5005Allocation of resources, e.g. of the central processing unit [CPU] to service a request
    • G06F9/5027Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/0223User address space allocation, e.g. contiguous or non contiguous base addressing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/08Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
    • G06F12/0802Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
    • G06F12/0893Caches characterised by their organisation or structure
    • G06F12/0897Caches characterised by their organisation or structure with two or more cache hierarchy levels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/08Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
    • G06F12/0802Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
    • G06F12/0806Multiuser, multiprocessor or multiprocessing cache systems
    • G06F12/084Multiuser, multiprocessor or multiprocessing cache systems with a shared cache
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/08Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
    • G06F12/10Address translation
    • G06F12/1081Address translation for peripheral access to main memory, e.g. direct memory access [DMA]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5005Allocation of resources, e.g. of the central processing unit [CPU] to service a request
    • G06F9/5011Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resources being hardware resources other than CPUs, Servers and Terminals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • G06T1/20Processor architectures; Processor configuration, e.g. pipelining
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • G06T1/60Memory management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/08Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
    • G06F12/10Address translation
    • G06F12/1027Address translation using associative or pseudo-associative address translation means, e.g. translation look-aside buffer [TLB]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/15Use in a specific computing environment
    • G06F2212/152Virtualized environment, e.g. logically partitioned system
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/65Details of virtual memory and virtual address translation
    • G06F2212/657Virtual address space management

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Memory System Of A Hierarchy Structure (AREA)
  • Multi Processors (AREA)

Abstract

本公开涉及异步的存储器解除分配。用于分配处理器存储器的装置、系统和技术。在至少一个实施例中,应用程序编程接口用于执行指令,以从处理器异步地解除分配存储器位置。

Description

异步的存储器解除分配
相关申请的交叉引用
本申请为所有目的通过引用纳入了与其同时提交的标题为"异步的存储器分配(ASYNCHRONOUS MEMORY ALLOCATION)"的共同未决的美国专利申请No.17/546,643的全部公开。
技术领域
至少一个实施例涉及用于执行一个或更多个CUDA程序的处理资源。例如,至少一个实施例涉及用于执行一个或更多个CUDA程序的处理器或计算系统,这些程序实现存储器的异步分配和解除分配。
背景技术
流排序计算操作有由操作系统提供的存储器。为流排序的计算操作同步提供存储器会引入显著的延迟,降低系统性能,并且会导致存储器碎片化,增加存储器使用。用于执行流排序和其他计算操作的存储器、时间和计算资源的量可以被改进。
附图说明
图1示出了根据至少一个实施例的示例性计算机系统,其中存储器被异步地分配;
图2示出了根据至少一个实施例的示例性计算机系统,其中存储器从存储器池被异步地分配;
图3示出了根据至少一个实施例的示例计算机系统,其中用于流排序的执行线程的存储器从存储器池被异步地分配;
图4示出了根据至少一个实施例的示例计算机系统,其中用于流排序的执行线程的存储器被异步地解除分配并返回到存储器池;
图5示出了根据至少一个实施例的用于执行异步分配存储器的操作的示例过程;
图6示出了根据至少一个实施例的用于执行异步分配存储器的操作的示例过程;
图7示出了根据至少一个实施例的用于执行异步地解除分配存储器的存储器管理操作的示例过程;
图8示出了根据至少一个实施例的示例数据流,其中存储器被同步分配;
图9示出了根据至少一个实施例的数据流的示例第一部分,其中存储器被异步地分配和解除分配;
图10示出了根据至少一个实施例的数据流的示例第二部分,其中存储器被异步地分配和解除分配;
图11示出了根据至少一个实施例的数据流的示例第三部分,其中存储器被异步地分配和解除分配;
图12示出了根据至少一个实施例的数据流的示例第四部分,其中存储器被异步地分配和解除分配;
图13示出了根据至少一个实施例的用于执行使用存储器池异步分配存储器的存储器管理操作的示例过程;
图14示出了根据至少一个实施例的示例性计算机系统,其中执行存储器管理操作以使用存储器池为单个执行流异步地分配存储器;
图15示出了根据至少一个实施例的示例性计算机系统,其中执行存储器管理操作以使用存储器池为多个执行流异步分配存储器;
图16示出了根据至少一个实施例的用于执行存储器管理操作以重新使用来自存储器池的异步分配的存储器的示例过程;
图17示出了根据至少一个实施例的示例性计算机系统,其中执行存储器管理操作以为多个同步执行流重新使用来自存储器池的异步分配的存储器;
图18示出了根据至少一个实施例的用于执行存储器管理操作以为多个同步执行流重新使用来自存储器池的异步分配的存储器的示例过程;
图19示出了根据至少一个实施例的示例性数据中心;
图20示出了根据至少一个实施例的处理系统;
图21示出了根据至少一个实施例的计算机系统;
图22示出了根据至少一个实施例的系统;
图23示出了根据至少一个实施例的示例性集成电路;
图24示出了根据至少一个实施例的计算系统;
图25示出了根据至少一个实施例的APU;
图26示出了根据至少一个实施例的CPU;
图27示出了根据至少一个实施例的示例性加速器集成切片;
图28A和图28B示出了根据至少一个实施例的示例性图形处理器;
图29A示出了根据至少一个实施例的图形核心;
图29B示出了根据至少一个实施例的GPGPU;
图30A示出了根据至少一个实施例的并行处理器;
图30B示出了根据至少一个实施例的处理集群;
图30C示出了根据至少一个实施例的图形多处理器;
图31示出了根据至少一个实施例的图形处理器;
图32示出了根据至少一个实施例的处理器;
图33示出了根据至少一个实施例的处理器;
图34示出了根据至少一个实施例的图形处理器核心;
图35示出了根据至少一个实施例的PPU;
图36示出了根据至少一个实施例的GPC;
图37示出了根据至少一个实施例的流式多处理器;
图38示出了根据至少一个实施例的编程平台的软件栈;
图39示出了根据至少一个实施例的图38的软件栈的CUDA实现;
图40示出了根据至少一个实施例的图38的软件栈的ROCm实现;
图41示出了根据至少一个实施例的图38的软件栈的OpenCL实现;
图42示出了根据至少一个实施例的由编程平台支持的软件;
图43示出了根据至少一个实施例的在图38-41的编程平台上执行的编译代码;
图44示出了根据至少一个实施例的在图38-41的编程平台上执行的更详细的编译代码;
图45示出了根据至少一个实施例的在编译源代码之前转换源代码;
图46A示出了根据至少一个实施例的被配置为使用不同类型的处理单元来编译和执行CUDA源代码的系统;
图46B示出了根据至少一个实施例的被配置为使用CPU和启用CUDA的GPU来编译和执行图46A的CUDA源代码的系统;
图46C示出了根据至少一个实施例的被配置为使用CPU和未启用CUDA的GPU来编译和执行图46A的CUDA源代码的系统;
图47示出了根据至少一个实施例的由图46C的CUDA到HIP转换工具转换的示例性内核;
图48更详细地示出了根据至少一个实施例的图46C的未启用CUDA的GPU;以及
图49示出了根据至少一个实施例的示例性CUDA网格的线程如何被映射到图48的不同计算单元;以及
图50示出了根据至少一个实施例的如何将现有CUDA代码迁移到数据并行C++代码。
具体实施方式
图1示出了根据至少一个实施例的示例计算机系统100,其中存储器被异步地分配。在至少一个实施例中,处理器102可以连接到图形处理器108。在至少一个实施例中,处理器102是单核处理器。在至少一个实施例中,处理器102是多核处理器。在至少一个实施例中,一个或更多个附加处理器(未显示)与处理器102连接。在至少一个实施例中,处理器102是处理系统(如本文所述的处理系统2000)的元件。在至少一个实施例中,处理器102是计算机系统(如本文所述的计算机系统2100)的元件。在至少一个实施例中,处理器102是系统(诸如本文所述的系统2200)的元件。在至少一个实施例中,处理器102是计算系统(如本文所述的计算系统2400)的元件。在至少一个实施例中,处理器102是计算单元(诸如本文所述的计算单元4840)的元件。
在至少一个实施例中,系统存储器112是计算机系统100的存储器,该存储器可以使用诸如本文所述的系统和方法实例化和/或存储在计算机系统(例如计算机系统100)上。在至少一个实施例中,计算机系统100包括为系统存储器112创建虚拟地址的功能,该系统存储器112是异步分配的存储器,其可使用诸如本文所述的系统和方法被异步地分配和/或解除分配。在至少一个实施例中,计算机系统100使用存储器管理器106来管理系统存储器112。在至少一个实施例中,计算机系统100包括将虚拟地址与可被提供给图形处理器存储器104以供图形处理器108使用的存储器相关联的功能。
在至少一个实施例中,通过向调用进程提供虚拟存储器指针来异步地分配存储器。在至少一个实施例中,当调用进程使用诸如本文所述的系统和方法请求异步分配的存储器时,向调用进程提供虚拟存储器指针。在至少一个实施例中,与虚拟存储器指针相关联的后备存储器在稍后的时间提供,例如在内核被执行之前,使用诸如本文所述的系统和方法。在至少一个实施例中,被异步分配的存储器被异步地解除分配,例如,在内核执行完成后,使用诸如本文所述的系统和方法。在至少一个实施例中,异步分配的存储器通过使用诸如本文所述的系统和方法将存储器返回到存储器池并释放与解除分配的存储器相关联的虚拟存储器指针,被异步地解除分配。
在至少一个实施例中,处理器102包括一个或更多个电路,用于执行应用程序编程接口("API"),以使一个或更多个存储器位置被异步地分配给一个或更多个处理器。在至少一个实施例中,处理器102包括一个或更多个电路,用于执行应用程序编程接口("API"),以使一个或更多个存储器位置被异步分配给在一个或更多个处理器上执行的一个或更多个进程,例如本文描述的那些。在至少一个实施例中,处理器102上包括指令,该指令在执行时,执行API以使虚拟存储器地址与异步分配的存储器位置相关联。在至少一个实施例中,处理器102上包括指令,该指令在执行时,执行API以使物理存储器被分配并与虚拟存储器地址相关联。在至少一个实施例中,当被执行时使一个或更多个存储器位置被异步地分配给一个或更多个处理器的用于处理器102的指令,被存储在与处理器102相关联的处理器存储器(在图1中未示出)中。在至少一个实施例中,当被执行时使一个或更多个存储器位置被异步分配给一个或更多个处理器的用于处理器102的指令,被存储在系统存储器112中。在至少一个实施例中,用于异步分配存储器的API是驱动器API。在至少一个实施例中,用于异步分配存储器的API是运行时API。
在至少一个实施例中,处理器102包括一个或更多个电路,用于执行应用程序编程接口("API"),以使一个或更多个存储器位置从一个或更多个处理器被异步地解除分配。在至少一个实施例中,处理器102包括一个或更多个电路,用于执行应用程序编程接口("API"),以使一个或更多个存储器位置从在一个或更多个处理器上执行的一个或更多个进程被异步地解除分配,例如本文描述的那些。在至少一个实施例中,处理器102上包括指令,该指令在执行时,执行API以使虚拟存储器地址与异步地解除分配的存储器位置相关联。在至少一个实施例中,处理器102上包括指令,该指令在执行时,执行API以使物理存储器被解除分配并与虚拟存储器地址解除关联。在至少一个实施例中,当被执行时使一个或更多个存储器位置从一个或更多个处理器被异步地解除分配的用于处理器102的指令,被存储在与处理器102相关联的处理器存储器(在图1中未示出)中。在至少一个实施例中,当被执行时使一个或更多个存储器位置从一个或更多个处理器异步地解除分配的用于处理器102的指令,被存储在系统存储器112中。在至少一个实施例中,用于异步地解除分配存储器的API是驱动器API。在至少一个实施例中,用于异步地解除分配存储器的API是运行时API。
在至少一个实施例中,处理器102包括一个或更多个电路,用于执行应用程序编程接口("API"),以使一个或更多个存储器位置被异步地分配给一个或更多个处理器并从一个或更多个处理器异步地解除分配。在至少一个实施例中,处理器102包括一个或更多个电路,用于执行应用程序编程接口("API"),以使一个或更多个存储器位置被异步分配给在一个或更多个处理器上执行的一个或更多个进程并从该一个或更多个进程异步地解除分配,例如本文描述的那些。在至少一个实施例中,当被执行时使一个或更多个存储器位置被异步分配给一个或更多个处理器并从一个或更多个处理器异步地解除分配的用于处理器102的指令,被存储在与处理器102相关联的处理器存储器(在图1中未示出)中。在至少一个实施例中,当被执行时使一个或更多个存储器位置被异步地分配给一个或更多个处理器并从一个或更多个处理器异步地解除分配的用于处理器102的指令,被存储在系统存储器112中。在至少一个实施例中,用于异步地分配和异步地解除分配存储器的API是驱动器API。在至少一个实施例中,用于异步地分配和异步地解除分配存储器的API是运行时API。
在至少一个实施例中,存储器管理器106执行一个或更多个命令以创建、销毁、复制、映射和/或取消映射存储器。在至少一个实施例中,存储器管理器106执行一个或更多个命令以创建、销毁、复制、映射和/或取消映射系统存储器112。在至少一个实施例中,存储器管理器106执行一个或更多个命令以创建、销毁、复制、映射和/或取消映射图形处理器存储器104。在至少一个实施例中,存储器管理器106是在处理器102上执行的软件组件。在至少一个实施例中,存储器管理器106是在另一个处理器上执行的软件组件,在图1中未示出。在至少一个实施例中,存储器管理器106是在与计算机系统100相关联的处理器或处理单元上执行的软件组件。
在至少一个实施例中,存储器管理器106从处理器102接收一个或更多个命令,对存储器(诸如系统存储器112和/或图形处理器存储器104)执行操作。在至少一个实施例中,处理器102向存储器管理器106发送API命令,该命令使存储器管理器106对存储器(诸如系统存储器112和/或图形处理器存储器104)执行操作。在至少一个实施例中,处理器102执行一个或更多个命令,该命令使存储器管理器106对存储器执行操作。在至少一个实施例中,存储器管理器106从图形处理器108接收一个或更多个命令,对存储器执行操作。在至少一个实施例中,图形处理器108向存储器管理器106发送API指令,该指令使存储器管理器106对存储器执行操作。在至少一个实施例中,图形处理器108执行一个或更多个命令,该命令使存储器管理器106对存储器执行操作。
在至少一个实施例中,存储器的一个或更多个存储器页与图形处理器108相关联并且可由图形处理器108使用。在至少一个实施例中,存储器的一个或更多个页由存储器管理器106提供给诸如处理器102的处理器和/或诸如图形处理器108的图形处理器。在至少一个实施例中,诸如处理器102的处理器和/或诸如图形处理器108的图形处理器使用由存储器管理器106提供的存储器的一个或更多个页来存储指令、执行计算、存储计算结果、存储中间结果和/或其他此类存储器操作。在至少一个实施例中,图形处理器108是单核处理器。在至少一个实施例中,图形处理器108是多核处理器。在至少一个实施例中,一个或更多个附加处理器被连接到与图形处理器108相关联的存储器。在至少一个实施例中,图形处理器108是处理系统(如本文所述的处理系统2000)的元件。在至少一个实施例中,图形处理器108是计算机系统(如本文所述的计算机系统2100)的元件。在至少一个实施例中,图形处理器108是系统(诸如本文所述的系统2200)的元件。在至少一个实施例中,图形处理器108是集成电路(如本文所述的集成电路2300)的元件。在至少一个实施例中,图形处理器108是计算系统(如本文所述的计算系统2400)的元件。在至少一个实施例中,图形处理器108是如本文所述的图形处理器2810的图形处理器。在至少一个实施例中,图形处理器108是如本文所述的图形处理器2840的图形处理器。在至少一个实施例中,图形处理器108是如本文所述的图形多处理器3034的图形处理器。在至少一个实施例中,图形处理器108是如本文所述的图形处理器3100的图形处理器。在至少一个实施例中,图形处理器108是如本文所述的图形处理器3308的图形处理器。在至少一个实施例中,图形处理器108是GPU,如本文所述的GPU4692。
在至少一个实施例中,在处理器102上执行的控制线程114执行一个或更多个命令以将内核(例如内核116和/或待定内核120)分派给图形处理器108,如本文所述。在至少一个实施例中,控制线程114执行一个或更多个命令来管理内核,如本文所述。在至少一个实施例中,控制线程114执行一个或更多个命令以使用流顺序(在图1中未示出)来管理内核,所述流顺序指示用于将内核分派到图形处理器108的操作顺序。
在至少一个实施例中,在处理器102上执行的操作系统110执行一个或更多个命令以控制诸如计算机系统100的计算机系统。在至少一个实施例中,控制线程114执行一个或更多个API调用以使操作系统110控制诸如计算机系统100的计算机系统。
在至少一个实施例中,处理器102执行API以使存储器管理器106引起一个或更多个存储器位置被异步分配给一个或更多个处理器。在至少一个实施例中,处理器102执行API以使存储器管理器106引起一个或更多个存储器位置从一个或更多个处理器被异步地解除分配。
在至少一个实施例中,在处理器102上执行的控制线程114执行API以使存储器管理器106引起一个或更多个存储器位置被异步分配给一个或更多个处理器。在至少一个实施例中,在处理器102上执行的控制线程114执行API以使存储器管理器106引起一个或更多个存储器位置从一个或更多个处理器被异步地解除分配。
在至少一个实施例中,在处理器102上执行的操作系统110执行API以使存储器管理器106引起一个或更多个存储器位置被异步地分配给一个或更多个处理器。在至少一个实施例中,在处理器102上执行的操作系统110执行API以使存储器管理器106引起一个或更多个存储器位置从一个或更多个处理器被异步地解除分配。
在至少一个实施例中,当执行API时使用图形处理器存储器104以使一个或更多个存储器位置被异步地分配给一个或更多个处理器。在至少一个实施例中,当执行API使用图形处理器存储器104以使一个或更多个存储器位置从一个或更多个处理器被异步地解除分配。
在至少一个实施例中,当执行API使用系统存储器112以使一个或更多个存储器位置被异步分配给一个或更多个处理器。在至少一个实施例中,当执行API时使用系统存储器112以使一个或更多个存储器位置从一个或更多个处理器被异步地解除分配。
在至少一个实施例中,内核116正在图形处理器108上执行。在至少一个实施例中,内核116是计算内核,该计算内核是一组指令,该指令使用诸如本文所述的系统和方法被编译,使得它们可以在处理器(诸如图形处理器108)上执行。在至少一个实施例中,内核116是GPU内核。在至少一个实施例中,内核116是着色器。在至少一个实施例中,内核116是顶点着色器。在至少一个实施例中,内核116是像素着色器。在至少一个实施例中,内核116的指令集使用着色器编程语言(例如OpenCL C、OpenGL、C++AMP、CUDA、Vulkan等)来表达。
在至少一个实施例中,内核116具有相关联的异步分配的存储器位置118。在至少一个实施例中,通过提供虚拟存储器地址以与本文所述的内核116相关联而异步地创建与执行内核116相关联的异步分配的存储器位置118(例如,当调用异步存储器分配API时,返回虚拟存储器地址)。在至少一个实施例中,通过分配存储器以与内核116的虚拟存储器地址相关联并将分配的存储器与相关联的虚拟存储器地址相关联而异步地创建与执行内核116相关联的异步分配的存储器位置118。在至少一个实施例中,在图1中未示出,当例如内核116的执行终止时,异步分配的存储器位置118可以稍后从内核116解除分配。在至少一个实施例中,如本文所述,异步分配的存储器位置118可以稍后通过首先从异步分配的存储器位置118解除关联所分配的存储器而从内核116解除分配。在至少一个实施例中,与执行内核116相关联的异步分配的存储器位置118由存储器管理器106提供。在至少一个实施例中,当控制线程114使用诸如本文所述的系统和方法从存储器管理器106请求存储器位置时,提供与执行内核116相关联的异步分配的存储器位置118。在至少一个实施例中,当控制线程114使用诸如本文所述的系统和方法向存储器管理器106发送解除分配存储器的请求时,与执行内核116相关联的异步分配的存储器位置118被解除分配或释放以供重新使用,如本文所述。
在至少一个实施例中,待定内核120准备好在图形处理器108上执行,但是还没有执行。在至少一个实施例中,待定内核120有具有虚拟存储器地址的异步分配的存储器位置122。在至少一个实施例中,由于待定内核120尚未执行,所以分配的存储器可能尚未与异步分配的存储器位置122相关联。在至少一个实施例中,在图1中未示出,在待定内核120开始执行之前,分配的存储器可以随后与异步分配的存储器位置122相关联(例如,在待定内核120的执行开始之前)。在至少一个实施例中,在图1中未示出,例如在待定内核120的执行终止之后,异步分配的存储器位置122可以稍后从待定内核120解除分配。在至少一个实施例中,异步分配的存储器位置122稍后可以通过如本文所述的首先从异步分配的存储器位置122解除关联所分配的存储器来从待定内核120解除分配。
图2示出了根据至少一个实施例的示例计算机系统200,其中存储器从存储器池被异步地分配。在至少一个实施例中,控制线程204正在处理器202上执行。在至少一个实施例中,处理器202是如本文至少结合图1描述的处理器102的处理器。在至少一个实施例中,控制线程204是例如本文至少结合图1描述的控制线程114的控制线程。在至少一个实施例中,控制线程204执行API以使一个或更多个存储器位置被异步地分配给一个或更多个处理器。
在至少一个实施例中,控制线程204执行API以为图形处理器内核(例如,用于图形处理器内核一220)异步地分配存储器206。在一个实施例中,控制线程204执行API以使存储器管理器208为图形处理器内核异步地分配存储器206。在至少一个实施例中,存储器管理器208是如本文至少结合图1描述的存储器管理器106的存储器管理器。在至少一个实施例中,控制线程204执行API以通过向存储器管理器208发送一个或更多个命令来使存储器管理器208异步地分配存储器206。在至少一个实施例中,在图2中未示出,控制线程204执行API以使存储器管理器208通过经由操作系统(诸如本文至少结合图1描述的操作系统110)向存储器管理器208发送一个或更多个命令来异步地分配存储器206。
在至少一个实施例中,响应于从控制线程204接收到一个或更多个命令,存储器管理器208使用诸如本文所述的系统和方法创建虚拟存储器指针210。在至少一个实施例中,存储器管理器208向控制线程204提供虚拟存储器指针210。在至少一个实施例中,存储器池218中的虚拟存储器指针224被提供给控制线程204。在至少一个实施例中,存储器池218中的虚拟存储器指针224是在存储器池218中没有对应的后备存储器的存储器中的地址。在至少一个实施例中,存储器池218中的虚拟存储器指针224是当内核一220开始执行时在存储器池218中将会有对应的后备存储器的存储器中的地址。
在至少一个实施例中,响应于从控制线程204接收到一个或更多个命令,存储器管理器208确定存储器池218是否存在。在至少一个实施例中,如果存储器管理器208确定存储器池218不存在,则存储器管理器208创建214存储器池218。在至少一个实施例中,响应于从控制线程204接收到一个或更多个命令,存储器管理器208创建虚拟存储器指针210,该指针对应于存储器池218中的存储器位置,该存储器位置在内核一220开始执行之前将可供内核一220使用。
在至少一个实施例中,控制线程204使内核一在图形处理器216上被启动212。在至少一个实施例中,图形处理器216是例如本文至少结合图1描述的图形处理器108的图形处理器。在至少一个实施例中,控制线程204在控制线程204执行API以使存储器管理器208为图形处理器内核异步分配存储器206之后启动内核一。在至少一个实施例中,控制线程204在控制线程204从存储器管理器208接收到虚拟存储器指针210之后启动内核一。在至少一个实施例中,控制线程204使用诸如本文所述的系统和方法来执行API以启动内核。
在至少一个实施例中,在存储器池218存在之后,如上所述,存储器管理器208使用诸如本文所述的系统和方法为内核一220提供后备存储器222。在至少一个实施例中,当存储器管理器208为内核一提供后备存储器222时,当存储器管理器208为内核一220提供后备存储器222时对应于后备存储器的虚拟存储器指针224变成存储器指针226,该指针对应于存储器池218中的后备存储器。在至少一个实施例中,虚拟存储器指针224和存储器指针226是相同的。
在至少一个实施例中,控制线程204执行API以使存储器管理器208从内核一228解除分配存储器。在至少一个实施例中,在控制线程204启动内核一之后,控制线程204执行API以使存储器管理器208从内核一228解除分配存储器。在至少一个实施例中,响应于使存储器管理器208从内核一228解除分配存储器的API,存储器管理器208使用诸如本文所述的系统和方法,使对应于存储器池218中的后备存储器的存储器226被返回230到存储器池218。在至少一个实施例中,当控制线程204执行API以使存储器管理器208从内核一228解除分配存储器时,被返回230到存储器池218的存储器226可供其他进程使用,例如本文所述的那些。在至少一个实施例中,与存储器池218相关联的存储器不返回到操作系统(例如本文至少结合图1所述的操作系统110),直到所有图形进程终止。在至少一个实施例中,当同步操作(在图2中未示出)由操作系统执行,或由控制线程执行,或由图形处理器执行时,与存储器池218相关联的存储器被返回到操作系统,如本文至少结合图1所述的操作系统110。
在至少一个实施例中,控制线程204的流执行顺序(在图2中未示出)执行API以使存储器管理器208为图形处理器内核异步地分配存储器206,然后在图形处理器216上启动212内核一,然后执行API以使存储器管理器208从内核一228解除分配存储器。在至少一个实施例中,存储器管理器208使用诸如本文所述的系统和方法来执行命令以创建虚拟存储器指针210,提供虚拟存储器指针,创建存储器池214,提供后备存储器222,和/或使可用于内核一220的存储器异步地返回230到存储器池218。
图3示出了根据至少一个实施例的示例计算机系统300,其中用于流排序的执行线程的存储器从存储器池被异步地分配。在至少一个实施例中,内核一316在图形处理器312上执行,并且内核一316具有后备存储器318,如本文至少结合图2所述。在至少一个实施例中,图形处理器312是例如本文至少结合图1描述的图形处理器108的图形处理器。在至少一个实施例中,后备存储器318是例如本文至少结合图2描述的后备存储器222的后备存储器。
在至少一个实施例中,控制线程304在处理器302上执行。在至少一个实施例中,处理器302是例如本文至少结合图1描述的处理器102的处理器。在至少一个实施例中,控制线程304是例如本文至少结合图1描述的控制线程114的控制线程。在至少一个实施例中,控制线程304执行API以使用于流排序的执行线程的存储器从存储器池异步地分配。
在至少一个实施例中,控制线程304执行API以使用诸如本文所述的系统和方法为内核(例如,图形处理器内核二322)异步地分配存储器306。在一个实施例中,控制线程304执行API以使存储器管理器308为内核异步地分配存储器306。在至少一个实施例中,存储器管理器308是例如本文至少结合图1描述的存储器管理器106的存储器管理器。在至少一个实施例中,控制线程304执行API以通过向存储器管理器308发送一个或更多个命令来使存储器管理器308异步地分配存储器306。在至少一个实施例中,在图3中未示出,控制线程304执行API以通过经由操作系统(诸如本文至少结合图1描述的操作系统110)向存储器管理器308发送一个或更多个命令来使存储器管理器308异步地分配存储器306。
在至少一个实施例中,响应于从控制线程304接收到一个或更多个命令,存储器管理器308使用诸如本文所述的系统和方法创建虚拟存储器指针310。在至少一个实施例中,存储器管理器308也使用诸如本文所述的系统和方法向控制线程304提供虚拟存储器指针310。
在至少一个实施例中,控制线程304使内核二在图形处理器312上被启动320。在至少一个实施例中,在控制线程304执行API以使存储器管理器308为内核二异步地分配存储器306之后,控制线程304启动内核二。在至少一个实施例中,在控制线程304从存储器管理器308接收到虚拟存储器指针310之后,控制线程304启动内核二。在至少一个实施例中,控制线程304使用诸如本文所述的系统和方法执行API以启动内核二。
在至少一个实施例中,在控制线程304启动内核二之前,存储器管理器308使用诸如本文所述的系统和方法为内核二提供后备存储器324。在至少一个实施例中,当存储器管理器308为内核二提供后备存储器324时,当存储器管理器308为内核二322提供后备存储器324时对应于后备存储器的虚拟存储器指针326成为存储器328,其对应于存储器池314的后备存储器。在至少一个实施例中,虚拟存储器指针326和指向存储器328的指针是相同的。在至少一个实施例中,内核一316正在执行,同时内核二322正在执行,并且内核一316可用的存储器318与内核二322可用的存储器328不同。在至少一个实施例中,例如,内核一316可用的存储器318在存储器池314中具有与内核二322可用的存储器328不同的地址。在至少一个实施例中,在图3中未示出,当内核一316正在执行时,内核二322没有执行,并且内核二322可用的存储器328在存储器池314中具有与内核一316可用的存储器318相同的地址。在至少一个实施例中,例如,内核一316可用的存储器318可以被重新使用,并与内核二322可用的存储器328在存储器池314中具有相同的地址。
在至少一个实施例中,控制线程304执行API以使存储器管理器308从内核二330解除分配存储器。在至少一个实施例中,控制线程304执行API以使存储器管理器308在控制线程304启动内核二之后从内核二330解除分配存储器。在至少一个实施例中,响应于使存储器管理器308从内核二330解除分配存储器的API,存储器管理器308使用诸如本文所述的系统和方法,使存储器池314中可用于内核二的存储器328返回332到存储器池314。在至少一个实施例中,当控制线程304执行API以使存储器管理器308从内核二330解除分配存储器时,返回332到存储器池314的存储器328可供其他进程使用,如本文所述。在至少一个实施例中,控制线程304的流执行顺序(在图3中未示出)执行API以使存储器管理器308为图形处理器内核异步地分配存储器306,然后在图形处理器312上启动320内核二,然后执行API以使存储器管理器308从内核二330解除分配存储器。在至少一个实施例中,存储器管理器308使用诸如本文所述的系统和方法,执行命令以创建虚拟存储器指针310,提供虚拟存储器指针,提供后备存储器324,和/或使内核二322可用的存储器异步地返回332到存储器池314。
图4示出了根据至少一个实施例的示例计算机系统400,其中用于流排序的执行线程的存储器被异步地解除分配并返回到存储器池。在至少一个实施例中,内核一406在图形处理器416上执行。在至少一个实施例中,图形处理器416是如本文至少结合图1描述的图形处理器108的图形处理器。在至少一个实施例中,内核一406在存储器池418中具有后备存储器420,使用诸如本文所述的系统和方法提供。
在至少一个实施例中,在处理器402上执行的控制线程404执行API以使用诸如本文所述的系统和方法为内核一406异步地解除分配408存储器。在至少一个实施例中,当控制线程404执行API以使存储器管理器412从内核一406解除分配408存储器时,被返回414到存储器池418的存储器420可供其他进程使用,例如本文所述的那些。在至少一个实施例中,控制线程404是例如本文至少结合图1描述的控制线程114的控制线程。在至少一个实施例中,处理器402是例如本文至少结合图1描述的处理器102的处理器。
在至少一个实施例中,当控制线程404执行API以为内核一406异步地解除分配存储器408时,存储器管理器412使用诸如本文所述的系统和方法将存储器414异步地返回到存储器池418。在至少一个实施例中,存储器管理器412是如本文至少结合图1描述的存储器管理器106的存储器管理器。在至少一个实施例中,存储器池418是如本文至少结合图2描述的存储器池218的存储器池。在至少一个实施例中,控制线程404执行API以使存储器管理器412通过向存储器管理器412发送一个或更多个命令而为内核一406异步地解除分配存储器408。在至少一个实施例中,在图4中未示出,控制线程404执行API以通过经由操作系统(例如本文至少结合图1描述的操作系统110)向存储器管理器412发送一个或更多个命令来使存储器管理器412异步地解除分配存储器。
在至少一个实施例中,响应于从控制线程404接收到一个或更多个命令,存储器管理器412使用诸如本文所述的系统和方法执行命令以将存储器414返回到存储器池418。在至少一个实施例中,当存储器管理器412执行命令以将存储器414返回到存储器池418时,内核一406的先前与存储器池418中的存储器相关联的存储器420变成不再与存储器池418中的存储器相关联的存储器426。
在至少一个实施例中,在控制线程404执行API以为内核一406异步地解除分配存储器408之后的某个时间点,控制线程404执行API以为内核二422异步地分配存储器410。在至少一个实施例中,当控制线程404执行API以为内核二422异步地分配存储器410时,存储器管理器412为内核二428提供后备存储器,如本文所述。在至少一个实施例中,如本文所述,当存储器管理器412为内核二428提供后备存储器时,不再与用于内核一406的存储器池418中的存储器相关联的存储器426可以使用虚拟存储器地址对内核二422可用。在至少一个实施例中,与不再与用于内核一406的存储器池418中的存储器相关联的存储器426相关联的虚拟地址可以使用诸如本文描述的系统和方法被重新使用,以成为对内核二422可用的存储器424。
图5示出了根据至少一个实施例的用于执行异步分配存储器的操作的示例过程500。在至少一个实施例中,诸如本文至少结合图1描述的处理器102的处理器执行指令以执行图5中示出的示例过程500。
在至少一个实施例中,在示例过程500的步骤502,生成对异步分配的存储器的请求。在至少一个实施例中,生成的对异步分配的存储器的请求被发送至存储器管理器,例如本文至少结合图1描述的存储器管理器106。在至少一个实施例中,对异步分配的存储器的请求是使用API发送的。在至少一个实施例中,对异步分配的存储器的请求是命令。在至少一个实施例中,对异步分配的存储器的请求是可执行的命令。在至少一个实施例中,对异步分配的存储器的请求是指令。在至少一个实施例中,对异步分配的存储器的请求是可执行指令。在至少一个实施例中,对异步分配的存储器的请求是使用API发送的,该API指示用于返回异步分配的存储器地址的位置、请求的存储器的大小以及至少指示流顺序的执行流。在至少一个实施例中,对异步分配的存储器的请求是使用API发送的,该API指示可从中分配异步分配的存储器的存储器池。在至少一个实施例中,在图5中未示出,收到对异步分配的存储器的请求的响应。在至少一个实施例中,从存储器管理器(例如本文至少结合图1描述的存储器管理器106)接收对异步分配的存储器的请求的响应。在至少一个实施例中,使用API接收对异步分配的存储器的请求的响应。在至少一个实施例中,使用API接收对异步分配的存储器的请求的响应,该API指示错误结果。在至少一个实施例中,在步骤502之后,示例过程500的执行前进到步骤504。
在至少一个实施例中,在示例过程500的步骤504,接收虚拟存储器地址。在至少一个实施例中,虚拟存储器地址是指向虚拟存储器中的地址的指针。在至少一个实施例中,响应于结合步骤502描述的对异步分配的存储器的请求而接收虚拟存储器指针。在至少一个实施例中,从存储器管理器(如本文至少结合图1描述的存储器管理器106)接收虚拟存储器地址。在至少一个实施例中,使用API接收虚拟存储器地址。在至少一个实施例中,使用API接收虚拟存储器地址,该API指示用于存储虚拟存储器地址的位置。在至少一个实施例中,在图5中未示出,生成对接收虚拟存储器地址的响应。在至少一个实施例中,使用API生成对接收虚拟存储器地址的响应。在至少一个实施例中,在步骤504之后,示例过程500的执行前进到步骤506。
在至少一个实施例中,在示例过程500的步骤506处,生成使用所提供的虚拟存储器地址(例如在步骤504中返回的虚拟存储器地址)来执行内核的请求。在至少一个实施例中,使用诸如结合步骤502所描述的系统和方法,执行内核的请求被发送到存储器管理器(诸如本文至少结合图1所描述的存储器管理器106)。在至少一个实施例中,使用诸如结合步骤502所述的系统和方法,执行内核的请求被发送到图形处理器,如本文至少结合图1描述的图形处理器108。在至少一个实施例中,通过将执行内核的请求插入例如图形处理器(诸如本文至少结合图1描述的图形处理器108)的执行队列中来发送执行内核的请求。在至少一个实施例中,在图5中未示出,使用存储器管理器将执行内核的请求发送到图形处理器。在至少一个实施例中,在图5中也未示出,使用如本文所述的系统和方法,执行内核的请求生成分配存储器的请求。在至少一个实施例中,例如,执行内核的请求自动地生成分配存储器的请求。在至少一个实施例中,使用诸如本文结合502所述的系统和方法,发送与执行内核的请求相关联的分配存储器的请求。在至少一个实施例中,在步骤506之后,示例过程500的执行前进到步骤508。
在至少一个实施例中,在示例过程500的步骤508处,生成解除分配被异步分配的存储器的请求。在至少一个实施例中,生成的解除分配被异步分配的存储器的请求被发送至存储器管理器,例如本文至少结合图1描述的存储器管理器106。在至少一个实施例中,使用API发送解除分配被异步分配的存储器的请求。在至少一个实施例中,生成的解除分配被异步分配的存储器的请求是命令。在至少一个实施例中,生成的解除分配被异步分配的存储器的请求是可执行命令。在至少一个实施例中,生成的解除分配被异步分配的存储器的请求是指令。在至少一个实施例中,生成的解除分配被异步分配的存储器的请求是可执行指令。在至少一个实施例中,解除分配被异步分配的存储器的请求是使用API发送的,该API指示先前异步分配的存储器地址的位置和至少指示流顺序的执行流。在至少一个实施例中,用于异步分配的存储器的请求是使用API发送的,该API指示与异步分配的存储器相关联的存储器池。在至少一个实施例中,在图5中未示出,接收对生成的异步分配的存储器的请求的响应。在至少一个实施例中,从存储器管理器(如本文至少结合图1描述的存储器管理器106)接收对解除分配被异步分配的存储器的请求的响应。在至少一个实施例中,使用API来接收对解除分配被异步分配的存储器的请求的响应。在至少一个实施例中,使用API接收对解除分配被异步分配的存储器的请求的响应,该API表示错误结果。在至少一个实施例中,在步骤508之后,示例过程500终止。在至少一个实施例中,在步骤508之后,示例过程500返回到步骤502,以生成对异步分配的存储器的新请求。
在至少一个实施例中,图5中示出的示例过程500的操作以与图5中指示的顺序不同的顺序执行。在至少一个实施例中,图5中示出的示例过程500的操作被同时和/或并行地执行。在至少一个实施例中,图5中示出的示例过程500的操作由在处理器(例如本文至少结合图1描述的处理器102)上执行的多个线程执行。
图6示出了根据至少一个实施例的用于执行异步分配存储器的操作的示例过程600。在至少一个实施例中,诸如本文至少结合图1描述的处理器102的处理器执行指令以执行图6中示出的示例过程600。
在至少一个实施例中,在示例过程600的步骤602处,接收异步分配存储器的请求。在至少一个实施例中,从控制线程接收异步分配存储器的接收请求。在至少一个实施例中,从控制线程接收异步分配存储器的接收请求,如本文至少结合图1描述的控制线程114。在至少一个实施例中,从执行过程(例如图5中示出的示例过程500)的控制线程接收异步分配存储器的接收请求。在至少一个实施例中,从执行如本文至少结合图5描述的示例过程500的步骤502的控制线程接收异步分配存储器的接收请求。在至少一个实施例中,使用API发送异步分配存储器的接收请求。在至少一个实施例中,接收的异步分配存储器的请求是命令。在至少一个实施例中,接收的异步分配存储器的请求是可执行命令。在至少一个实施例中,接收的异步分配存储器的请求是指令。在至少一个实施例中,接收的异步分配存储器的请求是可执行指令。在至少一个实施例中,接收的异步分配存储器的请求是使用如本文至少结合图5描述的API发送的。在至少一个实施例中,在图6中未示出,生成对接收的异步分配存储器的请求的响应。在至少一个实施例中,对接收的异步分配存储器的请求的响应被发送到控制线程,例如本文至少结合图1描述的控制线程114。在至少一个实施例中,使用API发送对接收的异步分配存储器的请求的响应。在至少一个实施例中,使用API发送对接收的异步分配存储器的请求的响应,该API表示错误结果。在至少一个实施例中,在步骤602之后,示例过程600的执行前进到步骤604。
在至少一个实施例中,在示例过程600的步骤604处,使用诸如本文所述的系统和方法,确定是否存在可用于提供异步分配的存储器的存储器池。在至少一个实施例中,在步骤604,如果确定存在存储器池("是"分支),则示例流程600的执行前进到步骤608。在至少一个实施例中,在步骤604,如果确定存储器池不存在("否"分支),则示例过程600的执行前进到步骤606。
在至少一个实施例中,在示例过程600的步骤606,分配用于新的存储器池的存储器。在至少一个实施例中,在步骤606之后,示例过程600的执行前进到步骤608。
在至少一个实施例中,在示例过程600的步骤608处,存储器管理器确定何时将需要用于异步分配的存储器的请求的存储器。在至少一个实施例中,存储器管理器可以至少部分地基于一个或更多个其他存储器请求来确定何时将需要用于异步分配的存储器的请求的存储器。在至少一个实施例中,例如,如果诸如内核的关联工作正在执行但将在需要用于异步分配的存储器的请求的存储器之前完成执行,则使用诸如本文所述的系统和方法,此类存储器可用于满足对异步分配的存储器的请求。在至少一个实施例中,在步骤608之后,示例过程600的执行前进到步骤610。
在至少一个实施例中,在示例过程600的步骤610,确定是否存在足够大小的存储器池。在至少一个实施例中,如果确定存在足够大小的存储器池("是"分支),则示例过程的执行前进到步骤614。在至少一个实施例中,如果确定不存在足够大小的存储器池("否"分支),则示例过程的执行前进到步骤612。在至少一个实施例中,在图6中未示出,步骤604和步骤610可以被组合,使得例如存储器管理器同时确定是否存在足够大小的存储器池,并且如果不存在,则为存储器池分配新的和/或额外的存储器。在至少一个实施例中,例如,当不存在现有的存储器池时分配用于新的存储器池的存储器,并且当存在现有的存储器池但是确定现有的存储器池中的存储器量不足以为存储器请求提供异步分配的存储器时,分配用于存储器池的额外存储器。
在至少一个实施例中,在示例过程600的步骤612,使用诸如本文所述的系统和方法为现有存储器池分配额外的存储器。在至少一个实施例中,在步骤612之后,示例过程600的执行前进到步骤614。
在至少一个实施例中,在示例过程600的步骤614处,存储器管理器生成虚拟存储器指针,该指针对应于将在需要时被用于异步请求的存储器。在至少一个实施例中,存储器管理器将虚拟存储器指针返回到控制线程,例如本文至少结合图1描述的控制线程114。在至少一个实施例中,存储器管理器将虚拟存储器指针返回到执行例如图5中示出的示例过程500的过程的控制线程。在至少一个实施例中,存储器管理器将虚拟存储器指针返回到执行本文至少结合图5描述的示例过程500的步骤504的控制线程。在至少一个实施例中,在步骤614之后,示例过程600的执行前进到步骤616。
在至少一个实施例中,在示例过程600的步骤616处,存储器管理器等待下一个请求。在至少一个实施例中,在步骤616之后,示例过程600在示例过程500的步骤502处继续以等待下一个请求。在至少一个实施例中,在步骤616之后,示例过程600在步骤602处继续以接收异步分配存储器的新请求。在至少一个实施例中,在步骤616之后,示例过程600在本文至少结合图7所描述的示例过程700的步骤702处继续,以接收异步地解除分配存储器的请求。在至少一个实施例中,在步骤616之后,示例过程600终止。
在至少一个实施例中,图6中示出的示例过程600的操作以不同于图6中指示的顺序执行。在至少一个实施例中,图6中示出的示例过程600的操作同时和/或并行地执行。在至少一个实施例中,图6所示的示例过程600的操作由在处理器上执行的多个线程执行,如本文至少结合图1描述的处理器102。
图7示出了根据至少一个实施例的用于执行存储器管理操作以异步地解除分配存储器的示例过程700。在至少一个实施例中,诸如本文至少结合图1描述的存储器管理器106的存储器管理器执行指令以执行图7中示出的示例过程700。
在至少一个实施例中,在示例过程700的步骤702处,接收异步地解除分配存储器的请求。在至少一个实施例中,从控制线程接收异步地解除分配存储器的接收请求。在至少一个实施例中,从控制线程(例如本文至少结合图1描述的控制线程114)接收异步地解除分配存储器的接收请求。在至少一个实施例中,从执行过程(例如图5中示出的示例过程500)的控制线程接收异步地解除分配存储器的接收请求。在至少一个实施例中,从执行如本文至少结合图5描述的示例过程500的步骤508的控制线程接收异步地解除分配存储器的接收请求。在至少一个实施例中,使用API发送接收的异步地解除分配存储器的请求。在至少一个实施例中,接收的异步地解除分配存储器的请求是命令。在至少一个实施例中,接收的异步地解除分配存储器的请求是可执行命令。在至少一个实施例中,接收的异步地解除分配存储器的请求是指令。在至少一个实施例中,接收的异步地解除分配存储器的请求是可执行指令。在至少一个实施例中,接收的异步地解除分配存储器的请求是使用本文至少结合图5描述的API发送的。在至少一个实施例中,在图5中未示出,生成对接收的异步地解除分配存储器的请求的响应。在至少一个实施例中,对接收的异步地解除分配存储器的请求的响应被发送到控制线程,例如本文至少结合图1描述的控制线程114。在至少一个实施例中,使用API发送对接收的异步地解除分配存储器的请求的响应。在至少一个实施例中,使用API发送对接收的异步地解除分配存储器的请求的响应,该API表示错误结果。在至少一个实施例中,在步骤702之后,示例过程700的执行前进到步骤704。
在至少一个实施例中,在示例过程700的步骤704处,使用诸如本文所述的系统和方法,存储器管理器确定异步分配的存储器何时将变得可用于重新使用。在至少一个实施例中,在步骤704之后,示例过程700的执行前进到步骤706。
在至少一个实施例中,在步骤700的步骤706,如果在步骤704中确定异步分配的存储器可用于重新使用("是"分支),则示例过程700的执行前进到步骤708。在至少一个实施例中,在步骤706,如果在步骤704中确定异步分配的存储器还不可用于重新使用("否"分支),则示例过程700的执行在步骤704继续,以等待异步分配的存储器变得可用于重新使用。在至少一个实施例中,在图7中未示出,存储器管理器可以在等待异步分配的存储器变得可用于重新使用时执行其他动作。
在至少一个实施例中,在示例过程700的步骤708,存储器管理器使用诸如本文所述的系统和方法将异步分配的存储器返回到存储器池。在至少一个实施例中,在步骤708之后,示例过程700的执行前进到步骤710。
在至少一个实施例中,在示例过程700的步骤710,存储器管理器可执行一个或更多个操作以将异步分配的存储器标记为可用于重新使用。在至少一个实施例中,在步骤710之后,示例过程700的执行前进到步骤712。
在至少一个实施例中,在示例过程700的步骤712,存储器管理器等待下一个请求。在至少一个实施例中,在步骤712之后,示例过程700在示例过程500的步骤502处继续以等待下一个请求。在至少一个实施例中,在步骤712之后,示例过程700在示例过程600的步骤602处继续,以接收异步分配存储器的新请求。在至少一个实施例中,在步骤712之后,示例过程700在步骤702处继续以接收异步地解除分配存储器的请求。在至少一个实施例中,在步骤712之后,示例过程700终止。
在至少一个实施例中,图7中示出的示例过程700的操作以不同于图7中指示的顺序执行。在至少一个实施例中,图7中示出的示例过程700的操作同时和/或并行地执行。在至少一个实施例中,图7中示出的示例过程700的操作由在存储器管理器(诸如本文至少结合图1描述的存储器管理器106)上执行的多个线程执行。
图8示出了根据至少一个实施例的示例数据流800,其中存储器被同步地分配。在至少一个实施例中,处理器802执行操作以从存储器管理器806请求存储器804。在至少一个实施例中,处理器802是诸如本文至少结合图1描述的处理器102的处理器。在至少一个实施例中,存储器管理器806是例如本文至少结合图1描述的存储器管理器106的存储器管理器。
在至少一个实施例中,存储器管理器806分配存储器808,并且由于示例数据流800不是异步的,处理器802等待810直到存储器管理器806完成分配存储器808。在至少一个实施例中,存储器管理器806然后在图形处理器814上启动812内核一。在至少一个实施例中,图形处理器814是诸如本文至少结合图1描述的图形处理器108的图形处理器。在至少一个实施例中,由于示例数据流800不是异步的,于是处理器802可以等待818,而内核一正在图形处理器814上执行816。在至少一个实施例中,在图8中未示出,当内核一正在图形处理器814上执行816时,处理器802可以执行其他动作。
在至少一个实施例中,在内核一执行完毕后,处理器802然后可以通过使存储器管理器806释放存储器822来释放存储器820。在至少一个实施例中,从存储器管理器806分配存储器808的时间到存储器管理器806释放存储器822的时间,图形处理器存储器826中的存储器被分配828。在至少一个实施例中,图形处理器存储器826是诸如本文至少结合图1描述的图形处理器存储器104的图形处理器存储器。在至少一个实施例中,存储器管理器806可以在存储器824可以被重新使用之前清除它。在至少一个实施例中,由于示例数据流800不是异步的,处理器802可以等待830直到在存储器管理器806清除存储器824之后处理器802可以重新使用存储器832之前。
图9示出了根据至少一个实施例的数据流900的示例第一部分,其中存储器被异步地分配和解除分配。在至少一个实施例中,处理器902从存储器管理器906请求存储器904。在至少一个实施例中,处理器902是诸如本文至少结合图1描述的处理器102的处理器。在至少一个实施例中,存储器管理器906是诸如本文至少结合图1描述的存储器管理器106的存储器管理器。在至少一个实施例中,存储器管理器906可以首先确定存储器池是否可用。在至少一个实施例中,如果存储器池不可用,则存储器管理器906分配存储器池908以创建图形处理器存储器池912。在至少一个实施例中,图形处理器存储器池912与本文至少结合图2描述的存储器池218相同。
在至少一个实施例中,在图形处理器存储器池912可用于分配后备存储器之后,存储器管理器906使用诸如本文所述的系统和方法确定图形处理器存储器池912中的存储器位置910。在至少一个实施例中,存储器管理器906向处理器902返回虚拟存储器指针916,如本文所述。在至少一个实施例中,存储器管理器906异步地将虚拟存储器指针916返回给处理器902,因为如本文所述,在执行流使用后备存储器之前,虚拟存储器指针响应于存储器请求而被返回给处理器。
在至少一个实施例中,处理器902执行命令以用提供的虚拟存储器指针启动内核一918。在至少一个实施例中,图形处理器924执行内核一926。在至少一个实施例中,图形处理器924是例如本文至少结合图1描述的图形处理器108的图形处理器。在至少一个实施例中,当存储器管理器906确定图形处理器存储器池912中的存储器位置910时,存储器被保留以供使用914。在至少一个实施例中,存储器被保留以供使用914,使得当图形处理器924执行内核一926时,存储器将可供内核一使用。
在至少一个实施例中,处理器902执行命令以释放与内核一相关联的存储器920。在至少一个实施例中,当内核一完成时,存储器管理器906释放后备存储器930以便以后重新使用,如本文所述。在至少一个实施例中,存储器管理器906通过将后备存储器返回到存储器池而释放后备存储器930。在至少一个实施例中,存储器管理器906通过使后备存储器可用或重新使用而将后备存储器返回到存储器池来释放后备存储器930。在至少一个实施例中,存储器管理器906通过释放虚拟存储器指针以供重新使用而将后备存储器返回到存储器池来释放后备存储器930。在至少一个实施例中,当图形处理器924执行内核一926时,图形处理器存储器池912中的存储器处于使用中928。在至少一个实施例中,在内核一完成后以及在存储器管理器906释放后备存储器930以供以后重新使用后,图形处理器存储器池912中的存储器可用于重新使用932。
在至少一个实施例中,处理器902然后可以请求为内核二分配存储器934,启动内核二936,以及请求释放存储器938,所有这些在本文中结合图10-12被描述为例如请求为内核二分配存储器1034、启动内核二1036、请求释放存储器1038、请求为内核二分配存储器1234、启动内核二1236、请求释放存储器1238,等等。
图10示出了根据至少一个实施例的数据流1000的示例第二部分,其中存储器被异步地分配和解除分配。在至少一个实施例中,数据流1000的示例第二部分从结合图9描述的数据流900的示例第一部分起继续。
在至少一个实施例中,处理器1002从存储器管理器1006请求存储器1034。在至少一个实施例中,处理器1002与结合图9描述的处理器902相同。在至少一个实施例中,存储器管理器1006与结合图9描述的存储器管理器906相同。在至少一个实施例中,存储器管理器1006使用如本文所述的系统和方法确定图形处理器存储器池1012中的存储器位置1040。在至少一个实施例中,图形处理器存储器池1012与结合图9描述的图形处理器存储器池912相同。在至少一个实施例中,存储器管理器1006向处理器1002返回虚拟存储器指针1044,如本文所述。在至少一个实施例中,存储器管理器1006异步地将虚拟存储器指针1044返回给处理器1002,因为如本文所述,在执行流使用后备存储器之前,虚拟存储器指针响应于存储器请求而被返回给处理器。
在至少一个实施例中,处理器1002执行命令以用提供的虚拟存储器指针启动内核二1036。在至少一个实施例中,图形处理器1024执行内核二1048。在至少一个实施例中,图形处理器1024与结合图9描述的图形处理器924相同。在至少一个实施例中,当存储器管理器1006确定图形处理器存储器池1012中的存储器位置1040时,存储器被保留以供使用1042。在至少一个实施例中,存储器被保留以供使用1042,使得当图形处理器1024执行内核二1048时,存储器将可供内核二使用。
在至少一个实施例中,处理器1002执行命令以释放与内核二相关联的存储器1038。在至少一个实施例中,当内核二完成时,存储器管理器1006释放后备存储器1052以便以后重新使用,如本文所述。在至少一个实施例中,存储器管理器1006通过将后备存储器返回到存储器池和/或通过使后备存储器可用用或可重新使用以及通过释放虚拟存储器指针以重新使用,来释放后备存储器1052,如本文所述。在至少一个实施例中,当图形处理器1024执行内核二1048时,图形处理器存储器池1012中的存储器处于使用中1050。在至少一个实施例中,在内核二完成后以及在存储器管理器1006释放后备存储器1052以供以后重新使用后,图形处理器存储器池1012中的存储器可用于重新使用1054。
图11示出了根据至少一个实施例的数据流1100的示例第三部分,其中存储器被异步地分配和解除分配。在至少一个实施例中,数据流1100的示例第三部分从结合图10所描述的数据流1000的示例第二部分起继续。在至少一个实施例中,存储器管理器1106(其与本文至少结合图9描述的存储器管理器906相同,并且其与本文至少结合图10描述的存储器管理器1006相同)的动作与如本文描述的存储器管理器906的动作相同和/或存储器管理器1006的动作相同,并且为了清楚起见,在图11中未示出这种动作。
在至少一个实施例中,处理器1102请求存储器1104,执行启动内核一1118的命令,并且执行释放存储器1120的命令,所有这些都如本文至少结合图9所描述的(其中处理器902请求存储器904,执行启动内核一918的命令,并且执行释放存储器920的命令)。在至少一个实施例中,处理器1102与本文结合图10描述的处理器1002相同。
在至少一个实施例中,当处理器1102请求存储器1104时,存储器被保留以供使用1114。在至少一个实施例中,当图形处理器1124正在执行内核一1126时,在图形处理器存储器池1112中存储器处于使用中1128。在至少一个实施例中,图形处理器1124与本文结合图10描述的图形处理器1024相同。在至少一个实施例中,图形处理器存储器池1112与本文结合图10描述的图形处理器存储器池1012相同。在至少一个实施例中,当处理器1102执行释放与内核一相关联的存储器1120的命令,并且当内核一完成时,在图形处理器存储器池1112中处于使用中1128的存储器变得可用1132,如本文所述。
在至少一个实施例中,处理器1102请求存储器1134,执行启动内核二1136的命令,并执行释放存储器1138的命令,所有这些如本文至少结合图10所描述,例如,其中处理器1002请求存储器1034,执行启动内核二1036的命令,并执行释放存储器1038的命令。在至少一个实施例中,当处理器1102为内核二请求存储器1134时,存储器管理器1106确定在图形处理器存储器池1112中处于使用中1128的存储器将在被内核二使用之前变得可用1132。在至少一个实施例中,存储器管理器使用将变得可用1132以供内核二使用的存储器来保留存储器1142。
在至少一个实施例中,处理器1102执行命令以用从将变成可用的1132的存储器提供的虚拟存储器指针来启动内核二1136。在至少一个实施例中,图形处理器1124执行内核二1148。在至少一个实施例中,图形处理器1124与结合图10描述的图形处理器1024相同。在至少一个实施例中,当存储器管理器1106如上所述确定图形处理器存储器池中的存储器位置时,从将变成可用1132的存储器中保留存储器以供使用1142。在至少一个实施例中,存储器被保留以供使用1142,使得当图形处理器1124执行内核二1148时,存储器将可供内核二使用。
在至少一个实施例中,处理器1102执行命令以释放与内核二相关联的存储器1138。在至少一个实施例中,当内核二完成时,存储器管理器1106释放后备存储器,以供以后重新使用,如本文所述。在至少一个实施例中,存储器管理器1106通过将后备存储器返回到存储器池和/或通过使后备存储器可用或可重新使用),以及通过释放虚拟存储器指针以重新使用来释放后备存储器,如本文所述。在至少一个实施例中,当图形处理器1124执行内核二1148时,图形处理器存储器池1112中的存储器处于使用中1150。在至少一个实施例中,在内核二完成后以及在存储器管理器1106释放后备存储器以供以后重新使用后,图形处理器存储器池1112中的存储器可用于重新使用1154。
图12示出了根据至少一个实施例的数据流1200的示例第四部分,其中存储器被异步地分配和解除分配。在至少一个实施例中,数据流1200的示例第四部分从结合图10描述的数据流1000的示例第二部分起继续,并且是本文结合图10描述的数据流1100的示例第三部分的替代。在至少一个实施例中,存储器管理器1206(其与本文至少结合图9描述的存储器管理器906相同,其与本文至少结合图10描述的存储器管理器1006相同,并且其与本文至少结合图11描述的存储器管理器1106相同)的动作与本文描述的存储器管理器906的动作相同和/或与存储器管理器1006的动作相同,并且为了清楚起见,这种动作没有在图12中示出。
在至少一个实施例中,处理器1202请求存储器1204,执行启动内核一1218的命令,并且执行释放存储器1220的命令,所有这些如本文至少结合图9所描述,例如,其中处理器902请求存储器904,执行启动内核一918的命令,并且执行释放存储器920的命令。在至少一个实施例中,处理器1202与本文结合图10描述的处理器1002相同。
在至少一个实施例中,当处理器1202请求存储器1204时,存储器被保留以供使用1214。在至少一个实施例中,当图形处理器1224正在执行内核一1226时,在图形处理器存储器池1212中存储器处于使用中1228。在至少一个实施例中,图形处理器1224与本文结合图10描述的图形处理器1024相同。在至少一个实施例中,图形处理器存储器池1212与本文结合图10描述的图形处理器存储器池1012相同。在至少一个实施例中,当处理器1202执行释放与内核一相关联的存储器1220的命令,并且当内核一完成时,在图形处理器存储器池1212中处于使用中1228的存储器变得可用1232,如本文所述。
在至少一个实施例中,处理器1202请求存储器1234,执行启动内核二1236的命令,并执行释放存储器1238的命令,所有这些如本文至少结合图10所描述,例如,其中处理器1002请求存储器1034,执行启动内核二1036的命令,并执行释放存储器1038的命令。在至少一个实施例中,当处理器1202为内核二请求存储器1234时,存储器管理器1206确定在图形处理器存储器池1212中处于使用中1228的存储器在它被内核二使用之前将不会变得可用1232,例如当内核一仍在执行时。在至少一个实施例中,存储器管理器使用与将变成可用1232的存储器不同的其他存储器来保留存储器1242。
在至少一个实施例中,处理器1202执行命令以用从保留的存储器1242提供的虚拟存储器指针启动内核二1236。在至少一个实施例中,图形处理器1224执行内核二1248。在至少一个实施例中,图形处理器1224与结合图10描述的图形处理器1024相同。在至少一个实施例中,当存储器管理器1206如上所述确定图形处理器存储器池中的存储器位置时,从不是将变成可用1232的存储器的存储器中保留存储器以供使用1242。在至少一个实施例中,存储器被保留以供使用1242,使得当图形处理器1224执行内核二1248时,存储器将可供内核二使用。
在至少一个实施例中,处理器1202执行命令以释放与内核二相关联的存储器1238。在至少一个实施例中,当内核二完成时,存储器管理器1206释放后备存储器,以供以后重新使用,如本文所述。在至少一个实施例中,存储器管理器1206通过将后备存储器返回到存储器池和/或通过使后备存储器可用或可重新使用)以及通过释放虚拟存储器指针以供重新使用,来释放后备存储器,如本文所述。在至少一个实施例中,当图形处理器1224执行内核二1248时,图形处理器存储器池1212中的存储器处于使用中1250。在至少一个实施例中,在内核二完成后以及在存储器管理器1206释放后备存储器以供以后重新使用后,图形处理器存储器池1212中的存储器可用于重新使用1254。
图13示出了根据至少一个实施例的用于执行存储器管理操作以利用存储器池异步地分配存储器的示例过程1300。在至少一个实施例中,存储器管理器(诸如本文至少结合图1描述的存储器管理器106)执行指令以执行图13中示出的示例过程1300。
在至少一个实施例中,在示例过程1300的步骤1302处,使用诸如本文所述的系统和方法接收对与内核相关联的异步分配的存储器的请求。在至少一个实施例中,从在处理器(诸如本文至少结合图1描述的处理器102)上执行的过程(诸如示例过程500)接收对具有可用于执行内核的相关联虚拟存储器地址的异步分配的存储器的请求。在至少一个实施例中,使用API接收对具有可用于执行内核的相关联虚拟存储器地址的异步分配的存储器的请求。在至少一个实施例中,在图13中未示出,生成对具有相关联虚拟存储器地址的异步分配的存储器请求的响应,该相关联虚拟存储器地址可用于执行内核。在至少一个实施例中,使用API生成对接收到具有可用于执行内核的相关联虚拟存储器地址的异步分配的存储器请求的响应。在至少一个实施例中,在步骤1302之后,示例过程1300的执行前进到步骤1304。
在至少一个实施例中,在示例过程1300的步骤1304处,确定是否存在先前分配的存储器池,例如,先前如本文所述已创建的存储器。在至少一个实施例中,在步骤1304,如果确定存在先前分配的存储器池("是"分支),则示例过程的执行前进到步骤1310。在至少一个实施例中,在步骤1304,如果确定不存在先前分配的存储器池("否"分支),则示例过程的执行前进到步骤1306。
在至少一个实施例中,在示例过程1300的步骤1306处,通过使用诸如本文所述的系统和方法为存储器池分配存储器来创建存储器池。在至少一个实施例中,在步骤1306之后,示例过程1300的执行前进到步骤1308。
在至少一个实施例中,在示例过程1300的步骤1308处,确定是否成功地创建了存储器池。在至少一个实施例中,在步骤1308,如果确定成功地创建了存储器池("是"分支),则示例过程的执行前进到步骤1310。在至少一个实施例中,在步骤1308,如果确定未成功地创建存储器池("否"分支),则示例过程的执行前进到步骤1314。
在至少一个实施例中,在示例过程1300的步骤1310处,使用诸如本文所述的系统和方法从存储器池分配存储器。在至少一个实施例中,在步骤1310之后,示例过程1300的执行前进到步骤1312。
在至少一个实施例中,在示例过程1300的步骤1312处,确定是否从存储器池成功地分配了存储器。在至少一个实施例中,在步骤1312,如果确定从存储器池成功地分配了存储器("是"分支),则示例过程的执行前进到步骤1316。在至少一个实施例中,在步骤1312,如果确定没有从存储器池成功地分配存储器("否"分支),则示例过程的执行前进到步骤1314。
在至少一个实施例中,在示例过程1300的步骤1314处,作为确定没有从存储器池成功地分配存储器(在步骤1310中)的结果,返回失败的指示。在至少一个实施例中,失败的指示被返回到请求过程。在至少一个实施例中,失败的指示被返回到在处理器(诸如本文至少结合图1描述的处理器102)上执行的请求过程,诸如示例过程500。在至少一个实施例中,使用API返回失败的指示。在至少一个实施例中,使用信号将失败的指示返回给调用进程。在至少一个实施例中,使用信号量将失败的指示返回给调用进程。在至少一个实施例中,在图13中未示出,接收对失败指示的响应。在至少一个实施例中,在步骤1314之后,示例过程1300终止。在至少一个实施例中,在步骤1314之后,示例过程1300返回到步骤1302以接收执行具有相关联虚拟存储器地址的内核的新请求。
在至少一个实施例中,在示例过程1300的步骤1316处,使用诸如本文所述的系统和方法,从存储器池分配的存储器与虚拟存储器地址相关联,例如,在步骤1302中接收的虚拟存储器地址。在至少一个实施例中,在步骤1316之后,示例过程1300的执行前进到步骤1318。
在至少一个实施例中,在示例过程1300的步骤1318处,作为确定没有从存储器池成功地分配存储器(在步骤1310中)的结果,使用诸如结合步骤1314描述的系统和方法,使用API、使用信号和/或使用信号量,返回失败的指示。在至少一个实施例中,在步骤1318之后,示例过程1300终止。在至少一个实施例中,在步骤1318之后,示例过程1300返回到步骤1302,以接收执行具有相关联虚拟存储器地址的内核的新请求。
在至少一个实施例中,图13中示出的示例过程1300的操作以不同于图13中指示的顺序执行。在至少一个实施例中,图13中示出的示例过程1300的操作被同时和/或并行地执行。在至少一个实施例中,图13中示出的示例过程1300的操作由在存储器管理器(诸如本文至少结合图1描述的存储器管理器106)上执行的多个线程执行。
图14示出了根据至少一个实施例的示例计算机系统1400,其中执行存储器管理操作以使用用于单个执行流的存储器池来异步地分配存储器。在至少一个实施例中,执行流1402指示使用从存储器池分配的异步分配的存储器中的一个或更多个存储器位置的操作的流顺序。在至少一个实施例中,执行流1402指示为内核一分配存储器1404、执行内核一1410、释放内核一存储器1412、为内核二分配存储器1416、执行内核二1420、释放内核二存储器1422的有序操作。
在至少一个实施例中,在执行流1402中指定的操作可以是隐含的。在至少一个实施例中,例如,当执行内核一1410的有序操作被执行时,可以自动执行为内核一分配存储器1404的有序操作,并且当执行内核一1410的有序操作完成时,可以自动执行释放内核一存储器1412的有序操作。在至少一个实施例中,使用诸如本文描述的系统和方法,在执行流1402中指定的操作可以被例如API明确地调用。
在至少一个实施例中,当执行流1402指示执行为内核一分配存储器1404的有序操作时,存储器管理器1406(其为例如本文至少结合图1描述的存储器管理器106的存储器管理器)使用诸如本文所述的系统和方法从存储器池提供后备存储器1408。在至少一个实施例中,例如,存储器管理器1406可以从存储器池提供在地址0X1000的后备存储器。
在至少一个实施例中,当执行流1402指示执行释放内核一存储器1412的有序操作时,存储器管理器1406使用诸如本文所述的系统和方法,可执行一个或更多个操作以将后备存储器返回到存储器池1414,可执行一个或更多个操作以将后备存储器标记为可重新使用,和/或可执行一个或更多个操作以释放与所述后备存储器关联的虚拟存储器指针。
在至少一个实施例中,当执行流1402指示执行为内核二分配存储器1416的有序操作时,存储器管理器1406使用诸如本文所述的系统和方法从存储器池提供后备存储器1418。在至少一个实施例中,存储器管理器1406重新使用位于地址0X1000的后备存储器,因为由于由执行流1402指定的操作顺序,存储器管理器1406确定内核一将在内核二被执行之前完成,因此,可用于内核一的存储器可被内核二重新使用,并且可例如对于内核二可用)。
在至少一个实施例中,当执行流1402指示执行释放内核二存储器1422的有序操作时,使用诸如本文所述的系统和方法,存储器管理器1406可执行一个或更多个操作以将后备存储器返回到存储器池1424,可执行一个或更多个操作以将所述后备存储器标记为可重新使用,和/或可执行一个或更多个操作以释放与所述后备存储器关联的虚拟存储器指针。
图15示出了根据至少一个实施例的示例计算机系统1500,其中执行存储器管理操以使用存储器池为多个执行流异步地分配存储器。在至少一个实施例中,执行流指示使用从存储器池分配的异步分配的存储器中的一个或更多个存储器位置的操作的流顺序。在至少一个实施例中,第一执行流1502指示为内核一分配存储器1504、执行内核一1510和释放内核一存储器1512的有序操作。在至少一个实施例中,第二执行流1516指示为内核一分配存储器1518,执行内核一1522,释放内核一存储器1524,为内核二分配存储器1528,执行内核二1532,和释放内核二存储器1534的有序操作。在至少一个实施例中,在第一执行流1502中指定的操作可以是隐式的、可以是显式的、和/或可以由API调用,并且在第二执行流1516中指定的操作也可以是隐式的、可以是显式的、和/或可以由API调用。
在至少一个实施例中,当第一执行流1502指示执行为内核一分配存储器1504的有序操作时,存储器管理器1506(其为例如本文至少结合图1描述的存储器管理器106的存储器管理器)使用诸如本文所述的系统和方法从存储器池提供后备存储器1508。在至少一个实施例中,例如,存储器管理器1506可以从存储器池提供在地址0X1000的后备存储器。在至少一个实施例中,当第一执行流1502指示执行释放内核一存储器1512的有序操作时,存储器管理器1506可以使用诸如本文所述的系统和方法执行一个或更多个操作以将后备存储器返回到存储器池1514。
在至少一个实施例中,当第二执行流1516指示执行为内核一分配存储器1518的有序操作时,存储器管理器1506使用诸如本文所述的系统和方法从存储器池提供后备存储器1520。在至少一个实施例中,例如,存储器管理器1506可以从存储器池提供在地址0X2000的后备存储器。在至少一个实施例中,存储器管理器1506可以不提供来自存储器池的在地址0X1000的后备存储器(可以不重新使用在地址0X1000的存储器),因为来自执行流1502的执行内核一可能完成或可能没完成。在至少一个实施例中,当第二执行流1516指示执行释放内核一存储器1524的有序操作时,存储器管理器1506可使用诸如本文描述的系统和方法执行一个或更多个操作以将后备存储器返回到存储器池1526。
在至少一个实施例中,当第二执行流1516指示执行为内核二分配存储器1518的有序操作时,存储器管理器1506使用诸如本文所述的系统和方法从存储器池提供后备存储器1508。在至少一个实施例中,存储器管理器1506可以重新使用在地址0X2000的后备存储器1530,因为由于由执行流1516指定的操作顺序,存储器管理器1506确定内核一将在内核二被执行之前完成,因此,可用于内核一的存储器可以被内核二重新使用。在至少一个实施例中,存储器管理器1506仍然可以不提供来自存储器池的在地址0X1000的后备存储器(可以不重新使用在地址0X1000的存储器),因为来自执行流1502的执行内核一的仍然可能完成或可能不完成。在至少一个实施例中,当第二执行流1516指示执行释放内核二存储器1534的有序操作时,存储器管理器1506可使用诸如本文所述的系统和方法执行一个或更多个操作以将后备存储器返回到存储器池1536。
图16示出了根据至少一个实施例的用于执行存储器管理操作以重新使用来自存储器池的异步分配的存储器的示例过程1600。在至少一个实施例中,存储器管理器(诸如本文至少结合图1描述的存储器管理器106)执行指令以执行图16中示出的示例过程1600。
在至少一个实施例中,在示例过程1600的步骤1602处,接收对异步分配的存储器的请求。在至少一个实施例中,从在处理器(诸如本文至少结合图1描述的处理器102)上执行的过程(诸如示例过程500)接收对异步分配的存储器的请求。在至少一个实施例中,使用API接收对异步分配的存储器的请求,如本文至少结合图5所描述的。在至少一个实施例中,在图16中未示出,生成对接收到异步分配的存储器的请求的响应。在至少一个实施例中,使用API生成对接收到异步分配的存储器的请求的响应。在至少一个实施例中,在步骤1602之后,示例过程1600的执行前进到步骤1604。
在至少一个实施例中,在示例过程1600的步骤1604处,确定先前使用的池存储器在执行与对异步分配的存储器的请求相关联的工作(例如,内核)之前是否将是可用的。在至少一个实施例中,至少部分地基于如本文至少结合图14和图15所描述的流执行顺序,确定先前使用的池存储器在执行与对异步分配的存储器的请求相关联的工作之前是否将是可用的。在至少一个实施例中,在步骤1604之后,示例过程1600的执行前进到步骤1606。
在至少一个实施例中,在示例过程1600的步骤1606处,如果如与步骤1604中所描述的确定先前使用的池存储器在执行与对异步分配的存储器的请求相关联的工作之前将可用("是"分支),则示例过程的执行前进到步骤1610。在至少一个实施例中,在步骤1606,如果如与步骤1604中所描述的确定先前使用的池存储器在执行与对异步分配的存储器的请求相关的工作之前将不可用("否"分支),则示例过程的执行前进到步骤1608。
在至少一个实施例中,在示例过程1600的步骤1608处,使用诸如本文所述的系统和方法提供新的、不重新使用的虚拟地址。在至少一个实施例中,新的虚拟地址被提供给请求过程,例如本文描述的示例过程500。在至少一个实施例中,新的虚拟地址被提供给在处理器(例如本文至少结合图1描述的处理器102)上执行的请求过程。在至少一个实施例中,使用本文至少结合图5描述的API提供新的虚拟地址。在至少一个实施例中,在图16中未示出,接收对所提供的新虚拟存储器地址的响应。在至少一个实施例中,从处理器(如本文至少结合图1描述的处理器102)接收对提供的新虚拟存储器地址的响应。在至少一个实施例中,使用API接收对所提供的新虚拟存储器地址的响应。在至少一个实施例中,在步骤1608之后,示例过程1600的执行前进到步骤1612。
在至少一个实施例中,在示例过程1600的步骤1610,使用诸如结合步骤1608描述的系统和方法来提供重新使用的虚拟地址,诸如先前使用的虚拟地址,如本文结合图14和图15所描述的。在至少一个实施例中,在步骤1610之后,示例过程1600的执行前进到步骤1612。
在至少一个实施例中,在示例过程1600的步骤1612处,使用诸如本文所述的系统和方法接收执行与虚拟存储器地址相关联的工作的请求。在至少一个实施例中,使用诸如结合步骤1602描述的那些系统和方法,例如从调用进程和/或使用API,接收执行与虚拟存储器地址相关联的工作的请求。在至少一个实施例中,在步骤1612之后,示例过程1600的执行前进到步骤1614。
在至少一个实施例中,在示例过程1600的步骤1614处,使用诸如本文所述的系统和方法,启动使用来自存储器池的在步骤1608或步骤1610中提供的地址的存储器的工作。在至少一个实施例中,在步骤1614之后,示例过程1600的执行终止。在至少一个实施例中,在步骤1614之后,示例过程1600返回到步骤1602以接收对异步分配的存储器的新请求。
在至少一个实施例中,图16中示出的示例过程1600的操作以不同于图16中指示的顺序执行。在至少一个实施例中,图16中示出的示例过程1600的操作同时和/或并行地执行。在至少一个实施例中,图16中示出的示例过程1600的操作由多个线程执行,这多个线程在诸如本文至少结合图1描述的存储器管理器106的存储器管理器上执行。
图17示出了根据至少一个实施例的示例计算机系统1700,其中执行存储器管理操作以针对多个同步执行流重新使用来自存储器池的异步分配的存储器。在至少一个实施例中,执行流指示使用从存储器池分配的异步分配的存储器中的一个或更多个存储器位置的操作的流顺序。在至少一个实施例中,第一执行流1702指示为与异步分配的存储器相关联的工作分配存储器1704、执行相关联工作1710和释放存储器1712的有序操作。在至少一个实施例中,第一执行流1702指示与第二执行流1718同步1716的有序操作。在至少一个实施例中,在第一执行流1702中指定的操作可以是隐式的,可以是显式的,和/或可以由API调用。
在至少一个实施例中,第二执行流1718指示为与异步分配的存储器相关联的工作分配存储器1720、执行工作1724、释放存储器1726和为工作分配存储器1732的有序操作。在至少一个实施例中,在图17中未示出,第二执行流1718还可以指示执行工作和释放分配的存储器的有序操作。在至少一个实施例中,第二执行流1718指示以等待1730来自执行流1702的同步的有序操作。在至少一个实施例中,在第二执行流1718中指定的操作也可以是隐式的,可以是显式的,和/或可以由API调用。
在至少一个实施例中,当第一执行流1702指示执行为工作分配存储器1704的有序操作时,存储器管理器1706(其是诸如本文至少结合图1描述的存储器管理器106的存储器管理器)使用诸如本文所述的系统和方法提供来自存储器池的在地址0X1000的存储器1708。在至少一个实施例中,当第一执行流1702指示执行释放存储器1712的有序操作时,存储器管理器1706可使用诸如本文描述的那些系统和方法执行一个或更多个操作以将后备存储器返回到存储器池1714。
在至少一个实施例中,当第二执行流1718指示执行为工作分配存储器1720的有序操作时,存储器管理器1706使用诸如本文所述的系统和方法提供来自存储器池的在地址0X2000的后备存储器1722。在至少一个实施例中,存储器管理器1706可以不提供来自存储器池的在地址0X1000的后备存储器(可以不重新使用在地址0X1000处的存储器),因为来自执行流1702的执行工作可能完成或可能不完成。在至少一个实施例中,当第二执行流1718指示执行释放存储器1726的有序操作时,存储器管理器1706可使用诸如本文所述的系统和方法执行一个或更多个操作以将后备存储器返回到存储器池1728。
在至少一个实施例中,第一执行流1702指示与第二执行流1718同步1716的有序操作,并且第二执行流1718指示等待1730来自执行流1702的同步的有序操作。在至少一个实施例中,当第二执行流1718指示执行为工作分配存储器1732的有序操作时,存储器管理器1706使用诸如本文所述的系统和方法从存储器池提供后备存储器1708。在至少一个实施例中,存储器管理器1706可以重新使用在地址0X2000处的后备存储器1734,因为由于由第二执行流1718指定的操作顺序,存储器管理器1706可以确定执行流1718中的工作将在其他工作被执行之前完成,因此,可用的存储器可以被重新使用。在至少一个实施例中,存储器管理器1706还重新使用1734来自存储器池的在地址0X1000处的后备存储器,因为由于同步和等待操作,来自第一执行流1702的工作的执行将在来自第二执行流1718的额外工作开始执行之前完成。
图18示出了根据至少一个实施例的示例过程1800,用于执行存储器管理操作以针对多个同步执行流重新使用来自存储器池的异步分配的存储器。在至少一个实施例中,存储器管理器(诸如本文至少结合图1描述的存储器管理器106)执行指令以执行图18所示的示例过程1800。
在至少一个实施例中,在示例过程1800的步骤1802处,接收对用于执行流的异步分配的存储器的请求,如本文所述。在至少一个实施例中,从过程(诸如本文至少结合图5所描述的过程500)接收对异步分配的存储器的请求。在至少一个实施例中,从处理器(诸如本文至少结合图1描述的处理器102)接收对异步分配的存储器的请求。在至少一个实施例中,一个进程代表另一个进程发送对异步分配的存储器的请求。在至少一个实施例中,使用如本文至少结合图5描述的API接收对异步分配的存储器的请求。在至少一个实施例中,未在图18中示出,生成对接收到对异步分配的存储器的请求的响应。在至少一个实施例中,使用API生成对异步分配的存储器的请求的响应。在至少一个实施例中,在步骤1802之后,示例过程1800的执行前进到步骤1804。
在至少一个实施例中,在示例过程1800的步骤1804,确定在第一执行流和第二执行流之间是否存在同步事件。在至少一个实施例中,存储器管理器可以检查执行流以确定在第一执行流和第二执行流之间是否存在同步事件。在至少一个实施例中,存储器管理器可以检查执行流的流顺序的规范,以确定第一执行流和第二执行流之间是否存在同步事件。在至少一个实施例中,存储器管理器可以检查执行流的执行图的规范,以确定第一执行流和第二执行流之间是否存在同步事件。在至少一个实施例中,在步骤1804之后,示例过程1800的执行前进到步骤1806。
在至少一个实施例中,在示例过程1800的步骤1806,如果确定(在步骤1806中)第一执行流和第二执行流之间存在同步事件("是"分支),则示例过程的执行前进到步骤1808。在至少一个实施例中,在步骤1806,如果确定(在步骤1806)第一执行流和第二执行流之间没有同步事件("否"分支),则示例过程的执行前进到步骤1814。
在至少一个实施例中,在示例过程1800的步骤1808,确定在另一个执行流中是否有可重新使用的存储器,以及在第一执行流和第二执行流之间是否有同步事件。在至少一个实施例中,在步骤1808之后,示例过程1800的执行前进到步骤1810。
在至少一个实施例中,在示例过程1800的步骤1810,如果确定(在步骤1808中)在另一执行流中存在可在同步事件之前释放的可重新使用的存储器("是"分支),则示例过程的执行前进到步骤1812。在至少一个实施例中,在步骤1810,如果确定(在步骤1808中)在另一执行流中不存在可在同步事件之前释放的可重新使用的存储器("否"分支),则示例过程的执行前进到步骤1814。
在至少一个实施例中,在示例过程1800的步骤1812,提供基于同步确定的可重新使用的虚拟地址。在至少一个实施例中,将基于同步确定的可重新使用的虚拟地址提供给诸如本文至少结合图5描述的示例过程500的过程。在至少一个实施例中,基于同步确定的可重新使用的虚拟地址被提供给处理器,例如本文至少结合图1描述的处理器102。在至少一个实施例中,基于同步确定的可重新使用的虚拟地址被提供给图形处理器,如本文至少结合图1描述的图形处理器108。在至少一个实施例中,基于同步确定的可重新使用的虚拟地址使用本文至少结合图5描述的API来提供。
在至少一个实施例中,在图18中未示出,接收对基于同步确定的所提供的可重新使用的虚拟地址的响应。在至少一个实施例中,从过程(诸如本文至少结合图5描述的示例过程500)接收对基于同步确定的所提供的可重新使用的虚拟地址的响应。在至少一个实施例中,对基于同步确定的所提供的可重新使用的虚拟地址的响应是从处理器(诸如本文至少结合图1描述的处理器102)接收的。在至少一个实施例中,对基于同步确定的所提供的可重新使用的虚拟地址的响应是从图形处理器(如本文至少结合图1所描述的图形处理器108)接收的。在至少一个实施例中,使用API接收对基于同步确定的所提供的可重新使用的虚拟地址的响应。在至少一个实施例中,在步骤1812之后,示例过程1800的执行前进到步骤1816。
在至少一个实施例中,在示例过程1800的步骤1814处,使用诸如本文至少结合图14-17所述的系统和方法生成新的或可重新使用的虚拟地址,并且使用诸如结合步骤1812描述的那些系统和方法提供。在至少一个实施例中,在步骤1814之后,示例过程1800的执行前进到步骤1816。
在至少一个实施例中,在示例过程1800的步骤1816处,使用诸如本文所述的系统和方法接收执行与虚拟存储器地址相关联的工作的请求。在至少一个实施例中,使用诸如结合步骤1802描述的那些系统和方法,例如,从调用进程和/或使用API,接收执行与虚拟存储器地址相关联的工作的请求。在至少一个实施例中,在步骤1816之后,示例过程1600的执行前进到步骤1818。
在至少一个实施例中,在示例过程1800的步骤1818处,使用诸如本文所述的系统和方法,启动使用来自存储器池的在步骤1812或步骤1814中提供的地址处的存储器的工作。在至少一个实施例中,在步骤1818之后,示例过程1800的执行终止。在至少一个实施例中,在步骤1818之后,示例过程1800返回到步骤1802以接收对异步分配的存储器的新请求。
在至少一个实施例中,图18中示出的示例过程1800的操作以不同于图18中指示的顺序执行。在至少一个实施例中,图18中示出的示例过程1800的操作同时和/或并行地执行。在至少一个实施例中,图18中示出的示例过程1800的操作由在存储器管理器上执行的多个线程执行,例如本文至少结合图1描述的存储器管理器106。
在以下描述中,阐述了许多具体细节以提供对至少一个实施例的更透彻的理解。然而,对于本领域的技术人员来说,显然可以在没有这些具体细节中的一个或更多个的情况下实施本发明的概念。
数据中心
图19示出了根据至少一个实施例的示例数据中心1900。在至少一个实施例中,数据中心1900包括但不限于数据中心基础设施层1910、框架层1920、软件层1930和应用层1940。
在至少一个实施例中,如图19所示,数据中心基础设施层1910可以包括资源协调器1912、分组的计算资源1914和节点计算资源(“节点C.R.”)1916(1)-1916(N),其中“N”代表任何完整的正整数。在至少一个实施例中,节点C.R.1916(1)-1916(N)可以包括但不限于任意数量的中央处理单元(“CPU”)或其他处理器(包括加速器、现场可编程门阵列(“FPGA”)、网络设备中的数据处理单元(DPU)、图形处理器等),存储器设备(例如动态只读存储器),存储设备(例如固态硬盘或磁盘驱动器),网络输入/输出(“NW I/O”)设备,网络交换机,虚拟机(“VM”),电源模块和冷却模块等。在至少一个实施例中,节点C.R.1916(1)-1916(N)中的一个或更多个节点C.R.可以是具有一个或更多个上述计算资源的服务器。
在至少一个实施例中,分组的计算资源1914可以包括容纳在一个或更多个机架内的节点C.R.的单独分组(未示出),或者容纳在各个地理位置的数据中心内的许多机架(也未示出)。分组的计算资源1914内的节点C.R.的单独分组可以包括可以被配置或分配为支持一个或更多个工作负载的分组的计算、网络、内存或存储资源。在至少一个实施例中,可以将包括CPU或处理器的几个节点C.R.分组在一个或更多个机架内,以提供计算资源来支持一个或更多个工作负载。在至少一个实施例中,一个或更多个机架还可以包括任意数量的电源模块、冷却模块和网络交换机,以任意组合。
在至少一个实施例中,资源协调器1912可以配置或以其他方式控制一个或更多个节点C.R.1916(1)-1916(N)和/或分组的计算资源1914。在至少一个实施例中,资源协调器1912可以包括用于数据中心1900的软件设计基础结构(“SDI”)管理实体。在至少一个实施例中,资源协调器1912可以包括硬件、软件或其某种组合。
在至少一个实施例中,如图19所示,框架层1920包括但不限于作业调度器1932、配置管理器1934、资源管理器1936和分布式文件系统1938。在至少一个实施例中,框架层1920可以包括支持软件层1930的软件1952和/或应用程序层1940的一个或更多个应用程序1942的框架。在至少一个实施例中,软件1952或应用程序1942可以分别包括基于Web的服务软件或应用程序,例如由Amazon Web Services,Google Cloud和Microsoft Azure提供的服务或应用程序。在至少一个实施例中,框架层1920可以是但不限于一种免费和开放源软件网络应用框架,例如可以利用分布式文件系统1938来进行大范围数据处理(例如“大数据”)的Apache SparkTM(以下称为“Spark”)。在至少一个实施例中,作业调度器1932可以包括Spark驱动器,以促进对数据中心1900的各个层所支持的工作负载进行调度。在至少一个实施例中,配置管理器1934可以能够配置不同的层,例如软件层1930和包括Spark和用于支持大规模数据处理的分布式文件系统1938的框架层1920。在至少一个实施例中,资源管理器1936能够管理映射到或分配用于支持分布式文件系统1938和作业调度器1932的集群或分组计算资源。在至少一个实施例中,集群或分组计算资源可以包括数据中心基础设施层1910上的分组的计算资源1914。在至少一个实施例中,资源管理器1936可以与资源协调器1912协调以管理这些映射的或分配的计算资源。
在至少一个实施例中,包括在软件层1930中的软件1952可以包括由节点C.R.1916(1)-1916(N)的至少一部分,分组计算资源1914和/或框架层1920的分布式文件系统1938使用的软件。一种或更多种类型的软件可以包括但不限于Internet网页搜索软件、电子邮件病毒扫描软件、数据库软件和流视频内容软件。
在至少一个实施例中,应用层1940中包括的一个或更多个应用程序1942可以包括由节点C.R.1916(1)-1916(N)的至少一部分、分组的计算资源1914和/或框架层1920的分布式文件系统1938使用的一种或更多种类型的应用程序。一种或更多种类型的应用程序可以包括但不限于CUDA应用程序。
在至少一个实施例中,配置管理器1934、资源管理器1936和资源协调器1912中的任何一个可以基于以任何技术上可行的方式获取的任意数量和类型的数据来实现任意数量和类型的自我修改动作。在至少一个实施例中,自我修改动作可以减轻数据中心1900的数据中心操作员做出可能不好的配置决定并且可以避免数据中心的未充分利用和/或执行差的部分。
在至少一个实施例中,利用关于图19所示或描述的至少一个组件来实现结合图1-18描述的技术和/或功能。在至少一个实施例中,分组计算资源1914和节点C.R.1916(1-N)中的至少一个被用于执行异步存储器分配和/或异步存储器解除分配。在至少一个实施例中,分组计算资源1914和节点C.R.1916(1-N)中的至少一个用于执行API,以使一个或更多个存储器位置被异步分配给一个或更多个处理器。在至少一个实施例中,分组计算资源1914和节点C.R.1916(1-N)中的至少一个被用于执行API以使一个或更多个存储器位置被异步分配到一个或更多个处理器。在至少一个实施例中,分组计算资源1914和节点C.R.1916(1-N)中的至少一个被用于执行API以使一个或更多个存储器位置被从一个或更多个处理器中异步地解除分配。在至少一个实施例中,分组的计算资源1914和节点C.R.1916(1-N)中的至少一个被用于执行关于示例计算机系统100、示例计算机系统200、示例计算机系统300、示例计算机系统400、示例过程500、示例过程600、示例过程700、示例过程800、示例数据流900、数据流1000的示例第一部分、数据流1100的示例第二部分、数据流1200的示例第三部分、示例过程1300、示例计算机系统1400、示例计算机系统1500、示例过程1600、示例计算机系统1700和/或示例过程1800描述的至少一个方面。
基于计算机的系统
以下各图提出但不限于可用于实现至少一个实施例的示例性的基于计算机的系统。
图20示出了根据至少一个实施例的处理系统2000。在至少一个实施例中,系统2000包括一个或更多个处理器2002和一个或更多个图形处理器2008,并且可以是单处理器台式机系统、多处理器工作站系统或具有大量处理器2002或处理器核心2007的服务器系统。在至少一个实施例中,处理系统2000是结合在片上系统(SoC)集成电路内的处理平台,以用于移动、手持或嵌入式设备。
在至少一个实施例中,处理系统2000可以包括或结合在基于服务器的游戏平台中,包括游戏和媒体控制台的游戏控制台、移动游戏控制台、手持游戏控制台或在线游戏控制台。在至少一个实施例中,处理系统2000是移动电话、智能电话、平板计算设备或移动互联网设备。在至少一个实施例中,处理系统2000还可包括与可穿戴设备耦合或集成在可穿戴设备中,例如智能手表可穿戴设备、智能眼镜设备、增强现实设备或虚拟现实设备。在至少一个实施例中,处理系统2000是电视或机顶盒设备,其具有一个或更多个处理器2002以及由一个或更多个图形处理器2008生成的图形界面。
在至少一个实施例中,一个或更多个处理器2002每个包括一个或更多个处理器核心2007,以处理指令,该指令在被执行时执行针对系统和用户软件的操作。在至少一个实施例中,一个或更多个处理器核心2007中的每一个被配置为处理特定指令集2009。在至少一个实施例中,指令集2009可以促进复杂指令集计算(CISC)、精简指令集计算(RISC),或通过超长指令字(VLIW)进行计算。在至少一个实施例中,多个处理器核心2007可以各自处理不同的指令集2009,该指令集2009可以包括有助于仿真其他指令集的指令。在至少一个实施例中,处理器核心2007还可以包括其他处理设备,例如数字信号处理器(DSP)。
在至少一个实施例中,处理器2002包括高速缓存存储器(cache)2004。在至少一个实施例中,处理器2002可以具有单个内部高速缓存或更多个级别的内部高速缓存。在至少一个实施例中,高速缓存存储器在处理器2002的各个组件之间共享。在至少一个实施例中,处理器2002还使用外部高速缓存(例如,三级(L3)高速缓存或最后一级高速缓存(LLC))(未示出),其可以使用已知的高速缓存一致性技术在处理器核心2007之间共享该逻辑。在至少一个实施例中,处理器2002中另外包括寄存器文件2006,处理器2002可以包括用于存储不同类型的数据的不同类型的寄存器(例如,整数寄存器、浮点寄存器、状态寄存器和指令指针寄存器)。在至少一个实施例中,寄存器文件2006可以包括通用寄存器或其他寄存器。
在至少一个实施例中,一个或更多个处理器2002与一个或更多个接口总线2010耦合,以在处理器2002与系统2000中的其他组件之间传输通信信号,例如地址、数据或控制信号。在至少一个实施例中,接口总线2010在一个实施例中可以是处理器总线,例如直接媒体接口(DMI)总线的版本。在至少一个实施例中,接口总线2010不限于DMI总线,并且可以包括一个或更多个外围组件互连总线(例如,PCI,PCI Express)、存储器总线或其他类型的接口总线。在至少一个实施例中,处理器2002包括集成存储器控制器2016和平台控制器集线器2030。在至少一个实施例中,存储器控制器2016促进存储设备与处理系统2000的其他组件之间的通信,而平台控制器集线器(PCH)2030通过本地I/O总线提供到输入/输出(I/O)设备的连接。
在至少一个实施例中,存储设备2020可以是动态随机存取存储器(DRAM)设备、静态随机存取存储器(SRAM)设备、闪存设备、相变存储设备或具有适当的性能以用作处理器存储器。在至少一个实施例中,存储设备2020可以用作处理系统2000的系统存储器,以存储数据2022和指令2021,以在一个或更多个处理器2002执行应用或过程时使用。在至少一个实施例中,存储器控制器2016还与可选的外部图形处理器2012耦合,其可以与处理器2002中的一个或更多个图形处理器2008通信以执行图和媒体操作。在至少一个实施例中,显示设备2011可以连接至处理器2002。在至少一个实施例中,显示设备2011可以包括内部显示设备中的一个或更多个,例如在移动电子设备或便携式计算机设备或通过显示器接口(例如显示端口(DisplayPort)等)连接的外部显示设备。在至少一个实施例中,显示设备2011可以包括头戴式显示器(HMD),诸如用于虚拟现实(VR)应用或增强现实(AR)应用中的立体显示设备。
在至少一个实施例中,平台控制器集线器2030使外围设备能够通过高速I/O总线连接到存储设备2020和处理器2002。在至少一个实施例中,I/O外围设备包括但不限于音频控制器2046、网络控制器2034、固件接口2028、无线收发器2026、触摸传感器2025、数据存储设备2024(例如,硬盘驱动器、闪存等)。在至少一个实施例中,数据存储设备2024可以经由存储器接口(例如,SATA)或经由外围总线来连接,诸如外围组件互连总线(例如,PCI、PCIe)。在至少一个实施例中,触摸传感器2025可以包括触摸屏传感器、压力传感器或指纹传感器。在至少一个实施例中,无线收发器2026可以是Wi-Fi收发器、蓝牙收发器或移动网络收发器,诸如3G、4G或长期演进(LTE)收发器。在至少一个实施例中,固件接口2028使能与系统固件的通信,并且可以是例如统一的可扩展固件接口(UEFI)。在至少一个实施例中,网络控制器2034可以启用到有线网络的网络连接。在至少一个实施例中,高性能网络控制器(未示出)与接口总线2010耦合。在至少一个实施例中,音频控制器2046是多通道高清晰度音频控制器。在至少一个实施例中,处理系统2000包括可选的传统(legacy)I/O控制器2040,用于将遗留(例如,个人系统2(PS/2))设备耦合到处理系统2000。在至少一个实施例中,平台控制器集线器2030还可以连接到一个或更多个通用串行总线(USB)控制器2042,该控制器连接输入设备,诸如键盘和鼠标2043组合、相机2044或其他USB输入设备。
在至少一个实施例中,存储器控制器2016和平台控制器集线器2030的实例可以集成到离散的外部图形处理器中,例如外部图形处理器2012。在至少一个实施例中,平台控制器集线器2030和/或存储控制器2016可以在一个或更多个处理器2002的外部。例如,在至少一个实施例中,处理系统2000可以包括外部存储控制器2016和平台控制器集线器2030,其可以配置成在与处理器2002通信的系统芯片组中的存储器控制器集线器和外围控制器集线器。
在至少一个实施例中,利用关于图20所示或描述的至少一个组件来实现结合图1-18描述的技术和/或功能。在至少一个实施例中,一个或更多个处理器2002或外部图形处理器2012中的至少一个被用于执行异步存储器分配和/或异步存储器解除分配。在至少一个实施例中,一个或更多个处理器2002或外部图形处理器2012中的至少一个用于执行API,以使一个或更多个存储器位置被异步分配给一个或更多个处理器。在至少一个实施例中,一个或更多个处理器2002或外部图形处理器2012中的至少一个被用于执行API以使一个或更多个存储器位置被异步分配到一个或更多个处理器。在至少一个实施例中,一个或更多个处理器2002或外部图形处理器2012中的至少一个被用于执行API以使一个或更多个存储器位置被从一个或更多个处理器中异步地解除分配。在至少一个实施例中,一个或更多个处理器2002或外部图形处理器2012中的至少一个被用于执行关于示例计算机系统100、示例计算机系统200、示例计算机系统300、示例计算机系统400、示例过程500、示例过程600、示例过程700、示例过程800、示例数据流900、数据流1000的示例第一部分、数据流1100的示例第二部分、数据流1200的示例第三部分、示例过程1300、示例计算机系统1400、示例计算机系统1500、示例过程1600、示例计算机系统1700和/或示例过程1800描述的至少一个方面。
图21示出了根据至少一个实施例的计算机系统2100。在至少一个实施例中,计算机系统2100可以是具有互连的设备和组件、SOC、或某种组合的系统。在至少一个实施例中,计算机系统2100由处理器2102形成,该处理器2102可以包括用于执行指令的执行单元。在至少一个实施例中,计算机系统2100可以包括但不限于组件,例如处理器2102,其采用包括逻辑的执行单元以执行用于过程数据的算法。在至少一个实施例中,计算机系统2100可以包括处理器,例如可从加利福尼亚圣塔克拉拉的英特尔公司(Intel Corporation ofSanta Clara,California)获得的
Figure BDA0003991081560000441
处理器家族、XeonTM、
Figure BDA0003991081560000442
XScaleTM和/或StrongARMTM,
Figure BDA0003991081560000443
CoreTM
Figure BDA0003991081560000444
NervanaTM微处理器,尽管也可以使用其他系统(包括具有其他微处理器的PC、工程工作站、机顶盒等)。在至少一个实施例中,计算机系统2100可以执行可从华盛顿州雷蒙德市的微软公司(Microsoft Corporation ofRedmond,Wash.)获得的WINDOWS操作系统版本,尽管其他操作系统(例如UNIX和Linux)、嵌入式软件和/或图形用户界面也可以使用。
在至少一个实施例中,计算机系统2100可以用在其他设备中,例如手持设备和嵌入式应用。手持设备的一些示例包括蜂窝电话、互联网协议(Internet Protocol)设备、数码相机、个人数字助理(“PDA”)和手持PC。在至少一个实施例中,嵌入式应用可以包括微控制器、数字信号处理器(“DSP”)、SoC、网络计算机(“NetPC”)、机顶盒、网络集线器、广域网(“WAN”)交换机,或根据至少一个实施例可以执行一个或更多个指令的任何其他系统。
在至少一个实施例中,计算机系统2100可包括但不限于处理器2102,该处理器2102可包括但不限于一个或更多个执行单元2108,其可以配置为执行计算统一设备架构(“CUDA”)(
Figure BDA0003991081560000445
由加利福尼亚州圣克拉拉的NVIDIA Corporation开发)程序。在至少一个实施例中,CUDA程序是用CUDA编程语言编写的软件应用程序的至少一部分。在至少一个实施例中,计算机系统2100是单处理器台式机或服务器系统。在至少一个实施例中,计算机系统2100可以是多处理器系统。在至少一个实施例中,处理器2102可以包括但不限于CISC微处理器、RISC微处理器、VLIW微处理器、实现指令集组合的处理器,或任何其他处理器设备,例如数字信号处理器。在至少一个实施例中,处理器2102可以耦合到处理器总线2110,该处理器总线2110可以在处理器2102与计算机系统2100中的其他组件之间传输数据信号。
在至少一个实施例中,处理器2102可以包括但不限于1级(“L1”)内部高速缓存存储器(“cache”)2104。在至少一个实施例中,处理器2102可以具有单个内部高速缓存或更多级内部缓存。在至少一个实施例中,高速缓存存储器可以驻留在处理器2102的外部。在至少一个实施例中,处理器2102可以包括内部和外部高速缓存的组合。在至少一个实施例中,寄存器文件2106可以在各种寄存器中存储不同类型的数据,包括但不限于整数寄存器、浮点寄存器、状态寄存器和指令指针寄存器。
在至少一个实施例中,包括但不限于执行整数和浮点运算的逻辑的执行单元2108,其也位于处理器2102中。处理器2102还可以包括微码(“ucode”)只读存储器(“ROM”),用于存储某些宏指令的微代码。在至少一个实施例中,执行单元2108可以包括用于处理封装指令集2109的逻辑。在至少一个实施例中,通过将封装指令集2109包括在通用处理器2102的指令集中,以及要执行指令的相关电路,可以使用通用处理器2102中的封装数据来执行许多多媒体应用程序使用的操作。在至少一个实施例中,可以通过使用处理器的数据总线的全宽度来在封装的数据上执行操作来加速和更有效地执行许多多媒体应用程序,这可能不需要在处理器的数据总线上传输较小的数据单元来一次对一个数据元素执行一个或更多个操作。
在至少一个实施例中,执行单元2108也可以用在微控制器、嵌入式处理器、图形设备、DSP和其他类型的逻辑电路中。在至少一个实施例中,计算机系统2100可以包括但不限于存储器2120。在至少一个实施例中,存储器2120可以被实现为DRAM设备、SRAM设备、闪存设备或其他存储设备。存储器2120可以存储由处理器2102可以执行的由数据信号表示的指令2119和/或数据2121。
在至少一个实施例中,系统逻辑芯片可以耦合到处理器总线2110和存储器2120。在至少一个实施例中,系统逻辑芯片可以包括但不限于存储器控制器集线器(“MCH”)2116,并且处理器2102可以经由处理器总线2110与MCH 2116通信。在至少一个实施例中,MCH2116可以提供到存储器2120的高带宽存储器路径2118以用于指令和数据存储以及用于图形命令、数据和纹理的存储。在至少一个实施例中,MCH 2116可以在处理器2102、存储器2120和计算机系统2100中的其他组件之间启动数据信号,并且在处理器总线2110、存储器2120和系统I/O 2122之间桥接数据信号。在至少一个实施例中,系统逻辑芯片可以提供用于耦合到图形控制器的图形端口。在至少一个实施例中,MCH 2116可以通过高带宽存储器路径2118耦合到存储器2120,并且图形/视频卡2112可以通过加速图形端口(AcceleratedGraphics Port)(“AGP”)互连2114耦合到MCH 2116。
在至少一个实施例中,计算机系统2100可以使用系统I/O 2122作为专有集线器接口总线来将MCH 2116耦合到I/O控制器集线器(“ICH”)2130。在至少一个实施例中,ICH2130可以通过本地I/O总线提供与某些I/O设备的直接连接。在至少一个实施例中,本地I/O总线可以包括但不限于用于将外围设备连接到存储器2120、芯片组和处理器2102的高速I/O总线。示例可以包括但不限于音频控制器2129、固件集线器(“Flash BIOS”)2128、无线收发器2126、数据存储2124、包含用户输入2125的传统I/O控制器2123和键盘接口、串行扩展端口2127(例如USB)和网络控制器2134。数据存储2124可以包括硬盘驱动器、软盘驱动器、CD-ROM设备、闪存设备或其他大容量存储设备。
在至少一个实施例中,图21示出了包括互连的硬件设备或“芯片”的系统。在至少一个实施例中,图21可以示出示例性SoC。在至少一个实施例中,图21中示出的设备可以与专有互连、标准化互连(例如,PCIe)或其某种组合互连。在至少一个实施例中,系统2100的一个或更多个组件使用计算快速链路(CXL)互连来互连。
在至少一个实施例中,利用关于图21所示或描述的至少一个组件来实现结合图1-18描述的技术和/或功能。在至少一个实施例中,处理器2102被用于执行异步存储器分配和/或异步存储器解除分配。在至少一个实施例中,处理器2102用于执行API,以使一个或更多个存储器位置被异步分配给一个或更多个处理器。在至少一个实施例中,处理器2102被用于执行API以使一个或更多个存储器位置被异步分配到一个或更多个处理器。在至少一个实施例中,处理器2102被用于执行API以使一个或更多个存储器位置被从一个或更多个处理器中异步地解除分配。在至少一个实施例中,处理器2102被用于执行关于示例计算机系统100、示例计算机系统200、示例计算机系统300、示例计算机系统400、示例过程500、示例过程600、示例过程700、示例过程800、示例数据流900、数据流1000的示例第一部分、数据流1100的示例第二部分、数据流1200的示例第三部分、示例过程1300、示例计算机系统1400、示例计算机系统1500、示例过程1600、示例计算机系统1700和/或示例过程1800描述的至少一个方面。
图22示出了根据至少一个实施例的系统2200。在至少一个实施例中,系统2200是利用处理器2210的电子设备。在至少一个实施例中,系统2200可以是,例如但不限于,笔记本电脑、塔式服务器、机架服务器、刀片服务器、通信地耦合至一个或更多个本地或云服务提供商的边缘设备、膝上型计算机、台式机、平板电脑、移动设备、电话、嵌入式计算机或任何其他合适的电子设备。
在至少一个实施例中,系统2200可以包括但不限于通信地耦合到任何合适数量或种类的组件、外围设备、模块或设备的处理器2210。在至少一个实施例中,处理器2210使用总线或接口耦合,诸如I2C总线、系统管理总线(“SMBus”)、低引脚数(LPC)总线、串行外围接口(“SPI”)、高清音频(“HDA”)总线、串行高级技术附件(“SATA”)总线、USB(1、2、3版)或通用异步接收器/发送器(“UART”)总线。在至少一个实施例中,图22示出了系统,该系统包括互连的硬件设备或“芯片”。在至少一个实施例中,图22可以示出示例性SoC。在至少一个实施例中,图22中所示的设备可以与专有互连线、标准化互连(例如,PCIe)或其某种组合互连。在至少一个实施例中,图22的一个或更多个组件使用计算快速链路(CXL)互连线来互连。
在至少一个实施例中,图22可以包括显示器2224、触摸屏2225、触摸板2230、近场通信单元(“NFC”)2245、传感器集线器2240、热传感器2246、快速芯片组(“EC”)2235、可信平台模块(“TPM”)2238、BIOS/固件/闪存(“BIOS,FW Flash”)2222、DSP 2260、固态磁盘(“SSD”)或硬盘驱动器(“HDD”)2220、无线局域网单元(“WLAN”)2250、蓝牙单元2252、无线广域网单元(“WWAN”)2256、全球定位系统(GPS)2255、相机(“USB 3.0相机”)2254(例如USB3.0相机)或以例如LPDDR3标准实现的低功耗双倍数据速率(“LPDDR”)存储器单元(“LPDDR3”)2215。这些组件可以各自以任何合适的方式实现。
在至少一个实施例中,其他组件可以通过以上讨论的组件通信地耦合到处理器2210。在至少一个实施例中,加速度计2241、环境光传感器(“ALS”)2242、罗盘2243和陀螺仪2244可以可通信地耦合到传感器集线器2240。在至少一个实施例中,热传感器2239、风扇2237、键盘2236和触摸板2230可以通信地耦合到EC 2235。在至少一个实施例中,扬声器2263、耳机2264和麦克风(“mic”)2265可以通信地耦合到音频单元(“音频编解码器和D类放大器”)2262,其又可以通信地耦合到DSP 2260。在至少一个实施例中,音频单元2262可以包括例如但不限于音频编码器/解码器(“编解码器”)和D类放大器。在至少一个实施例中,SIM卡(“SIM”)2257可以通信地耦合到WWAN单元2256。在至少一个实施例中,组件(诸如WLAN单元2250和蓝牙单元2252以及WWAN单元2256)可以被实现为下一代形式因素(NGFF)。
在至少一个实施例中,利用关于图22所示或描述的至少一个组件来实现结合图1-18描述的技术和/或功能。在至少一个实施例中,处理器2210被用于执行异步存储器分配和/或异步存储器解除分配。在至少一个实施例中,处理器2210用于执行API,以使一个或更多个存储器位置被异步分配给一个或更多个处理器。在至少一个实施例中,处理器2210被用于执行API以使一个或更多个存储器位置被异步分配到一个或更多个处理器。在至少一个实施例中,处理器2210被用于执行API以使一个或更多个存储器位置被从一个或更多个处理器中异步地解除分配。在至少一个实施例中,处理器2210被用于执行关于示例计算机系统100、示例计算机系统200、示例计算机系统300、示例计算机系统400、示例过程500、示例过程600、示例过程700、示例过程800、示例数据流900、数据流1000的示例第一部分、数据流1100的示例第二部分、数据流1200的示例第三部分、示例过程1300、示例计算机系统1400、示例计算机系统1500、示例过程1600、示例计算机系统1700和/或示例过程1800描述的至少一个方面。
图23示出了根据至少一个实施例的示例性集成电路2300。在至少一个实施例中,示例性集成电路2300是SoC,其可使用一个或更多个IP核心制造。在至少一个实施例中,集成电路2300包括一个或更多个应用处理器2305(例如,CPU、DPU)、至少一个图形处理器2310,并且可以另外包括图像处理器2315和/或视频处理器2320,其中任意一个可能是模块化IP核心。在至少一个实施例中,集成电路2300包括外围或总线逻辑,其包括USB控制器2325、UART控制器2330、SPI/SDIO控制器2335和I2S/I2C控制器2340。在至少一个实施例中,集成电路2300可以包括显示设备2345耦合到高清多媒体接口(HDMI)控制器2350和移动工业处理器接口(MIPI)显示接口2355中的一个或更多个。在至少一个实施例中,存储可以由闪存子系统2360提供,包括闪存和闪存控制器。在至少一个实施例中,可以经由存储器控制器2365提供存储器接口以用于访问SDRAM或SRAM存储器设备。在至少一个实施例中,一些集成电路还包括嵌入式安全引擎2370。
在至少一个实施例中,利用关于图23所示或描述的至少一个组件来实现结合图1-18描述的技术和/或功能。在至少一个实施例中,应用处理器2305、图形处理器2310、图像处理器2315或视频处理器2320中的至少一个被用于执行异步存储器分配和/或异步存储器解除分配。在至少一个实施例中,应用处理器2305、图形处理器2310、图像处理器2315或视频处理器2320中的至少一个用于执行API,以使一个或更多个存储器位置被异步分配给一个或更多个处理器。在至少一个实施例中,应用处理器2305、图形处理器2310、图像处理器2315或视频处理器2320中的至少一个被用于执行API以使一个或更多个存储器位置被异步分配到一个或更多个处理器。在至少一个实施例中,应用处理器2305、图形处理器2310、图像处理器2315或视频处理器2320中的至少一个被用于执行API以使一个或更多个存储器位置被从一个或更多个处理器中异步地解除分配。在至少一个实施例中,应用处理器2305、图形处理器2310、图像处理器2315或视频处理器2320中的至少一个被用于执行关于示例计算机系统100、示例计算机系统200、示例计算机系统300、示例计算机系统400、示例过程500、示例过程600、示例过程700、示例过程800、示例数据流900、数据流1000的示例第一部分、数据流1100的示例第二部分、数据流1200的示例第三部分、示例过程1300、示例计算机系统1400、示例计算机系统1500、示例过程1600、示例计算机系统1700和/或示例过程1800描述的至少一个方面。
图24示出了根据至少一个实施例的计算系统2400。在至少一个实施例中,计算系统2400包括处理子系统2401,其具有经由可以包括存储器集线器2405的互连路径通信的一个或更多个处理器2402和系统存储器2404。在至少一个实施例中,存储器集线器2405可以是芯片组组件内的单独组件,也可以集成在一个或更多个处理器2402内。在至少一个实施例中,存储器集线器2405通过通信链路2406与I/O子系统2411耦合。在至少一个实施例中,I/O子系统2411包括I/O集线器2407,其可以使计算系统2400能够接收来自一个或更多个输入设备2408的输入。在至少一个实施例中,I/O集线器2407可以使能显示控制器,其包括在一个或更多个处理器2402中,用于向一个或更多个显示设备2410A提供输出。在至少一个实施例中,与I/O集线器2407耦合的一个或更多个显示设备2410A可以包括本地、内部或嵌入式显示设备。
在至少一个实施例中,处理子系统2401包括经由总线或其他通信链路2413耦合到存储器集线器2405的一个或更多个并行处理器2412。在至少一个实施例中,通信链路2413可以是许多基于标准的通信链路技术或协议中的一种,例如但不限于PCIe,或者可以是针对供应商的通信接口或通信结构。在至少一个实施例中,一个或更多个并行处理器2412形成计算集中的并行或向量处理系统,该系统可以包括大量的处理核心和/或处理集群,例如多集成核心(MIC)处理器。在至少一个实施例中,一个或更多个并行处理器2412形成可以将像素输出到经由I/O集线器2407耦合的一个或更多个显示设备2410A之一的图形处理子系统。在至少一个实施例中,一个或更多个并行处理器2412还可以包括显示控制器和显示接口(未示出),以使得能够直接连接到一个或更多个显示设备2410B。
在至少一个实施例中,系统存储单元2414可以连接到I/O集线器2407,以提供用于计算系统2400的存储机制。在至少一个实施例中,I/O交换机2416可以用于提供接口机制,以实现I/O集线器2407与其他组件之间的连接,例如可以集成到平台中的网络适配器2418和/或无线网络适配器2419,以及可以通过一个或更多个附加设备2420添加的各种其他设备。在至少一个实施例中,网络适配器2418可以是以太网适配器或另一有线网络适配器。在至少一个实施例中,无线网络适配器2419可以包括Wi-Fi、蓝牙、NFC的一个或更多个或其他包括一个或更多个无线电的网络设备。
在至少一个实施例中,计算系统2400可以包括未明确示出的其他组件,包括USB或其他端口连接、光存储驱动器、视频捕获设备等,也可以连接到I/O集线器2407。在至少一个实施例中,对图24中的各个组件进行互连的通信路径可以使用任何合适的协议来实现,诸如基于PCI(外围组件互连)的协议(例如,PCIe),或其他总线或点对点通信接口和/或协议(例如,NVLink高速互连或互连协议)。
在至少一个实施例中,一个或更多个并行处理器2412包括针对图形和视频处理而优化的电路(包括例如视频输出电路),并构成图形处理单元(GPU)。在至少一个实施例中,一个或更多个并行处理器2412包括针对通用处理而优化的电路。在至少一个实施例中,计算系统2400的组件可以与单个集成电路上的一个或更多个其他系统元件集成。例如,在至少一个实施例中,一个或更多个并行处理器2412、存储器集线器2405、处理器2402和I/O集线器2407可以被集成到片上系统(SoC)集成电路中。在至少一个实施例中,计算系统2400的组件可以被集成到单个封装中以形成系统级封装(SIP)配置。在至少一个实施例中,计算系统2400的组件的至少一部分可以被集成到多芯片模块(MCM)中,该多芯片模块可以与其他多芯片模块互连到模块化计算系统中。在至少一个实施例中,从计算系统2400中省略了I/O子系统2411和显示设备2410B。
在至少一个实施例中,利用关于图24所示或描述的至少一个组件来实现结合图1-18描述的技术和/或功能。在至少一个实施例中,一个或更多个处理器2402或一个或更多个并行处理器2412中的至少一个被用于执行异步存储器分配和/或异步存储器解除分配。在至少一个实施例中,一个或更多个处理器2402或一个或更多个并行处理器2412中的至少一个用于执行API,以使一个或更多个存储器位置被异步分配给一个或更多个处理器。在至少一个实施例中,一个或更多个处理器2402或一个或更多个并行处理器2412中的至少一个被用于执行API以使一个或更多个存储器位置被异步分配到一个或更多个处理器。在至少一个实施例中,一个或更多个处理器2402或一个或更多个并行处理器2412中的至少一个被用于执行API以使一个或更多个存储器位置被从一个或更多个处理器中异步地解除分配。在至少一个实施例中,一个或更多个处理器2402或一个或更多个并行处理器2412中的至少一个被用于执行关于示例计算机系统100、示例计算机系统200、示例计算机系统300、示例计算机系统400、示例过程500、示例过程600、示例过程700、示例过程800、示例数据流900、数据流1000的示例第一部分、数据流1100的示例第二部分、数据流1200的示例第三部分、示例过程1300、示例计算机系统1400、示例计算机系统1500、示例过程1600、示例计算机系统1700和/或示例过程1800描述的至少一个方面。
处理系统
以下各图阐述了但不限于可用于实现至少一个实施例的示例性处理系统。
图25示出了根据至少一个实施例的加速处理单元(“APU”)2500。在至少一个实施例中,APU 2500由加利福尼亚州圣克拉拉市的AMD公司开发。在至少一个实施例中,APU2500可以被配置为执行应用程序,诸如CUDA程序。在至少一个实施例中,APU 2500包括但不限于核心复合体2510、图形复合体2540、结构2560、I/O接口2570、存储器控制器2580、显示控制器2592和多媒体引擎2594。在至少一个实施例中,APU 2500可以包括但不限于任意数量的核心复合体2510、任意数量的图形复合体2550、任意数量的显示控制器2592和任意数量的多媒体引擎2594的任何组合。为了说明的目的,在本文中用附图标记表示相似对象的多个实例,其中附图标记标识该对象,并且括号中的数字标识所需要的实例。
在至少一个实施例中,核心复合体2510是CPU,图形复合体2540是GPU,并且APU2500是将不限于2510和2540集成到单个芯片上的处理单元。在至少一个实施例中,一些任务可以被分配给核心复合体2510,而其他任务可以被分配给图形复合体2540。在至少一个实施例中,核心复合体2510被配置为执行与APU 2500相关联的主控制软件,例如操作系统。在至少一个实施例中,核心复合体2510是APU 2500的主处理器,其控制和协调其他处理器的操作。在至少一个实施例中,核心复合体2510发出控制图形复合体2540的操作的命令。在至少一个实施例中,核心复合体2510可以被配置为执行从CUDA源代码派生的主机可执行代码,并且图形复合体2540可以被配置为执行从CUDA源代码派生的设备可执行代码。
在至少一个实施例中,核心复合体2510包括但不限于核心2520(1)-2520(4)和L3高速缓存2530。在至少一个实施例中,核心复合体2510可以包括但不限于任意数量的核心2520以及任意数量和类型的高速缓存的任何组合。在至少一个实施例中,核心2520被配置为执行特定指令集架构(“ISA”)的指令。在至少一个实施例中,每个核心2520是CPU核心。
在至少一个实施例中,每个核心2520包括但不限于获取/解码单元2522,整数执行引擎2524,浮点执行引擎2526和L2高速缓存2528。在至少一个实施例中,获取/解码单元2522获取指令,对这些指令进行解码,生成微操作,并将单独的微指令分派给整数执行引擎2524和浮点执行引擎2526。在至少一个实施例中,获取/解码单元2522可以同时分派一个微指令至整数执行引擎2524和另一微指令至浮点执行引擎2526。在至少一个实施例中,整数执行引擎2524执行不限于整数和存储器操作。在至少一个实施例中,浮点引擎2526执行不限于浮点和向量运算。在至少一个实施例中,获取-解码单元2522将微指令分派给单个执行引擎,该引擎代替整数执行引擎2524和浮点执行引擎2526两者。
在至少一个实施例中,每个核心2520(i)可以访问包括在核心2520(i)中的L2高速缓存2528(i),其中i是表示核心2520的特定实例的整数。在至少一个实施例中,包括在核心复合体2510(j)中的每个核心2520经由包括在核心复合体2510(j)中的L3高速缓存2530(j)连接到包括在核心复合体2510(j)中的其他核心2520,其中j是表示核心复合体2510的特定实例的整数。在至少一个实施例中,包括在核心复合体2510(j)中的核心2520可以访问包括在核心复合体2510(j)中的所有L3高速缓存2530(j),其中j是表示核心复合体2510的特定实例的整数。在至少一个实施例中,L3高速缓存2530可以包括但不限于任意数量的切片。
在至少一个实施例中,图形复合体2540可以被配置为以高度并行的方式执行计算操作。在至少一个实施例中,图形复合体2540被配置为执行图形管线操作,诸如绘制命令、像素操作、几何计算以及与将图像渲染至显示器相关联的其他操作。在至少一个实施例中,图形复合体2540被配置为执行与图形无关的操作。在至少一个实施例中,图形复合体2540被配置为执行与图形有关的操作和与图形无关的操作。
在至少一个实施例中,图形复合体2540包括但不限于任意数量的计算单元2550和L2高速缓存2542。在至少一个实施例中,计算单元2550共享L2高速缓存2542。在至少一个实施例中,L2高速缓存2542被分区。在至少一个实施例中,图形复合体2540包括但不限于任意数量的计算单元2550以及任意数量(包括零)和类型的高速缓存。在至少一个实施例中,图形复合体2540包括但不限于任意数量的专用图形硬件。
在至少一个实施例中,每个计算单元2550包括但不限于任意数量的SIMD单元2552和共享存储器2554。在至少一个实施例中,每个SIMD单元2552实现SIMD架构并且被配置为并行执行操作。在至少一个实施例中,每个计算单元2550可以执行任意数量的线程块,但是每个线程块在单个计算单元2550上执行。在至少一个实施例中,线程块包括但不限于任意数量的执行线程。在至少一个实施例中,工作组是线程块。在至少一个实施例中,每个SIMD单元2552执行不同的线程束(warp)。在至少一个实施例中,线程束是一组线程(例如16个线程),其中线程束中的每个线程属于单个线程块,并且被配置为基于单个指令集来处理不同的数据集。在至少一个实施例中,可以使用预测(predication)来禁用线程束中的一个或更多个线程。在至少一个实施例中,通道是线程。在至少一个实施例中,工作项是线程。在至少一个实施例中,波前是线程束。在至少一个实施例中,线程块中的不同波前可一起被同步并经由共享存储器2554进行通信。
在至少一个实施例中,结构2560是促进跨核心复合体2510、图形复合体2540、I/O接口2570、存储器控制器2580、显示控制器2592和多媒体引擎2594的数据和控制传输的系统互连。在至少一个实施例中,除了结构2560之外或代替结构2560,APU 2500还可以包括但不限于任意数量和类型的系统互连,该结构2560促进跨可以在APU 2500内部或外部的任意数量和类型的直接或间接链接的组件的数据和控制传输。在至少一个实施例中,I/O接口2570表示任意数量和类型的I/O接口(例如,PCI、PCI-Extended(“PCI-X”)、PCIe、千兆以太网(“GBE”)、USB等)。在至少一个实施例中,各种类型的外围设备耦合到I/O接口2570。在至少一个实施例中,耦合到I/O接口2570的外围设备可以包括但不限于键盘、鼠标、打印机、扫描仪、操纵杆或其他类型的游戏控制器、媒体记录设备、外部存储设备、网络接口卡等。
在至少一个实施例中,显示控制器AMD92在一个或更多个显示设备(例如液晶显示器(“LCD”)设备)上显示图像。在至少一个实施例中,多媒体引擎2594包括但不限于任意数量和类型的与多媒体相关的电路,例如视频解码器、视频编码器、图像信号处理器等。在至少一个实施例中,存储器控制器2580促进APU 2500与统一系统存储器2590之间的数据传输。在至少一个实施例中,核心复合体2510和图形复合体2540共享统一系统存储器2590。
在至少一个实施例中,APU 2500实现存储器子系统,其包括但不限于任意数量和类型的存储器控制器2580和可以专用于一个组件或在多个组件之间共享的存储器设备(例如,共享存储器2554)。在至少一个实施例中,APU 2500实现高速缓存子系统,其包括但不限于一个或更多个高速缓存存储器(例如,L2高速缓存1628,L3高速缓存2530和L2高速缓存2542),每个高速缓存存储器可以是组件私有的或在任意数量的组件(例如,核心2520、核心复合体2510、SIMD单元2552、计算单元2550和图形复合体2540)之间共享。
在至少一个实施例中,利用关于图25所示或描述的至少一个组件来实现结合图1-18描述的技术和/或功能。在至少一个实施例中,核心复合体2510或图形复合体2540的至少一个元件被用于执行异步存储器分配和/或异步存储器解除分配。在至少一个实施例中,核心复合体2510或图形复合体2540的至少一个元件用于执行API,以使一个或更多个存储器位置被异步分配给一个或更多个处理器。在至少一个实施例中,核心复合体2510或图形复合体2540的至少一个元件被用于执行API以使一个或更多个存储器位置被异步分配到一个或更多个处理器。在至少一个实施例中,核心复合体2510或图形复合体2540的至少一个元件被用于执行API以使一个或更多个存储器位置被从一个或更多个处理器中异步地解除分配。在至少一个实施例中,核心复合体2510或图形复合体2540的至少一个元件被用于执行关于示例计算机系统100、示例计算机系统200、示例计算机系统300、示例计算机系统400、示例过程500、示例过程600、示例过程700、示例过程800、示例数据流900、数据流1000的示例第一部分、数据流1100的示例第二部分、数据流1200的示例第三部分、示例过程1300、示例计算机系统1400、示例计算机系统1500、示例过程1600、示例计算机系统1700和/或示例过程1800描述的至少一个方面。
图26示出了根据至少一个实施例的CPU 2600。在至少一个实施例中,CPU 2600由加利福尼亚州圣克拉拉市的AMD公司开发。在至少一个实施例中,CPU 2600可以被配置为执行应用程序。在至少一个实施例中,CPU2600被配置为执行主控制软件,例如操作系统。在至少一个实施例中,CPU2600发出控制外部GPU(未示出)的操作的命令。在至少一个实施例中,CPU 2600可以被配置为执行从CUDA源代码派生的主机可执行代码,并且外部GPU可以被配置为执行从这种CUDA源代码派生的设备可执行代码。在至少一个实施例中,CPU 2600包括但不限于任意数量的核心复合体2610、结构2660、I/O接口2670和存储器控制器2680。
在至少一个实施例中,核心复合体2610包括但不限于核心2620(1)-2620(4)和L3高速缓存2630。在至少一个实施例中,核心复合体2610可以包括但不限于任何组合的任意数量的核心2620以及任意数量和类型的高速缓存。在至少一个实施例中,核心2620被配置为执行特定ISA的指令。在至少一个实施例中,每个核心2620是CPU核心。
在至少一个实施例中,每个核心2620包括但不限于获取/解码单元2622、整数执行引擎2624、浮点执行引擎2626和L2高速缓存2628。在至少一个实施例中,获取/解码单元2622获取指令,对这些指令进行解码,生成微操作,并将单独的微指令分派给整数执行引擎2624和浮点执行引擎2626。在至少一个实施例中,获取/解码单元2622可以同时分派一个微指令给整数执行引擎2624和另一微指令给浮点执行引擎2626。在至少一个实施例中,整数执行引擎2624执行不限于整数和存储器操作。在至少一个实施例中,浮点引擎2626执行不限于浮点和向量运算。在至少一个实施例中,获取-解码单元2622将微指令分派给单个执行引擎,该引擎代替整数执行引擎2624和浮点执行引擎2626两者。
在至少一个实施例中,每个核心2620(i)可以访问在核心2620(i)中包括的L2高速缓存2628(i),其中i是表示核心2620的特定实例的整数。在至少一个实施例中,在核心复合体2610(j)包括中的每个核心2620经由在核心复合体2610(j)中包括的L3高速缓存2630(j)连接到核心复合体2610(j)中的其他核心2620,其中j是表示核心复合体2610的特定实例的整数。在至少一个实施例中,在核心复合体2610(j)中包括的核心2620可以访问在核心复合体2610(j)中包括的所有L3高速缓存2630(j),其中j是表示核心复合体2610的特定实例的整数。在至少一个实施例中,L3高速缓存2630可以包括但不限于任意数量的切片。
在至少一个实施例中,结构2660是系统互连,其促进跨核心复合体2610(1)-2610(N)(其中N是大于零的整数)、I/O接口2670和存储器控制器2680的数据和控制传输。在至少一个实施例中,除了结构2660之外或代替结构2660,CPU 2600还可以包括但不限于任意数量和类型的系统互连,该结构2660促进跨可以在CPU 2600内部或外部的任意数量和类型的直接或间接链接的组件的数据和控制传输。在至少一个实施例中,I/O接口2670表示任意数量和类型的I/O接口(例如PCI,PCI-X,PCIe,GBE,USB等)。在至少一个实施例中,各种类型的外围设备耦合到I/O接口2670。在至少一个实施例中,耦合到I/O接口2670的外围设备可以包括但不限于显示器、键盘、鼠标、打印机、扫描仪、操纵杆或其他类型的游戏控制器、媒体记录设备、外部存储设备、网络接口卡等。
在至少一个实施例中,存储器控制器2680促进CPU 2600与系统存储器2690之间的数据传输。在至少一个实施例中,核心复合体2610和图形复合体2640共享系统存储器2690。在至少一个实施例中,CPU 2600实现存储器子系统,其包括但不限于任意数量和类型的存储器控制器2680和可以专用于一个组件或在多个组件之间共享的存储器设备。在至少一个实施例中,CPU 2600实现了高速缓存子系统,其包括但不限于一个或更多个高速缓存存储器(例如,L2高速缓存2628和L3高速缓存2630),每个高速缓存存储器可以是组件私有的或在任意数量的组件(例如,核心2620和核心复合体2610)之间共享。
在至少一个实施例中,利用关于图26所示或描述的至少一个组件来实现结合图1-18描述的技术和/或功能。在至少一个实施例中,核心复合体2610(1)-2610(n)的至少一个元件被用于执行异步存储器分配和/或异步存储器解除分配。在至少一个实施例中,核心复合体2610(1)-2610(n)的至少一个元件用于执行API,以使一个或更多个存储器位置被异步分配给一个或更多个处理器。在至少一个实施例中,核心复合体2610(1)-2610(n)的至少一个元件被用于执行API以使一个或更多个存储器位置被异步分配到一个或更多个处理器。在至少一个实施例中,核心复合体2610(1)-2610(n)的至少一个元件被用于执行API以使一个或更多个存储器位置被从一个或更多个处理器中异步地解除分配。在至少一个实施例中,核心复合体2610(1)-2610(n)的至少一个元件被用于执行关于示例计算机系统100、示例计算机系统200、示例计算机系统300、示例计算机系统400、示例过程500、示例过程600、示例过程700、示例过程800、示例数据流900、数据流1000的示例第一部分、数据流1100的示例第二部分、数据流1200的示例第三部分、示例过程1300、示例计算机系统1400、示例计算机系统1500、示例过程1600、示例计算机系统1700和/或示例过程1800描述的至少一个方面。
图27示出了根据至少一个实施例的示例性加速器集成切片2790。如本文所使用的,“切片”包括加速器集成电路的处理资源的指定部分。在至少一个实施例中,加速器集成电路代表多个图形加速模块种的多个图形处理引擎提供高速缓存管理、存储器访问、环境管理和中断管理服务。图形处理引擎可以各自包括单独的GPU。可选地,图形处理引擎可包括GPU内的不同类型的图形处理引擎,例如图形执行单元、媒体处理引擎(例如,视频编码器/解码器)、采样器和blit引擎。在至少一个实施例中,图形加速模块可以是具有多个图形处理引擎的GPU。在至少一个实施例中,图形处理引擎可以是集成在通用封装、线卡或芯片上的各个GPU。
系统存储器2714内的应用程序有效地址空间2782存储进程元素2783。在一个实施例中,响应于来自处理器2707上执行的应用程序2780的GPU调用2781而存储进程元素2783。进程元素2783包含对应应用程序2780的处理状态。包含在进程元素2783中的工作描述符(WD)2784可以是应用程序请求的单个作业或可能包含指向作业队列的指针。在至少一个实施例中,WD 2784是指向应用程序有效地址空间2782中的作业请求队列的指针。
图形加速模块2746和/或各个图形处理引擎可以由系统中的全部或部分进程共享。在至少一个实施例中,可以包括用于建立处理状态并将WD2784发送到图形加速模块2746以在虚拟化环境中开始作业的基础设施。
在至少一个实施例中,专用进程编程模型是针对实现的。在该模型中,单个进程拥有图形加速模块2746或个体图形处理引擎。由于图形加速模块2746由单个进程拥有,因此管理程序为拥有的分区初始化加速器集成电路,并且当分配图形加速模块2746时操作系统对加速器集成电路进行初始化以用于拥有的分区。
在操作中,加速器集成切片2790中的WD获取单元2791获取下一个WD 2784,其中包括要由图形加速模块2746的一个或更多个图形处理引擎完成的工作的指示。来自WD 2784的数据可以存储在寄存器2745被存储器管理单元(MMU)2739、中断管理电路2747和/或环境管理电路2748使用,如图所示。例如,MMU 2739的一个实施例包括用于访问OS虚拟地址空间2785内的段/页表2786的段/页面漫游电路。中断管理电路2747可以处理从图形加速模块2746接收到的中断事件(“INT”)2792。当执行图操作时,由图形处理引擎产生的有效地址2793由MMU 2739转换为实际地址。
在一个实施例中,为每个图形处理引擎和/或图形加速模块2746复制相同的寄存器组2745,并且可以由系统管理程序或操作系统来初始化。这些复制的寄存器中的每一个都可以包含在加速器集成切片2790中。表1中显示了可由管理程序初始化的示例性寄存器。
表1–管理程序初始化的寄存器
Figure BDA0003991081560000581
Figure BDA0003991081560000591
表2中示出了可以由操作系统初始化的示例性寄存器。
表2–操作系统初始化寄存器
1 进程和线程识别
2 有效地址(EA)环境保存/还原指针
3 虚拟地址(VA)加速器利用率记录指针
4 虚拟地址(VA)存储分段表指针
5 权威面具
6 工作描述符
在一个实施例中,每个WD 2784特定于特定的图形加速模块2746和/或特定图形处理引擎。它包含图形处理引擎进行工作或工作所需的所有信息,或者它可以是指向存储器位置的指针,其中应用程序建立了要完成的工作的命令队列。
在至少一个实施例中,利用关于图27所示或描述的至少一个组件来实现结合图1-18描述的技术和/或功能。在至少一个实施例中,处理器2707被用于执行异步存储器分配和/或异步存储器解除分配。在至少一个实施例中,处理器2707用于执行API,以使一个或更多个存储器位置被异步分配给一个或更多个处理器。在至少一个实施例中,处理器2707被用于执行API以使一个或更多个存储器位置被异步分配到一个或更多个处理器。在至少一个实施例中,处理器2707被用于执行API以使一个或更多个存储器位置被从一个或更多个处理器中异步地解除分配。在至少一个实施例中,处理器2707被用于执行关于示例计算机系统100、示例计算机系统200、示例计算机系统300、示例计算机系统400、示例过程500、示例过程600、示例过程700、示例过程800、示例数据流900、数据流1000的示例第一部分、数据流1100的示例第二部分、数据流1200的示例第三部分、示例过程1300、示例计算机系统1400、示例计算机系统1500、示例过程1600、示例计算机系统1700和/或示例过程1800描述的至少一个方面。
图28A-28B示出了根据本文至少一个实施例的示例性图形处理器。在至少一个实施例中,任何示例性图形处理器可以使用一个或更多个IP核心来制造。除了图示之外,在至少一个实施例中可以包括其他逻辑和电路,包括附加的图形处理器/核心、外围接口控制器或通用处理器核心。在至少一个实施例中,示例性图形处理器用于SoC内。
图28A示出了根据至少一个实施例的SoC集成电路的示例性图形处理器2810,其可以使用一个或更多个IP核心来制造。图28B示出了根据至少一个实施例的SoC集成电路的的附加示例性图形处理器2840,其可以使用一个或更多个IP核心来制造。在至少一个实施例中,图28A的图形处理器2810是低功耗图形处理器核心。在至少一个实施例中,图28B的图形处理器2840是更高性能的图形处理器核心。在至少一个实施例中,每个图形处理器2810、2840可以是图23的图形处理器2310的变体。
在至少一个实施例中,图形处理器2810包括顶点处理器2805和一个或更多个片段处理器2815A-2815N(例如2815A、2815B、2815C、2815D至2815N-1和2815N)。在至少一个实施例中,图形处理器2810可以经由单独的逻辑来执行不同的着色器程序,使得顶点处理器2805被优化以执行针对顶点着色器程序的操作,而一个或更多个片段处理器2815A-2815N执行片段(例如,像素)着色操作用于片段或像素或着色器程序。在至少一个实施例中,顶点处理器2805执行3D图形管线的顶点处理阶段并生成图元和顶点数据。在至少一个实施例中,片段处理器2815A-2815N使用由顶点处理器2805生成的图元和顶点数据来生成在显示设备上显示的帧缓冲区。在至少一个实施例中,片段处理器2815A-2815N被优化以执行如在OpenGL API中所提供的片段着色器程序,其可以用于执行与在Direct 3D API中所提供的像素着色器程序类似的操作。
在至少一个实施例中,图形处理器2810附加地包括一个或更多个MMU 2820A-2820B、高速缓存2825A-2825B和电路互连2830A-2830B。在至少一个实施例中,一个或更多个MMU 2820A-2820B提供用于图形处理器2810的虚拟到物理地址的映射,包括用于顶点处理器2805和/或片段处理器2815A-2815N,其可以引用存储在存储器中的顶点或图像/纹理数据,除了存储在一个或更多个高速缓存2825A-2825B中的顶点或图像/纹理数据之外。在至少一个实施例中,一个或更多个MMU 2820A-2820B可以与系统内的其他MMU同步,包括与图23的一个或更多个应用处理器2305、图像处理器2315和/或视频处理器2320相关联的一个或更多个MMU,使得每个处理器2305-2320可以参与共享或统一的虚拟存储器系统。在至少一个实施例中,一个或更多个电路互连2830A-2830B使图形处理器2810能够经由SoC的内部总线或经由直接连接与SoC内的其他IP核心相连接。
在至少一个实施例中,图形处理器2840包括图28A的图形处理器2810的一个或更多个MMU 2820A-2820B、高速缓存2825A-2825B和电路互连2830A-2830B。在至少一个实施例中,图形处理器2840包括一个或更多个着色器核心2855A-2855N(例如,2855A、2855B、2855C、2855D、2855E、2855F、至2855N-1和2855N),其提供了统一的着色器核心架构,其中单个核心或类型或核心可以执行所有类型的可编程着色器代码,包括用于实现顶点着色器、片段着色器和/或计算着色器的着色器程序代码。在至少一个实施例中,多个着色器核心可以变化。在至少一个实施例中,图形处理器2840包括核心间任务管理器2845,其充当线程分派器以将执行线程分派给一个或更多个着色器核心2855A-2855N和分块单元2858,以加速基于图块渲染的分块操作,其中在图像空间中细分了场景的渲染操作,例如,以利用场景内的局部空间一致性或优化内部缓存的使用。
在至少一个实施例中,利用关于图28A-28B所示或描述的至少一个组件来实现结合图1-18描述的技术和/或功能。在至少一个实施例中,图形处理器2810或图形处理器2840中的至少一个被用于执行异步存储器分配和/或异步存储器解除分配。在至少一个实施例中,图形处理器2810或图形处理器2840中的至少一个用于执行API,以使一个或更多个存储器位置被异步分配给一个或更多个处理器。在至少一个实施例中,图形处理器2810或图形处理器2840中的至少一个被用于执行API以使一个或更多个存储器位置被异步分配到一个或更多个处理器。在至少一个实施例中,图形处理器2810或图形处理器2840中的至少一个被用于执行API以使一个或更多个存储器位置被从一个或更多个处理器中异步地解除分配。在至少一个实施例中,图形处理器2810或图形处理器2840中的至少一个被用于执行关于示例计算机系统100、示例计算机系统200、示例计算机系统300、示例计算机系统400、示例过程500、示例过程600、示例过程700、示例过程800、示例数据流900、数据流1000的示例第一部分、数据流1100的示例第二部分、数据流1200的示例第三部分、示例过程1300、示例计算机系统1400、示例计算机系统1500、示例过程1600、示例计算机系统1700和/或示例过程1800描述的至少一个方面。
图29A示出了根据至少一个实施例的图形核心2900。在至少一个实施例中,图形核心2900可以包括在图23的图形处理器2310内。在至少一个实施例中,图形核心2900可以是图28B中统一的着色器核心2855A-2855N。在至少一个实施例中,图形核心2900包括共享指令高速缓存2902、纹理单元2918和高速缓存/共享存储器2920,它们是图形核心2900内的执行资源所共有的。在至少一个实施例中,图形核心2900可以包括多个切片(slice)2901A-2901N或每个核心的分区,图形处理器可以包括图形核心2900的多个实例。切片2901A-2901N可以包括支持逻辑,该支持逻辑包括本地指令高速缓存2904A-2904N、线程调度器2906A-2906N、线程分派器2908A-2908N和一组寄存器2910A-2910N。在至少一个实施例中,切片2901A-2901N可以包括一组附加功能单元(“AFU”)2912A-2912N、浮点单元(“FPU”)2914A-2914N、整数算术逻辑单元(“ALU”)2916A-2916N、地址计算单元(“ACU”)2913A-2913N、双精度浮点单元(“DPFPU”)2915A-2915N和矩阵处理单元(“MPU”)2917A-2917N。
在一个实施例中,FPU 2914A-2914N可以执行单精度(32位)和半精度(16位)浮点运算,而DPFPU 2915A-2915N可以执行双精度(64位)浮点运算点操作。在至少一个实施例中,ALU 2916A-2916N可以以8位、16位和32位精度执行可变精度整数运算,并且可以被配置用于混合精度运算。在至少一个实施例中,MPU 2917A-2917N还可被配置用于混合精度矩阵运算,包括半精度浮点运算和8位整数运算。在至少一个实施例中,MPU 2917A-2917N可以执行各种矩阵操作以加速CUDA程序,包括使得能够支持加速的通用矩阵到矩阵乘法(GEMM)。在至少一个实施例中,AFU 2912A-2912N可以执行浮点数或整数单元不支持的附加逻辑运算,包括三角运算(例如,Sine、Cosine等)。
图29B示出了在至少一个实施例中的通用图形处理单元(GPGPU)2930。在至少一个实施例中,GPGPU 2930是高度并行的并且适合于部署在多芯片模块上。在至少一个实施例中,GPGPU 2930可以被配置为使得高度并行的计算操作能够由GPU阵列来执行。在至少一个实施例中,GPGPU 2930可以直接链路到GPGPU 2930的其他实例,以创建多GPU集群以提高用于CUDA程序的执行时间。在至少一个实施例中,GPGPU 2930包括主机接口2932以实现与主机处理器的连接。在至少一个实施例中,主机接口2932是PCIe接口。在至少一个实施例中,主机接口2932可以是厂商专用的通信接口或通信结构。在至少一个实施例中,GPGPU 2930从主机处理器接收命令,并使用全局调度器2934将与那些命令相关联的执行线程分派给一组计算集群2936A-2936H。在至少一个实施例中,计算集群2936A-2936H共享高速缓存存储器2938。在至少一个实施例中,高速缓存存储器2938可以用作计算集群2936A-2936H内的高速缓存存储器的高级高速缓存。
在至少一个实施例中,GPGPU 2930包括经由一组存储器控制器2942A-2942B与计算集群2936A-2936H耦合的存储器2944A-2944B。在至少一个实施例中,存储器2944A-2944B可以包括各种类型的存储器设备,包括动态随机存取存储器(DRAM)或图形随机存取存储器,例如同步图形随机存取存储器(SGRAM),包括图形双倍数据速率(GDDR)存储器。
在至少一个实施例中,计算集群2936A-2936H各自包括一组图形核心,诸如图29A的图形核心2900,其可以包括多种类型的整数和浮点逻辑单元,可以以各种精度执行计算操作,包括适合与CUDA程序相关的计算。例如,在至少一个实施例中,每个计算集群2936A-2936H中的浮点单元的至少一个子集可以配置为执行16位或32位浮点运算,而不同的浮点单元的子集可以配置为执行64位浮点运算。
在至少一个实施例中,GPGPU 2930的多个实例可以被配置为操作为计算集群。计算集群2936A-2936H可以实现用于同步和数据交换的任何技术上可行的通信技术。在至少一个实施例中,GPGPU 2930的多个实例通过主机接口2932进行通信。在至少一个实施例中,GPGPU 2930包括I/O集线器2939,其将GPGPU 2930与GPU链路2940耦合,使得能够直接连接至GPGPU2930的其他的实例。在至少一个实施例中,GPU链路2940耦合到专用GPU到GPU桥接器,其使得能够在GPGPU 2930的多个实例之间进行通信和同步。在至少一个实施例中,GPU链路2940与高速互连耦合,以向其他GPGPU或并行处理器发送和接收数据。在至少一个实施例中,GPGPU2930的多个实例位于单独的数据处理系统中,并经由可经由主机接口2932访问的网络设备进行通信。在至少一个实施例中,GPU链路2940可被配置为能够连接到主机处理器,附加或替代主机接口2932。在至少一个实施例中,GPGPU 2930可以配置为执行CUDA程序。
在至少一个实施例中,利用关于图29A-29B所示或描述的至少一个组件来实现结合图1-18描述的技术和/或功能。在至少一个实施例中,图形核心2900或通用图形处理单元("GPGPU")2930中的至少一个被用于执行异步存储器分配和/或异步存储器解除分配。在至少一个实施例中,图形核心2900或GPGPU 2930中的至少一个用于执行API,以使一个或更多个存储器位置被异步分配给一个或更多个处理器。在至少一个实施例中,图形核心2900或GPGPU 2930中的至少一个被用于执行API以使一个或更多个存储器位置被异步分配到一个或更多个处理器。在至少一个实施例中,图形核心2900或GPGPU 2930中的至少一个被用于执行API以使一个或更多个存储器位置被从一个或更多个处理器中异步地解除分配。在至少一个实施例中,图形核心2900或GPGPU 2930中的至少一个被用于执行关于示例计算机系统100、示例计算机系统200、示例计算机系统300、示例计算机系统400、示例过程500、示例过程600、示例过程700、示例过程800、示例数据流900、数据流1000的示例第一部分、数据流1100的示例第二部分、数据流1200的示例第三部分、示例过程1300、示例计算机系统1400、示例计算机系统1500、示例过程1600、示例计算机系统1700和/或示例过程1800描述的至少一个方面。
图30A示出了根据至少一个实施例的并行处理器3000。在至少一个实施例中,并行处理器3000的各种组件可以使用一个或更多个集成电路设备来实现,例如可编程处理器、专用集成电路(ASIC)或FPGA。
在至少一个实施例中,并行处理器3000包括并行处理单元3002。在至少一个实施例中,并行处理单元3002包括I/O单元3004,其使得能够与其他设备进行通信,包括并行处理单元3002的其他实例。在至少一个实施例中,I/O单元3004可以直接连接到其他设备。在至少一个实施例中,I/O单元3004通过使用集线器或交换机接口(例如,存储器集线器3005)与其他设备连接。在至少一个实施例中,存储器集线器3005与I/O单元3004之间的连接形成通信链路。在至少一个实施例中,I/O单元3004与主机接口3006和存储器交叉开关3016连接,其中主机接口3006接收用于执行处理操作的命令,而存储器交叉开关3016接收用于执行存储器操作的命令。
在至少一个实施例中,当主机接口3006经由I/O单元3004接收命令缓冲区时,主机接口3006可以引导工作操作以执行那些命令到前端3008。在至少一个实施例中,前端3008与调度器3010耦合,调度器3010配置成将命令或其他工作项分配给处理阵列3012。在至少一个实施例中,调度器3010确保在将任务分配给处理阵列3012之前,处理阵列3012被正确地配置并且处于有效状态。在至少一个实施例中,调度器3010通过在微控制器上执行的固件逻辑来实现。在至少一个实施例中,微控制器实现的调度器3010可配置成以粗粒度和细粒度执行复杂的调度和工作分配操作,从而实现对在处理阵列3012上执行的线程的快速抢占和环境切换。在至少一个实施例中,主机软件可以证明用于通过多个图形处理门铃之一在处理阵列3012上进行调度的工作负载。在至少一个实施例中,工作负载然后可以由包括调度器3010的微控制器内的调度器3010逻辑在处理阵列3012上自动分配。
在至少一个实施例中,处理阵列3012可以包括多达“N”个处理集群(例如,集群3014A、集群3014B到集群3014N)。在至少一个实施例中,处理阵列3012的每个集群3014A-3014N可以执行大量并发线程。在至少一个实施例中,调度器3010可以使用各种调度和/或工作分配算法将工作分配给处理阵列3012的集群3014A-3014N,其可以根据每种程序或计算类型产生的工作负载而变化。在至少一个实施例中,调度可以由调度器3010动态地处理,或者可以在配置为由处理阵列3012执行的程序逻辑的编译期间部分地由编译器逻辑来辅助。在至少一个实施例中,可将处理阵列3012的不同的集群3014A-3014N分配用于处理不同类型的程序或用于执行不同类型的计算。
在至少一个实施例中,处理阵列3012可以配置成执行各种类型的并行处理操作。在至少一个实施例中,处理阵列3012配置成执行通用并行计算操作。例如,在至少一个实施例中,处理阵列3012可以包括执行处理任务的逻辑,该处理任务包括对视频和/或音频数据的过滤,执行建模操作,包括物理操作以及执行数据转换。
在至少一个实施例中,处理阵列3012配置成执行并行图形处理操作。在至少一个实施例中,处理阵列3012可以包括附加逻辑以支持这种图形处理操作的执行,包括但不限于执行纹理操作的纹理采样逻辑,以及镶嵌逻辑和其他顶点处理逻辑。在至少一个实施例中,处理阵列3012可以配置成执行与图形处理有关的着色器程序,例如但不限于顶点着色器、曲面细分着色器、几何着色器和像素着色器。在至少一个实施例中,并行处理单元3002可以经由I/O单元3004从系统存储器传送数据以进行处理。在至少一个实施例中,在处理期间,可以在处理期间将传送的数据存储到片上存储器(例如,并行处理器存储器3022),然后将其写回到系统存储器。
在至少一个实施例中,当并行处理单元3002用于执行图处理时,调度器3010可以配置成将处理工作负载划分为近似相等大小的任务,以更好地将图形处理操作分配给处理阵列3012的多个集群3014A-3014N。在至少一个实施例中,处理阵列3012的部分可以配置成执行不同类型的处理。例如,在至少一个实施例中,第一部分可以配置成执行顶点着色和拓扑生成,第二部分可以配置成执行镶嵌和几何着色,并且第三部分可以配置成执行像素着色或其他屏幕空间操作,以生成用于显示的渲染图像。在至少一个实施例中,可以将由集群3014A-3014N中的一个或更多个产生的中间数据存储在缓冲区中,以允许在集群3014A-3014N之间传输中间数据以进行进一步处理。
在至少一个实施例中,处理阵列3012可以经由调度器3010接收要执行的处理任务,该调度器3010从前端3008接收定义处理任务的命令。在至少一个实施例中,处理任务可以包括要被处理的数据的索引,例如可以包括表面(补丁)数据、原始数据、顶点数据和/或像素数据,以及状态参数和定义如何处理数据的命令(例如,要执行什么程序)。在至少一个实施例中,调度器3010可以配置成获取与任务相对应的索引,或者可以从前端3008接收索引。在至少一个实施例中,前端3008可以配置成确保在启动由传入命令缓冲区(例如,批缓冲区(batch-buffer)、推送缓冲区等)指定的工作负载之前,处理阵列3012配置成有效状态。
在至少一个实施例中,并行处理单元3002的一个或更多个实例中的每一个可以与并行处理器存储器3022耦合。在至少一个实施例中,可以经由存储器交叉开关3016访问并行处理器存储器3022,所述存储器交叉开关3016可以接收来自处理阵列3012以及I/O单元3004的存储器请求。在至少一个实施例中,存储器交叉开关3016可以经由存储器接口3018访问并行处理器存储器3022。在至少一个实施例中,存储器接口3018可以包括多个分区单元(例如,分区单元3020A、分区单元3020B到分区单元3020N),其可各自耦合至并行处理器存储器3022的一部分(例如,存储器单元)。在至少一个实施例中,多个分区单元3020A-3020N为配置为等于存储器单元的数量,使得第一分区单元3020A具有对应的第一存储器单元3024A,第二分区单元3020B具有对应的存储器单元3024B,第N分区单元3020N具有对应的第N存储器单元3024N。在至少一个实施例中,分区单元3020A-3020N的数量可以不等于存储器设备的数量。
在至少一个实施例中,存储器单元3024A-3024N可以包括各种类型的存储器设备,包括动态随机存取存储器(DRAM)或图形随机存取存储器,例如同步图形随机存取存储器(SGRAM),包括图形双倍数据速率(GDDR)存储器。在至少一个实施例中,存储器单元3024A-3024N还可包括3D堆叠存储器,包括但不限于高带宽存储器(“HBM”)。在至少一个实施例中,可以跨存储器单元3024A-3024N来存储诸如帧缓冲区或纹理映射的渲染目标,从而允许分区单元3020A-3020N并行地写入每个渲染目标的部分,以有效地使用并行处理器存储器3022的可用带宽。在至少一个实施例中,可以排除并行处理器存储器3022的本地实例,以有利于利用系统存储器与本地高速缓存存储器结合的统一存储器设计。
在至少一个实施例中,处理阵列3012的集群3014A-3014N中的任何一个都可以处理将被写入并行处理器存储器3022内的任何存储器单元3024A-3024N中的数据。在至少一个实施例中,存储器交叉开关3016可以配置为将每个集群3014A-3014N的输出传输到任何分区单元3020A-3020N或另一个集群3014A-3014N,集群3014A-3014N可以对输出执行其他处理操作。在至少一个实施例中,每个集群3014A-3014N可以通过存储器交叉开关3016与存储器接口3018通信,以从各种外部存储设备读取或写入各种外部存储设备。在至少一个实施例中,存储器交叉开关3016具有到存储器接口3018的连接以与I/O单元3004通信,以及到并行处理器存储器3022的本地实例的连接,从而使不同处理集群3014A-3014N内的处理单元与系统存储器或不是并行处理单元3002本地的其他存储器进行通信。在至少一个实施例中,存储器交叉开关3016可以使用虚拟通道来分离集群3014A-3014N和分区单元3020A-3020N之间的业务流。
在至少一个实施例中,可以在单个插入卡上提供并行处理单元3002的多个实例,或者可以将多个插入卡互连。在至少一个实施例中,并行处理单元3002的不同实例可以配置成相互操作,即使不同实例具有不同数量的处理核心,不同数量的本地并行处理器存储器和/或其他配置差异。例如,在至少一个实施例中,并行处理单元3002的一些实例可以包括相对于其他实例而言更高精度的浮点单元。在至少一个实施例中,结合并行处理单元3002或并行处理器3000的一个或更多个实例的系统可以以各种配置和形式因素来实现,包括但不限于台式机、膝上型计算机或手持式个人计算机、服务器、工作站、游戏机和/或嵌入式系统。
图30B示出了根据至少一个实施例的处理集群3094。在至少一个实施例中,处理集群3094被包括在并行处理单元内。在至少一个实施例中,处理集群3094是图30的处理集群3014A-3014N之一的实例。在至少一个实施例中,处理集群3094可以配置成并行执行许多线程,其中术语“线程”是指在特定的一组输入数据上执行的特定程序的实例。在至少一个实施例中,单指令多数据(SIMD)指令发布技术用于支持大量线程的并行执行而无需提供多个独立的指令单元。在至少一个实施例中,使用单指令多线程(SIMT)技术来支持并行执行大量一般同步的线程,这使用了公共指令单元,该公共指令单元配置成向每个处理集群3094内的一组处理引擎发出指令。
在至少一个实施例中,可以通过将处理任务分配给SIMT并行处理器的管线管理器3032来控制处理集群3094的操作。在至少一个实施例中,管线管理器3032从图30的调度器3010接收指令,通过图形多处理器3034和/或纹理单元3036管理这些指令的执行。在至少一个实施例中,图形多处理器3034是SIMT并行处理器的示例性实例。然而,在至少一个实施例中,处理集群3094内可以包括不同架构的各种类型的SIMT并行处理器。在至少一个实施例中,在处理集群3094内可以包括图形多处理器3034的一个或更多个实例。在至少一个实施例中,图形多处理器3034可以处理数据,并且数据交叉开关3040可以用于将处理后的数据分发到多个可能的目的(包括其他着色器单元)地之一。在至少一个实施例中,管线管理器3032可以通过指定要经由数据交叉开关3040分配的处理后的数据的目的地来促进处理后的数据的分配。
在至少一个实施例中,处理集群3094内的每个图形多处理器3034可以包括相同的一组功能执行逻辑(例如,算术逻辑单元、加载存储单元(“LSU”)等)。在至少一个实施例中,可以以管线方式配置功能执行逻辑,其中可以在先前的指令完成之前发出新的指令。在至少一个实施例中,功能执行逻辑支持多种运算,包括整数和浮点算术、比较操作、布尔运算、移位和各种代数函数的计算。在至少一个实施例中,可以利用相同的功能单元硬件来执行不同的操作,并且可以存在功能单元的任何组合。
在至少一个实施例中,传送到处理集群3094的指令构成线程。在至少一个实施例中,跨一组并行处理引擎执行的一组线程是线程组。在至少一个实施例中,线程组在不同的输入数据上执行程序。在至少一个实施例中,线程组内的每个线程可被分配给图形多处理器3034内的不同处理引擎。在至少一个实施例中,线程组可包括比图形多处理器3034内的多个处理引擎更少的线程。在至少一个实施例中,当线程组包括的线程数少于处理引擎的数量时,一个或更多个处理引擎在正在处理该线程组的循环期间可能是空闲的。在至少一个实施例中,线程组还可以包括比图形多处理器3034内的多个处理引擎更多的线程。在至少一个实施例中,当线程组包括比图形多处理器3034内的处理引擎的数量更多的线程时,可以在连续的时钟周期内执行处理。在至少一个实施例中,可以在图形多处理器3034上同时执行多个线程组。
在至少一个实施例中,图形多处理器3034包括内部高速缓存存储器,以执行加载和存储操作。在至少一个实施例中,图形多处理器3034可以放弃内部高速缓存并使用处理集群3094内的高速缓存存储器(例如,L1高速缓存3048)。在至少一个实施例中,每个图形多处理器3034还可以访问分区单元(例如,图30A的分区单元3020A-3020N)内的L2高速缓存,这些分区单元在所有处理集群3094之间共享并且可以用于在线程之间传输数据。在至少一个实施例中,图形多处理器3034还可以访问片外全局存储器,其可以包括本地并行处理器存储器和/或系统存储器中的一个或更多个。在至少一个实施例中,并行处理单元3002外部的任何存储器都可以用作全局存储器。在至少一个实施例中,处理集群3094包括图形多处理器3034的多个实例,它们可以共享可以存储在L1高速缓存3048中的公共指令和数据。
在至少一个实施例中,每个处理集群3094可以包括配置成将虚拟地址映射为物理地址的MMU 3045。在至少一个实施例中,MMU 3045的一个或更多个实例可以驻留在图30的存储器接口3018内。在至少一个实施例中,MMU 3045包括一组页表条目(PTE),其用于将虚拟地址映射到图块(谈论有关图块的更多信息)的物理地址以及可选地映射到高速缓存行索引。在至少一个实施例中,MMU 3045可以包括地址转换后备缓冲区(TLB)或可以驻留在图形多处理器3034或L1高速缓存3048或处理集群3094内的高速缓存。在至少一个实施例中,处理物理地址以分配表面数据访问局部性,以便在分区单元之间进行有效的请求交织。在至少一个实施例中,高速缓存行索引可以用于确定对高速缓存线的请求是命中还是未命中。
在至少一个实施例中,可以配置处理集群3094,使得每个图形多处理器3034耦合到纹理单元3036,以执行纹理映射操作,例如,可以涉及确定纹理样本位置、读取纹理数据以及过滤纹理数据。在至少一个实施例中,根据需要从内部纹理L1高速缓存(未示出)或从图形多处理器3034内的L1高速缓存中读取纹理数据,并从L2高速缓存、本地并行处理器存储器或系统存储器中获取纹理数据。在至少一个实施例中,每个图形多处理器3034将处理后的任务输出到数据交叉开关3040,以将处理后的任务提供给另一处理集群3094以进行进一步处理或将处理后的任务存储在L2高速缓存、本地并行处理器存储器、或经由存储器交叉开关3016的系统存储器中。在至少一个实施例中,光栅前操作单元(preROP)3042配置成从图形多处理器3034接收数据,将数据引导至ROP单元,该ROP单元可以与本文所述的分区单元(例如,图30的分区单元3020A-3020N)一起定位。在至少一个实施例中,PreROP 3042单元可以执行用于颜色混合的优化、组织像素颜色数据以及执行地址转换。
图30C示出了根据至少一个实施例的图形多处理器3096。在至少一个实施例中,图形多处理器3096是图30B的图形多处理器3034。在至少一个实施例中,图形多处理器3096与处理集群3094的管线管理器3032耦合。在至少一个实施例中,图形多处理器3096具有执行管线,该执行管线包括但不限于指令高速缓存3052、指令单元3054、地址映射单元3056、寄存器文件3058、一个或更多个GPGPU核心3062和一个或更多个LSU3066。GPGPU核心3062和LSU 3066与高速缓存存储器3072和共享存储器3070通过存储器和高速缓存互连3068耦合。
在至少一个实施例中,指令高速缓存3052从管线管理器3032接收要执行的指令流。在至少一个实施例中,将指令高速缓存在指令高速缓存3052中并将其分派以供指令单元3054执行。在一个实施例中,指令单元3054可以分派指令作为线程组(例如,线程束),将线程组的每个线程分配给GPGPU核心3062内的不同执行单元。在至少一个实施例中,指令可以通过在统一地址空间内指定地址来访问任何本地、共享或全局地址空间。在至少一个实施例中,地址映射单元3056可以用于将统一地址空间中的地址转换成可以由LSU 3066访问的不同的存储器地址。
在至少一个实施例中,寄存器文件3058为图形多处理器3096的功能单元提供了一组寄存器。在至少一个实施例中,寄存器文件3058为连接到图形多处理器3096的功能单元(例如,GPGPU核心3062、LSU 3066)的数据路径的操作数提供了临时存储。在至少一个实施例中,在每个功能单元之间划分寄存器文件3058,使得为每个功能单元分配寄存器文件3058的专用部分。在至少一个实施例中,寄存器文件3058在图形多处理器3096正在执行的不同线程组之间划分。
在至少一个实施例中,GPGPU核心3062可以各自包括用于执行图多处理器3096的指令的FPU和/或ALU。GPGPU核心3062在架构上可以相似或架构可能有所不同。在至少一个实施例中,GPGPU核心3062的第一部分包括单精度FPU和整数ALU,而GPGPU核心的第二部分包括双精度FPU。在至少一个实施例中,FPU可以实现用于浮点算法的IEEE 754-3008标准或启用可变精度浮点算法。在至少一个实施例中,图形多处理器3096可以另外包括一个或更多个固定功能或特殊功能单元,以执行特定功能,诸如复制矩形或像素混合操作。在至少一个实施例中,GPGPU核心3062中的一个或更多个也可以包括固定或特殊功能逻辑。
在至少一个实施例中,GPGPU核心3062包括能够对多组数据执行单个指令的SIMD逻辑。在至少一个实施例中,GPGPU核心3062可以物理地执行SIMD4、SIMD8和SIMD16指令,并且在逻辑上执行SIMD1、SIMD2和SIMD32指令。在至少一个实施例中,用于GPGPU核心3062的SIMD指令可以在编译时由着色器编译器生成,或者在执行针对单程序多数据(SPMD)或SIMT架构编写和编译的程序时自动生成。在至少一个实施例中,可以通过单个SIMD指令来执行为SIMT执行模型配置的程序的多个线程。例如,在至少一个实施例中,可以通过单个SIMD8逻辑单元并行执行执行相同或相似操作的八个SIMT线程。
在至少一个实施例中,存储器和高速缓存互连3068是将图形多处理器3096的每个功能单元连接到寄存器文件3058和共享存储器3070的互连网络。在至少一个实施例中,存储器和高速缓存互连3068是交叉开关互连,其允许LSU 3066在共享存储器3070和寄存器文件3058之间实现加载和存储操作。在至少一个实施例中,寄存器文件3058可以以与GPGPU核心3062相同的频率操作,从而在GPGPU核心3062和寄存器文件3058之间进行数据传输的延迟非常低。在至少一个实施例中,共享存储器3070可以用于启用在图形多处理器3096内的功能单元上执行的线程之间的通信。在至少一个实施例中,高速缓存存储器3072可以用作例如数据高速缓存,以高速缓存在功能单元和纹理单元3036之间通信的纹理数据。在至少一个实施例中,共享存储器3070也可以用作程序管理的高速缓存。在至少一个实施例中,除了存储在高速缓存存储器3072中的自动高速缓存的数据之外,在GPGPU核心3062上执行的线程还可以以编程方式将数据存储在共享存储器中。
在至少一个实施例中,如本文所述的并行处理器或GPGPU通信地耦合到主机/处理器核心,以加速图形操作、机器学习操作、图案分析操作以及各种通用GPU(GPGPU)功能。在至少一个实施例中,GPU可以通过总线或其他互连(例如,诸如PCIe或NVLink的高速互连)通信地耦合到主机处理器/核心。在至少一个实施例中,GPU可以与核心集成在相同的封装或芯片上,并通过内部处理器总线/互连(即,封装或芯片的内部)通信地耦合到核心。在至少一个实施例中,不管GPU连接的方式如何,处理器核心可以以WD包含的命令/指令序列的形式向GPU分配工作。在至少一个实施例中,GPU然后使用专用电路/逻辑来有效地处理这些命令/指令。
在至少一个实施例中,利用关于图30A-30C所示或描述的至少一个组件来实现结合图1-18描述的技术和/或功能。在至少一个实施例中,并行处理器3000、图形多处理器3034或图形多处理器3096中的至少一个被用于执行异步存储器分配和/或异步存储器解除分配。在至少一个实施例中,并行处理器3000、图形多处理器3034或图形多处理器3096中的至少一个用于执行API,以使一个或更多个存储器位置被异步分配给一个或更多个处理器。在至少一个实施例中,并行处理器3000、图形多处理器3034或图形多处理器3096中的至少一个被用于执行API以使一个或更多个存储器位置被异步分配到一个或更多个处理器。在至少一个实施例中,并行处理器3000、图形多处理器3034或图形多处理器3096中的至少一个被用于执行API以使一个或更多个存储器位置被从一个或更多个处理器中异步地解除分配。在至少一个实施例中,并行处理器3000、图形多处理器3034或图形多处理器3096中的至少一个被用于执行关于示例计算机系统100、示例计算机系统200、示例计算机系统300、示例计算机系统400、示例过程500、示例过程600、示例过程700、示例过程800、示例数据流900、数据流1000的示例第一部分、数据流1100的示例第二部分、数据流1200的示例第三部分、示例过程1300、示例计算机系统1400、示例计算机系统1500、示例过程1600、示例计算机系统1700和/或示例过程1800描述的至少一个方面。
图31示出了根据至少一个实施例的图形处理器3100。在至少一个实施例中,图形处理器3100包括环形互连3102、管线前端3104、媒体引擎3137和图形核心3180A-3180N。在至少一个实施例中,环形互连3102将图形处理器3100耦合到其他处理单元,包括其他图形处理器或一个或更多个通用处理器核心。在至少一个实施例中,图形处理器3100是集成在多核心处理系统内的许多处理器之一。
在至少一个实施例中,图形处理器3100经由环形互连3102接收多批命令。在至少一个实施例中,输入命令由管线前端3104中的命令流转化器3103解释。在至少一个实施例中,图形处理器3100包括可缩放执行逻辑,以经由图形核心3180A-3180N执行3D几何处理和媒体处理。在至少一个实施例中,对于3D几何处理命令,命令流转化器3103将命令提供给几何管线3136。在至少一个实施例中,对于至少一些媒体处理命令,命令流转化器3103将命令提供给视频前端3134,其与媒体引擎3137耦合。在至少一个实施例中,媒体引擎3137包括用于视频和图像后处理的视频质量引擎(VQE)3130,以及用于提供硬件加速媒体数据编码和解码的多格式编码/解码(MFX)3133引擎。在至少一个实施例中,几何管线3136和媒体引擎3137各自生成用于由至少一个图形核心3180A提供的线程执行资源的执行线程。
在至少一个实施例中,图形处理器3100包括以模块化图形核心3180A-3180N(有时称为核心切片)为特征的可缩放线程执行资源,每个模块核心具有多个子核心3150A-550N、3160A-3160N(有时称为核心子切片)。在至少一个实施例中,图形处理器3100可以具有任意数量的图形核心3180A至3180N。在至少一个实施例中,图形处理器3100包括具有至少第一子核心3150A和第二子核心3160A的图形核心3180A。在至少一个实施例中,图形处理器3100是具有单个子核心(例如3150A)的低功率处理器。在至少一个实施例中,图形处理器3100包括多个图形核心3180A-3180N,每个图形核心包括一组第一子核心3150A-3150N和一组第二子核心3160A-3160N。在至少一个实施例中,第一子核心3150A-3150N中的每个子核心至少包括第一组执行单元(EU)3152A-3152N和媒体/纹理采样器3154A-3154N。在至少一个实施例中,第二子核心3160A-3160N中的每个子核心至少包括第二组执行单元3162A-3162N和采样器3164A-3164N。在至少一个实施例中,每个子核心3150A-3150N、3160A-3160N共享一组共享资源3170A-3170N。在至少一个实施例中,共享资源3170包括共享高速缓冲存储器和像素操作逻辑。
在至少一个实施例中,利用关于图31所示或描述的至少一个组件来实现结合图1-18描述的技术和/或功能。在至少一个实施例中,图形处理器3100被用于执行异步存储器分配和/或异步存储器解除分配。在至少一个实施例中,图形处理器3100用于执行API,以使一个或更多个存储器位置被异步分配给一个或更多个处理器。在至少一个实施例中,图形处理器3100被用于执行API以使一个或更多个存储器位置被异步分配到一个或更多个处理器。在至少一个实施例中,图形处理器3100被用于执行API以使一个或更多个存储器位置被从一个或更多个处理器中异步地解除分配。在至少一个实施例中,图形处理器3100被用于执行关于示例计算机系统100、示例计算机系统200、示例计算机系统300、示例计算机系统400、示例过程500、示例过程600、示例过程700、示例过程800、示例数据流900、数据流1000的示例第一部分、数据流1100的示例第二部分、数据流1200的示例第三部分、示例过程1300、示例计算机系统1400、示例计算机系统1500、示例过程1600、示例计算机系统1700和/或示例过程1800描述的至少一个方面。
图32示出了根据至少一个实施例的处理器3200。在至少一个实施例中,处理器3200可以包括但不限于执行指令的逻辑电路。在至少一个实施例中,处理器3200可以执行指令,包括x86指令、ARM指令、用于ASIC的专用指令等。在至少一个实施例中,处理器3210可以包括用于存储封装数据的寄存器,例如作为加利福尼亚州圣克拉拉市英特尔公司采用MMX技术启用的微处理器中的64位宽MMXTM寄存器。在至少一个实施例中,整数和浮点数形式可用的MMX寄存器可以与封装的数据元素一起运行,所述封装的数据元素伴随SIMD和流式SIMD扩展(“SSE”)指令。在至少一个实施例中,与SSE2、SSE3、SSE4、AVX或更高版本(一般称为“SSEx”)技术有关的128位宽XMM寄存器可以保存此类封装数据操作数。在至少一个实施例中,处理器3210可以执行指令以加速CUAD程序。
在至少一个实施例中,处理器3200包括有序前端(“前端”)3201,以提取要执行的指令并准备稍后在处理器管线中使用的指令。在至少一个实施例中,前端3201可以包括几个单元。在至少一个实施例中,指令预取器3226从存储器中获取指令并将指令提供给指令解码器3228,指令解码器3228又对指令进行解码或解释。例如,在至少一个实施例中,指令解码器3228将接收到的指令解码用于执行的所谓的“微指令”或“微操作”(也称为“微操作”或“微指令”)的一个或更多个操作。在至少一个实施例中,指令解码器3228将指令解析为操作码以及相应的数据和控制字段,其可以由微架构用来使用以执行操作。在至少一个实施例中,跟踪高速缓存3230可以将解码的微指令组装成微指令队列3234中的程序排序的序列或追踪以供执行。在至少一个实施例中,当追踪高速缓存3230遇到复杂指令时,微码ROM3232提供完成操作所需的微指令。
在至少一个实施例中,可以将一些指令转换成单个微操作,而另一些指令则需要几个微操作来完成全部操作。在至少一个实施例中,如果需要多于四个的微指令来完成一条指令,则指令解码器3228可以访问微码ROM 3232以执行指令。在至少一个实施例中,可以将指令解码为少量的微指令以在指令解码器3228处进行处理。在至少一个实施例中,如果需要多个微指令完成操作,则可以将指令存储在微码ROM 3232中。在至少一个实施例中,追踪高速缓存器3230参考入口点可编程逻辑阵列(“PLA”)以确定正确的微指令指针,用于根据至少一个实施例从微码ROM 3232读取微码序列以完成一个或更多个指令。在至少一个实施例中,在微码ROM3232完成对指令的微操作排序之后,机器的前端3201可以恢复从追踪高速缓存3230获取微操作。
在至少一个实施例中,乱序执行引擎(“乱序引擎”)3203可以准备用于执行的指令。在至少一个实施例中,乱序执行逻辑具有多个缓冲区,以使指令流平滑并重新排序,以在指令沿管线下降并被调度执行时优化性能。乱序执行引擎3203包括但不限于分配器/寄存器重命名器3240、存储器微指令队列3242、整数/浮点微指令队列3244、存储器调度器3246、快速调度器3202、慢速/通用浮点调度器(“慢速/通用FP调度器”)3204和简单浮点调度器(“简单FP调度器”)3206。在至少一个实施例中,快速调度器3202、慢速/通用浮点调度器3204和简单浮点调度器3206也统称为“微指令调度器3202、3204、3206”。分配器/寄存器重命名器3240分配每个微指令按顺序执行所需要的机器缓冲区和资源。在至少一个实施例中,分配器/寄存器重命名器3240将逻辑寄存器重命名为寄存器文件中的条目。在至少一个实施例中,分配器/寄存器重命名器3240还为两个微指令队列之一中的每个微指令分配条目,存储器微指令队列3242用于存储器操作和整数/浮点微指令队列3244用于非存储器操作,在存储器调度器3246和微指令调度器3202、3204、3206的前面。在至少一个实施例中,微指令调度器3202、3204、3206基于它们的从属输入寄存器操作数源的就绪性和需要完成的执行资源微指令的可用性来确定何时准备好执行微指令。在至少一个实施例中,至少一个实施例的快速调度器3202可以在主时钟周期的每个一半上调度,而慢速/通用浮点调度器3204和简单浮点调度器3206可以在每个主处理器时钟周期调度一次。在至少一个实施例中,微指令调度器3202、3204、3206对调度端口进行仲裁,以调度用于执行的微指令。
在至少一个实施例中,执行块3211包括但不限于整数寄存器文件/支路网络3208、浮点寄存器文件/支路网络(“FP寄存器文件/支路网络”)3210、地址生成单元(“AGU”)3212和3214、快速算术逻辑单元(“快速ALU”)3216和3218、慢速ALU3220、浮点ALU(“FP”)3222和浮点移动单元(“FP移动”)3224。在至少一个实施例中,整数寄存器文件/支路网络3208和浮点寄存器文件/旁路网络3210在本文中也称为“寄存器文件3208、3210”。在至少一个实施例中,AGUS 3212和3214、快速ALU 3216和3218、慢速ALU 3220、浮点ALU 3222和浮点移动单元3224在本文中也称为“执行单元3212、3214、3216、3218、3220、3222和3224”。在至少一个实施例中,执行框可以包括但不限于任意数量(包括零)和类型的寄存器文件、支路网络、地址生成单元和执行单元(以任何组合)。
在至少一个实施例中,寄存器文件3208、3210可以布置在微指令调度器3202、3204、3206与执行单元3212、3214、3216、3218、3220、3222和3224之间。在至少一个实施例中,整数寄存器文件/支路网络3208执行整数运算。在至少一个实施例中,浮点寄存器文件/支路网络3210执行浮点操作。在至少一个实施例中,寄存器文件3208、3210中的每一个可以包括但不限于支路网络,该支路网络可以绕过或转发尚未写入寄存器文件中的刚刚完成的结果到新的从属对象。在至少一个实施例中,寄存器文件3208、3210可以彼此通信数据。在至少一个实施例中,整数寄存器文件/支路网络3208可以包括但不限于两个单独的寄存器文件、一个寄存器文件用于低阶32位数据,第二寄存器文件用于高阶32位数据。在至少一个实施例中,浮点寄存器文件/支路网络3210可以包括但不限于128位宽的条目,因为浮点指令通常具有宽度为64至128位的操作数。
在至少一个实施例中,执行单元3212、3214、3216、3218、3220、3222、3224可以执行指令。在至少一个实施例中,寄存器文件3208、3210存储微指令需要执行的整数和浮点数据操作数值。在至少一个实施例中,处理器3200可以包括但不限于任意数量的执行单元3212、3214、3216、3218、3220、3222、3224及其组合。在至少一个实施例中,浮点ALU 3222和浮点移动单元3224,可以执行浮点、MMX、SIMD、AVX和SSE或其他操作,包括专门的机器学习指令。在至少一个实施例中,浮点ALU 3222可以包括但不限于64位乘64位浮点除法器,以执行除法、平方根和余数微操作。在至少一个实施例中,可以用浮点硬件来处理涉及浮点值的指令。在至少一个实施例中,可以将ALU操作传递给快速ALU 3216、3218。在至少一个实施例中,快速ALUS 3216、3218可以以半个时钟周期的有效延迟执行快速操作。在至少一个实施例中,大多数复杂的整数运算进入慢速ALU 3220,因为慢速ALU 3220可以包括但不限于用于长延迟类型操作的整数执行硬件,例如乘法器、移位、标志逻辑和分支处理。在至少一个实施例中,存储器加载/存储操作可以由AGUS 3212、3214执行。在至少一个实施例中,快速ALU 3216、快速ALU 3218和慢速ALU 3220可以对64位数据操作数执行整数运算。在至少一个实施例中,可以实现快速ALU3216、快速ALU 3218和慢速ALU 3220以支持包括16、32、128、256等的各种数据位大小。在至少一个实施例中,浮点ALU 3222和浮点移动单元3224可以实现为支持具有各种宽度的位的一定范围的操作数。在至少一个实施例中,浮点ALU 3222和浮点移动单元3224可以结合SIMD和多媒体指令对128位宽封装数据操作数进行操作。
在至少一个实施例中,微指令调度器3202、3204、3206在父加载完成执行之前调度从属操作。在至少一个实施例中,由于可以在处理器3200中推测性地调度和执行微指令,处理器3200还可以包括用于处理存储器未命中的逻辑。在至少一个实施例中,如果数据高速缓存中的数据加载未命中,则可能存在在管线中正在运行的从属操作,其使调度器暂时没有正确的数据。在至少一个实施例中,一种重放机制追踪踪并重新执行使用不正确数据的指令。在至少一个实施例中,可能需要重放从属操作并且可以允许完成独立操作。在至少一个实施例中,处理器的至少一个实施例的调度器和重放机制也可以设计为捕获用于文本串比较操作的指令序列。
在至少一个实施例中,术语“寄存器”可以指代可以用作识别操作数的指令的一部分的机载处理器存储位置。在至少一个实施例中,寄存器可以是那些可以从处理器外部使用的寄存器(从程序员的角度来看)。在至少一个实施例中,寄存器可能不限于特定类型的电路。相反,在至少一个实施例中,寄存器可以存储数据、提供数据并执行本文描述的功能。在至少一个实施例中,本文描述的寄存器可以通过处理器内的电路使用多种不同技术来实现,例如专用物理寄存器、使用寄存器重命名动态分配的物理寄存器、专用和动态分配的物理寄存器的组合等。在至少一个实施例中,整数寄存器存储32位整数数据。至少一个实施例的寄存器文件还包含八个用于封装数据的多媒体SIMD寄存器。
在至少一个实施例中,利用关于图32所示或描述的至少一个组件来实现结合图1-18描述的技术和/或功能。在至少一个实施例中,处理器3200被用于执行异步存储器分配和/或异步存储器解除分配。在至少一个实施例中,处理器3200用于执行API,以使一个或更多个存储器位置被异步分配给一个或更多个处理器。在至少一个实施例中,处理器3200被用于执行API以使一个或更多个存储器位置被异步分配到一个或更多个处理器。在至少一个实施例中,处理器3200被用于执行API以使一个或更多个存储器位置被从一个或更多个处理器中异步地解除分配。在至少一个实施例中,处理器3200被用于执行关于示例计算机系统100、示例计算机系统200、示例计算机系统300、示例计算机系统400、示例过程500、示例过程600、示例过程700、示例过程800、示例数据流900、数据流1000的示例第一部分、数据流1100的示例第二部分、数据流1200的示例第三部分、示例过程1300、示例计算机系统1400、示例计算机系统1500、示例过程1600、示例计算机系统1700和/或示例过程1800描述的至少一个方面。
图33示出了根据至少一个实施例的处理器3300。在至少一个实施例中,处理器3300包括但不限于一个或更多个处理器核心(“核心”)3302A-3302N、集成存储器控制器3314和集成图形处理器3308。在至少一个实施例中,处理器3300可以包括直至并包括由虚线框表示的附加处理器核心3302N的附加核心。在至少一个实施例中,每个处理器核心3302A-3302N包括一个或更多个内部高速缓存单元3304A-3304N。在至少一个实施例中,每个处理器核心还可以访问一个或更多个共享高速缓存的单元3306。
在至少一个实施例中,内部高速缓存单元3304A-3304N和共享高速缓存单元3306表示处理器3300内的高速缓存存储器层次结构。在至少一个实施例中,高速缓存存储器单元3304A-3304N可以包括每个处理器核心内的至少一级指令和数据以及共享中级缓存中的一级或更多级缓存,例如L2、L3、4级(L4)或其他级别的缓存,其中在外部存储器之前将最高级别的缓存归类为LLC。在至少一个实施例中,高速缓存一致性逻辑维持各种高速缓存单元3306和3304A-3304N之间的一致性。
在至少一个实施例中,处理器3300还可包括一组一个或更多个总线控制器单元3316和系统代理核心3310。在至少一个实施例中,一个或更多个总线控制器单元3316管理一组外围总线,例如一个或更多个PCI或PCI Express总线。在至少一个实施例中,系统代理核心3310为各种处理器组件提供管理功能。在至少一个实施例中,系统代理核心3310包括一个或更多个集成存储器控制器3314,以管理对各种外部存储器设备(未示出)的访问。
在至少一个实施例中,一个或更多个处理器核心3302A-3302N包括对多线程同时进行的支持。在至少一个实施例中,系统代理核心3310包括用于在多线程处理期间协调和操作处理器核心3302A-3302N的组件。在至少一个实施例中,系统代理核心3310可以另外包括电源控制单元(PCU),该电源控制单元包括逻辑和组件以调节处理器核心3302A-3302N和图形处理器3308的一个或更多个电源状态。
在至少一个实施例中,处理器3300另外包括图形处理器3308以执行图处理操作。在至少一个实施例中,图形处理器3308与共享高速缓存单元3306和包括一个或更多个集成存储器控制器3314的系统代理核心3310耦合。在至少一个实施例中,系统代理核心3310还包括用于驱动图形处理器输出到一个或更多个耦合的显示器的显示器控制器3311。在至少一个实施例中,显示器控制器3311也可以是经由至少一个互连与图形处理器3308耦合的独立模块,或者可以集成在图形处理器3308内。
在至少一个实施例中,基于环的互连单元3312用于耦合处理器3300的内部组件。在至少一个实施例中,可以使用替代性互连单元,例如点对点互连、交换互连或其他技术。在至少一个实施例中,图形处理器3308经由I/O链路3313与环形互连3312耦合。
在至少一个实施例中,I/O链路3313代表多种I/O互连中的至少一种,包括促进各种处理器组件与高性能嵌入式存储器模块3318(例如eDRAM模块)之间的通信的封装I/O互连。在至少一个实施例中,处理器核心3302A-3302N和图形处理器3308中的每一个使用嵌入式存储器模块3318作为共享的LLC。
在至少一个实施例中,处理器核心3302A-3302N是执行公共指令集架构的同质核心。在至少一个实施例中,处理器核心3302A-3302N在ISA方面是异构的,其中一个或更多个处理器核心3302A-3302N执行公共指令集,而一个或更多个其他处理器核心3302A-3302N执行公共指令集或不同指令集的子集。在至少一个实施例中,就微架构而言,处理器核心3302A-3302N是异构的,其中具有相对较高功耗的一个或更多个核心与具有较低功耗的一个或更多个功率核心耦合。在至少一个实施例中,处理器3300可以实现在一个或更多个芯片上或被实现为SoC集成电路。
在至少一个实施例中,利用关于图33所示或描述的至少一个组件来实现结合图1-18描述的技术和/或功能。在至少一个实施例中,处理器3300或图形处理器3308中的至少一个被用于执行异步存储器分配和/或异步存储器解除分配。在至少一个实施例中,处理器3300或图形处理器3308中的至少一个用于执行API,以使一个或更多个存储器位置被异步分配给一个或更多个处理器。在至少一个实施例中,处理器3300或图形处理器3308中的至少一个被用于执行API以使一个或更多个存储器位置被异步分配到一个或更多个处理器。在至少一个实施例中,处理器3300或图形处理器3308中的至少一个被用于执行API以使一个或更多个存储器位置被从一个或更多个处理器中异步地解除分配。在至少一个实施例中,处理器3300或图形处理器3308中的至少一个被用于执行关于示例计算机系统100、示例计算机系统200、示例计算机系统300、示例计算机系统400、示例过程500、示例过程600、示例过程700、示例过程800、示例数据流900、数据流1000的示例第一部分、数据流1100的示例第二部分、数据流1200的示例第三部分、示例过程1300、示例计算机系统1400、示例计算机系统1500、示例过程1600、示例计算机系统1700和/或示例过程1800描述的至少一个方面。
图34示出了根据所描述的至少一个实施例的图形处理器核心3400。在至少一个实施例中,图形处理器核心3400被包括在图形核心阵列内。在至少一个实施例中,图形处理器核心3400(有时称为核心切片)可以是模块化图形处理器内的一个或更多个图形核心。在至少一个实施例中,图形处理器核心3400是一个图形核心切片的示例,并且本文所述的图形处理器可以基于目标功率和性能包络线包括多个图形核心切片。在至少一个实施例中,每个图形核心3400可以包括与多个子核心3401A-3401F耦合的固定功能块3430,也称为子切片,其包括通用和固定功能逻辑的模块块。
在至少一个实施例中,固定功能块3430包括几何/固定功能管线3436,例如,在较低性能和/或较低功率的图形处理器实施方式中,该几何/固定功能管线3436可以由图形处理器3400中的所有子核心共享。在至少一个实施例中,几何/固定功能管线3436包括3D固定功能管线、视频前端单元,线程产生器和线程分派器以及管理统一返回缓冲区的统一返回缓冲区管理器。
在至少一个实施例中,固定功能块3430还包括图形SoC接口3437、图形微控制器3438和媒体管线3439。图形SoC接口3437提供了图形核心3400以及SoC集成电路系统中的其他处理器核心之间的接口。在至少一个实施例中,图形微控制器3438是可编程子处理器,其可配置为管理图形处理器3400的各种功能,包括线程分派、调度和抢占。在至少一个实施例中,媒体管线3439包括有助于对包括图像和视频数据的多媒体数据进行解码、编码、预处理和/或后处理的逻辑。在至少一个实施例中,媒体管线3439经由对子核心3401-3401F内的计算或采样逻辑的请求来实现媒体操作。
在至少一个实施例中,SoC接口3437使图形核心3400能够与通用应用处理器核心(例如,CPU)和/或SoC内的其他组件通信,包括存储器层次结构元素,诸如共享的LLC存储器、系统RAM和/或嵌入式片上或封装DRAM。在至少一个实施例中,SoC接口3437还可以使得能够与SoC内的固定功能设备(例如,相机成像管线)进行通信,并且使得能够使用和/或实现可以在图形核心3400和SoC内部的CPU之间共享的全局存储器原子。在至少一个实施例中,SoC接口3437还可以实现用于图形核心3400的电源管理控制,并且启用图形核心3400的时钟域与SoC内的其他时钟域之间的接口。在至少一个实施例中,SoC接口3437使得能够从命令流转化器和全局线程分派器接收命令缓冲区,其配置为向图形处理器内的一个或更多个图形核心中的每一个提供命令和指令。在至少一个实施例中,当要执行媒体操作时,可以将命令和指令分派给媒体管线3439,或者当要执行图处理操作时,可以将其分配给几何形状和固定功能管线(例如,几何形状和固定功能管线3436、几何形状和固定功能管线3414)。
在至少一个实施例中,图形微控制器3438可以配置为对图形核心3400执行各种调度和管理任务。在至少一个实施例中,图形微控制器3438可以在子核心3401A-3401F中的执行单元(EU)阵列3402A-3402F、3404A-3404F内的各种图形并行引擎上执行图和/或计算工作负载调度。在至少一个实施例中,在包括图形核心3400的SoC的CPU核心上执行的主机软件可以提交多个图形处理器门铃之一的工作负载,其调用适当的图形引擎上的调度操作。在至少一个实施例中,调度操作包括确定接下来要运行哪个工作负载、将工作负载提交给命令流转化器、抢先在引擎上运行的现有工作负载、监控工作负载的进度以及在工作负载完成时通知主机软件。在至少一个实施例中,图形微控制器3438还可以促进图形核心3400的低功率或空闲状态,从而为图形核心3400提供在图形核心3400内独立于操作系统和/或系统上的图形驱动器软件的跨低功率状态转换的保存和恢复寄存器的能力。
在至少一个实施例中,图形核心3400可以具有比所示的子核心3401A-3401F更多或更少的子核心,达N个模块化子核心。对于每组N个子核心,在至少一个实施例中,图形核心3400还可以包括共享功能逻辑3410、共享和/或高速缓存存储器3412、几何/固定功能管线3414以及附加的固定功能逻辑3416以加速各种图形和计算处理操作。在至少一个实施例中,共享功能逻辑3410可以包括可由图形核心3400内的每个N个子核心共享的逻辑单元(例如,采样器、数学和/或线程间通信逻辑)。共享和/或高速缓存存储器3412可以是图形核心3400内的N个子核心3401A-3401F的LLC,并且还可以用作可由多个子核心访问的共享存储器。在至少一个实施例中,可以包括几何/固定功能管线3414来代替固定功能块3430内的几何/固定功能管线3436,并且可以包括相同或相似的逻辑单元。
在至少一个实施例中,图形核心3400包括附加的固定功能逻辑3416,其可以包括供图形核心3400使用的各种固定功能加速逻辑。在至少一个实施例中,附加的固定功能逻辑3416包括用于仅位置着色中使用的附加的几何管线。在仅位置着色中,存在至少两个几何管线,而在几何/固定功能管线3416、3436内的完整几何管线和剔除管线中,其是可以包括在附加的固定功能逻辑3416中的附加几何管线。在至少一个实施例中,剔除管线是完整几何管线的修整版。在至少一个实施例中,完整管线和剔除管线可以执行应用程序的不同实例,每个实例具有单独的环境。在至少一个实施例中,仅位置着色可以隐藏被丢弃的三角形的长剔除运行,从而在某些情况下可以更早地完成着色。例如,在至少一个实施例中,附加固定功能逻辑3416中的剔除管线逻辑可以与主应用程序并行执行位置着色器,并且通常比完整管线更快地生成关键结果,因为剔除管线获取并遮蔽顶点的位置属性,无需执行光栅化和将像素渲染到帧缓冲区。在至少一个实施例中,剔除管线可以使用生成的临界结果来计算所有三角形的可见性信息,而与这些三角形是否被剔除无关。在至少一个实施例中,完整管线(在这种情况下可以称为重播管线)可以消耗可见性信息来跳过剔除的三角形以仅遮盖最终传递到光栅化阶段的可见三角形。
在至少一个实施例中,附加的固定功能逻辑3416还可包括通用目标处理加速逻辑,例如固定功能矩阵乘法逻辑,用于实现减速CUAD程序。
在至少一个实施例中,在每个图形子核心3401A-3401F内包括一组执行资源,其可用于响应于图形管线、媒体管线或着色器程序的请求来执行图、媒体和计算操作。在至少一个实施例中,图形子核心3401A-3401F包括多个EU阵列3402A-3402F、3404A-3404F,线程分派和线程间通信(“TD/IC”)逻辑3403A-3403F,3D(例如,纹理)采样器3405A-3405F,媒体采样器3406A-3406F,着色器处理器3407A-3407F和共享本地存储器(SLM)3408A-3408F。EU阵列3402A-3402F、3404A-3404F每个都包含多个执行单元,这些执行单元是GUGPU,能够为图形、媒体或计算操作提供服务,执行浮点和整数/定点逻辑运算,包括图形、媒体或计算着色器程序。在至少一个实施例中,TD/IC逻辑3403A-3403F为子核心内的执行单元执行本地线程分派和线程控制操作,并促进在子核心的执行单元上执行的线程之间的通信。在至少一个实施例中,3D采样器3405A-3405F可以将与纹理或其他3D图形相关的数据读取到存储器中。在至少一个实施例中,3D采样器可以基于与给定纹理相关联的配置的采样状态和纹理格式来不同地读取纹理数据。在至少一个实施例中,媒体采样器3406A-3406F可以基于与媒体数据相关联的类型和格式来执行类似的读取操作。在至少一个实施例中,每个图形子核心3401A-3401F可以可替代地包括统一的3D和媒体采样器。在至少一个实施例中,在每个子核心3401A-3401F内的执行单元上执行的线程可以利用每个子核心内的共享本地存储器3408A-3408F,以使在线程组内执行的线程能够使用片上存储器的公共池来执行。
在至少一个实施例中,利用关于图34所示或描述的至少一个组件来实现结合图1-18描述的技术和/或功能。在至少一个实施例中,图形处理器核心3400的至少一个元件被用于执行异步存储器分配和/或异步存储器解除分配。在至少一个实施例中,图形处理器核心3400的至少一个元件用于执行API,以使一个或更多个存储器位置被异步分配给一个或更多个处理器。在至少一个实施例中,图形处理器核心3400的至少一个元件被用于执行API以使一个或更多个存储器位置被异步分配到一个或更多个处理器。在至少一个实施例中,图形处理器核心3400的至少一个元件被用于执行API以使一个或更多个存储器位置被从一个或更多个处理器中异步地解除分配。在至少一个实施例中,图形处理器核心3400的至少一个元件被用于执行关于示例计算机系统100、示例计算机系统200、示例计算机系统300、示例计算机系统400、示例过程500、示例过程600、示例过程700、示例过程800、示例数据流900、数据流1000的示例第一部分、数据流1100的示例第二部分、数据流1200的示例第三部分、示例过程1300、示例计算机系统1400、示例计算机系统1500、示例过程1600、示例计算机系统1700和/或示例过程1800描述的至少一个方面。
图35示出了根据至少一个实施例的并行处理单元(“PPU”)3500。在至少一个实施例中,PPU 3500配置有机器可读代码,该机器可读代码如果由PPU 3500执行,则使得PPU3500执行贯穿本文描述的一些或全部过程和技术。在至少一个实施例中,PPU 3500是在一个或更多个集成电路设备上实现的多线程处理器,并且利用多线程作为被设计为处理在多个线程上并行执行的计算机可读指令(也称为机器可读指令或简单的指令)的延迟隐藏技术。在至少一个实施例中,线程是指执行线程,并且是被配置为由PPU 3500执行的一组指令的实例。在至少一个实施例中,PPU 3500是图形处理单元(“GPU”),图形处理单元配置为实现用于处理三维(“3D”)图形数据的图形渲染管线,以便生成用于在显示设备(诸如LCD设备)上显示的二维(“2D”)图像数据。在至少一个实施例中,PPU 3500用于执行计算,诸如线性代数运算和机器学习运算。图35仅出于说明性目的示出了示例并行处理器,并且应被解释为在至少一个实施例中实现的处理器架构的非限制性示例。
在至少一个实施例中,一个或更多个PPU 3500配置成加速高性能计算(“HPC”)、数据中心和机器学习应用程序。在至少一个实施例中,一个或更多个PPU 3500配置成加速CUDA程序。在至少一个实施例中,PPU3500包括但不限于I/O单元3506、前端单元3510、调度器单元3512、工作分配单元3514、集线器3516、交叉开关(“Xbar”)3520、一个或更多个通用处理集群(“GPC”)3518和一个或更多个分区单元(“存储器分区单元”)3522。在至少一个实施例中,PPU 3500通过一个或更多个高速GPU互连(“GPU互连”)3508连接到主机处理器或其他PPU 3500。在至少一个实施例中,PPU 3500通过系统总线或互连3502连接到主机处理器或其他外围设备。在一实施例中,PPU 3500连接到包括一个或更多个存储器设备(“存储器”)3504的本地存储器。在至少一个实施例中,存储器设备3504包括但不限于一个或更多个动态随机存取存储器(“DRAM”)设备。在至少一个实施例中,一个或更多个DRAM设备配置和/或可配置为高带宽存储器(“HBM”)子系统,并且在每个设备内堆叠有多个DRAM管芯。
在至少一个实施例中,高速GPU互连3508可以指代系统使用其来进行缩放的基于线的多通道通信链路,并包括与一个或更多个CPU结合的一个或更多个PPU 3500(“CPU”),支持PPU 3500和CPU之间的高速缓存一致性以及CPU主控。在至少一个实施例中,高速GPU互连3508通过集线器3516将数据和/或命令传输到PPU 3500的其他单元,例如一个或更多个复制引擎、视频编码器、视频解码器、电源管理单元和/或在图35中可能未明确示出的其他组件。
在至少一个实施例中,I/O单元3506配置为通过系统总线3502从主机处理器(图35中未示出)发送和接收通信(例如,命令、数据)。在至少一个实施例中,I/O单元3506直接通过系统总线3502或通过一个或更多个中间设备(例如内存桥)与主机处理器通信。在至少一个实施例中,I/O单元3506可以经由系统总线3502与一个或更多个其他处理器(例如一个或更多个PPU 3500)通信。在至少一个实施例中,I/O单元3506实现PCIe接口,用于通过PCIe总线进行通信。在至少一个实施例中,I/O单元3506实现用于与外部设备通信的接口。
在至少一个实施例中,I/O单元3506对经由系统总线3502接收的分组进行解码。在至少一个实施例中,至少一些分组表示被配置为使PPU3500执行各种操作的命令。在至少一个实施例中,I/O单元3506如命令所指定的那样将解码的命令发送到PPU 3500的各种其他单元。在至少一个实施例中,命令被发送到前端单元3510和/或被发送到集线器3516或PPU3500的其他单元,例如一个或更多个复制引擎、视频编码器、视频解码器、电源管理单元等(图35中未明确示出)。在至少一个实施例中,I/O单元3506配置为在PPU 3500的各种逻辑单元之间路由通信。
在至少一个实施例中,由主机处理器执行的程序在缓冲区中对命令流进行编码,该缓冲区将工作负载提供给PPU 3500以进行处理。在至少一个实施例中,工作负载包括指令和要由那些指令处理的数据。在至少一个实施例中,缓冲区是可由主机处理器和PPU3500两者访问(例如,读/写)的存储器中的区域—主机接口单元可以配置为访问经由I/O单元3506通过系统总线3502传输的存储器请求连接到系统总线3502的系统存储器中的缓冲区。在至少一个实施例中,主机处理器将命令流写入缓冲区,然后将指示命令流开始的指针发送给PPU 3500,使得前端单元3510接收指向一个或更多个命令流指针并管理一个或更多个命令流,从命令流中读取命令并将命令转发到PPU 3500的各个单元。
在至少一个实施例中,前端单元3510耦合到调度器单元3512,该调度器单元3512配置各种GPC 3518以处理由一个或更多个命令流定义的任务。在至少一个实施例中,调度器单元3512配置为跟踪与调度器单元3512管理的各种任务有关的状态信息,其中状态信息可以指示任务被分配给哪个GPC 3518,任务是活跃的还是非活跃的,与任务相关联的优先级等等。在至少一个实施例中,调度器单元3512管理在一个或更多个GPC 3518上执行的多个任务。
在至少一个实施例中,调度器单元3512耦合到工作分配单元3514,该工作分配单元3514配置为分派任务以在GPC 3518上执行。在至少一个实施例中,工作分配单元3514跟踪从调度器单元3512接收到的多个调度任务并且工作分配单元3514管理每个GPC 3518的待处理任务池和活跃任务池。在至少一个实施例中,待处理任务池包括多个时隙(例如32个时隙),这些时隙包含分配给要由特定的GPC 3518处理的任务;活跃任务池可包括用于由GPC 3518主动处理的任务的多个时隙(例如4个时隙),以使随着GPC 3518中的一个完成任务的执行,该任务将从GPC 3518的活动任务池中逐出,并且从待处理任务池中选择其他任务之一,并安排其在GPC3518上执行。在至少一个实施例中,如果活跃任务在GPC 3518上处于空闲状态,例如在等待数据依赖性解决时,则活跃任务从GPC 3518中驱逐并返回到待处理任务池,同时选择了待处理任务池中的另一个任务并调度在GPC 3518上执行。
在至少一个实施例中,工作分配单元3514经由XBar 3520与一个或更多个GPC3518通信。在至少一个实施例中,XBar 3520是互连网络,其将PPU 3500的许多单元耦合到PPU 3500的其他单元,并且可以配置为将工作分配单元3514耦合到特定的GPC 3518。在至少一个实施例中,一个或更多个PPU 3500的其他单元也可以通过集线器3516连接到XBar3520。
在至少一个实施例中,任务由调度器单元3512管理,并由工作分配单元3514分配给GPC 3518之一。GPC 3518配置为处理任务并产生结果。在至少一个实施例中,结果可以由GPC 3518中的其他任务消耗,通过XBar3520路由到不同的GPC 3518或存储在存储器3504中。在至少一个实施例中,结果可以通过分区单元3522写到存储器3504中,其实现了用于向存储器3504写入数据或从存储器3504读取数据的存储器接口。在至少一个实施例中,结果可以经由高速GPU互连3508传输到另一PPU 3500或CPU。在至少一个实施例中,PPU 3500包括但不限于U个分区单元3522,其等于耦合到PPU 3500的分离且不同的存储器设备3504的数量。
在至少一个实施例中,主机处理器执行驱动器核心,该驱动器核心实现应用程序编程接口(“API”),该应用程序编程接口使在主机处理器上执行的一个或更多个应用程序能够调度操作以在PPU 3500上执行。在一个实施例中,多个计算应用由PPU 3500同时执行,并且PPU 3500为多个计算应用程序提供隔离、服务质量(“QoS”)和独立的地址空间。在至少一个实施例中,应用程序生成指令(例如,以API调用的形式),该指令使驱动器核心生成一个或更多个任务以供PPU 3500执行,并且驱动器核心将任务输出至由PPU 3500处理的一个或更多个流。在至少一个实施例中,每个任务包括一个或更多个相关线程组,其可以被称为线程束(warp)。在至少一个实施例中,线程束包括可以并行执行的多个相关线程(例如32个线程)。在至少一个实施例中,协作线程可以指代多个线程,包括用于执行任务并且通过共享存储器交换数据的指令。
在至少一个实施例中,利用关于图35所示或描述的至少一个组件来实现结合图1-18描述的技术和/或功能。在至少一个实施例中,并行处理单元3500被用于执行异步存储器分配和/或异步存储器解除分配。在至少一个实施例中,并行处理单元3500用于执行API,以使一个或更多个存储器位置被异步分配给一个或更多个处理器。在至少一个实施例中,并行处理单元3500被用于执行API以使一个或更多个存储器位置被异步分配到一个或更多个处理器。在至少一个实施例中,并行处理单元3500被用于执行API以使一个或更多个存储器位置被从一个或更多个处理器中异步地解除分配。在至少一个实施例中,并行处理单元3500被用于执行关于示例计算机系统100、示例计算机系统200、示例计算机系统300、示例计算机系统400、示例过程500、示例过程600、示例过程700、示例过程800、示例数据流900、数据流1000的示例第一部分、数据流1100的示例第二部分、数据流1200的示例第三部分、示例过程1300、示例计算机系统1400、示例计算机系统1500、示例过程1600、示例计算机系统1700和/或示例过程1800描述的至少一个方面。
图36示出了根据至少一个实施例的GPC 3600。在至少一个实施例中,GPC 3600是图35的GPC 3518。在至少一个实施例中,每个GPC 3600包括但不限于用于处理任务的多个硬件单元,并且每个GPC 3600包括但不限于管线管理器3602、预光栅操作单元(“PROP”)3604、光栅引擎3608、工作分配交叉开关(“WDX”)3616、存储器管理单元(“MMU”)3618、一个或更多个数据处理集群(“DPC”)3606,以及部件的任何合适组合。
在至少一个实施例中,GPC 3600的操作由管线管理器3602控制。在至少一个实施例中,管线管理器3602管理一个或更多个DPC 3606的配置,以处理分配给GPC 3600的任务。在至少一个实施例中,管线管理器3602配置一个或更多个DPC 3606中的至少一个以实现图形渲染管线的至少一部分。在至少一个实施例中,DPC 3606配置为在可编程流式多处理器(“SM”)3614上执行顶点着色器程序。在至少一个实施例中,管线管理器3602配置为将从工作分配单元接收的数据包路由到GPC 3600内的适当逻辑单元,以及在至少一个实施例中,可以将一些数据包路由到PROP 3604和/或光栅引擎3608中的固定功能硬件单元,而可以将其他数据包路由到DPC 3606以由原始引擎3612或SM3614进行处理。在至少一个实施例中,管线管理器3602配置DPC 3606中的至少一个以实现神经网络模型和/或计算管线。在至少一个实施例中,管线管理器3602配置DPC 3606中的至少一个以执行CUDA程序的至少一部分。
在至少一个实施例中,PROP单元3604配置为将由光栅引擎3608和DPC 3606生成的数据路由到分区单元中的光栅操作(“ROP”)单元,例如上面结合图35更详细描述的存储器分区单元3522等。在至少一个实施例中,PROP单元3604配置为执行用于颜色混合的优化、组织像素数据、执行地址转换等等。在至少一个实施例中,光栅引擎3608包括但不限于配置为执行各种光栅操作的多个固定功能硬件单元,并且在至少一个实施例中,光栅引擎3608包括但不限于设置引擎、粗光栅引擎、剔除引擎、裁剪引擎、精细光栅引擎、图块聚合引擎及其任意合适的组合。在至少一个实施例中,设置引擎接收变换后的顶点并生成与由顶点定义的几何图元相关联的平面方程;平面方程式被传送到粗光栅引擎以生成基本图元的覆盖信息(例如,图块的x、y覆盖范围掩码);粗光栅引擎的输出将传输到剔除引擎,在剔除引擎中与z测试失败的图元相关联的片段将被剔除,并传输到剪切引擎,在剪切引擎中剪切位于视锥范围之外的片段。在至少一个实施例中,将经过裁剪和剔除的片段传递给精细光栅引擎,以基于设置引擎生成的平面方程式生成像素片段的属性。在至少一个实施例中,光栅引擎3608的输出包括将由任何适当的实体(例如,由在DPC 3606内实现的片段着色器)处理的片段。
在至少一个实施例中,包括在GPC 3600中的每个DPC 3606包括但不限于M管线控制器(“MPC”)3610;图元引擎3612;一个或更多个SM3614;及其任何合适的组合。在至少一个实施例中,MPC 3610控制DPC3606的操作,将从管线管理器3602接收的分组路由到DPC 3606中的适当单元。在至少一个实施例中,将与顶点相关联的分组路由到图元引擎3612,图元引擎3612配置为从存储器中获取与顶点关联的顶点属性;相反,可以将与着色器程序相关联的数据包发送到SM 3614。
在至少一个实施例中,SM 3614包括但不限于可编程流式处理器,其配置为处理由多个线程表示的任务。在至少一个实施例中,SM 3614是多线程的并且配置为同时执行来自特定线程组的多个线程(例如32个线程),并且实现单指令、多数据(“SIMD”)架构,其中将一组线程(例如,线程束)中的每个线程配置为基于相同的指令集来处理不同的数据集。在至少一个实施例中,线程组中的所有线程执行相同的指令。在至少一个实施例中,SM 3614实施单指令、多线程(“SIMT”)架构,其中一组线程中的每个线程配置为基于相同的指令集来处理不同的数据集,但是其中线程组中的各个线程允许在执行期间发散。在至少一个实施例中,为每个线程束维护程序计数器、调用栈和执行状态,从而当线程束中的线程发散时,实现线程束和线程束内的串行执行之间的并发性。在另一个实施例中,为每个单独的线程维护程序计数器、调用栈和执行状态,从而使得在线程束内和线程束之间的所有线程之间具有相等的并发性。在至少一个实施例中,为每个单独的线程维持执行状态,并且可以收敛并并行地执行执行相同指令的线程以提高效率。下面结合图37更详细地描述SM 3614的至少一个实施例。
在至少一个实施例中,MMU 3618在GPC 3600和存储器分区单元(例如,图35的分区单元2522)之间提供接口,并且MMU 3618提供虚拟地址到物理地址的转换、存储器保护以及存储器请求的仲裁。在至少一个实施例中,MMU 3618提供一个或更多个转换后备缓冲区(“TLB”),用于执行虚拟地址到存储器中的物理地址的转换。
在至少一个实施例中,利用关于图36所示或描述的至少一个组件来实现结合图1-18描述的技术和/或功能。在至少一个实施例中,通用处理集群3600被用于执行异步存储器分配和/或异步存储器解除分配。在至少一个实施例中,通用处理集群3600用于执行API,以使一个或更多个存储器位置被异步分配给一个或更多个处理器。在至少一个实施例中,通用处理集群3600被用于执行API以使一个或更多个存储器位置被异步分配到一个或更多个处理器。在至少一个实施例中,通用处理集群3600被用于执行API以使一个或更多个存储器位置被从一个或更多个处理器中异步地解除分配。在至少一个实施例中,通用处理集群3600被用于执行关于示例计算机系统100、示例计算机系统200、示例计算机系统300、示例计算机系统400、示例过程500、示例过程600、示例过程700、示例过程800、示例数据流900、数据流1000的示例第一部分、数据流1100的示例第二部分、数据流1200的示例第三部分、示例过程1300、示例计算机系统1400、示例计算机系统1500、示例过程1600、示例计算机系统1700和/或示例过程1800描述的至少一个方面。
图37示出了根据至少一个实施例的流式多处理器(“SM”)3700。在至少一个实施例中,SM 3700是图36的SM 3614。在至少一个实施例中,SM 3700包括但不限于指令高速缓存3702;一个或更多个调度器单元3704;寄存器文件3708;一个或更多个处理核心(“核心”)3710;一个或更多个特殊功能单元(“SFU”)3712;一个或更多个加载/存储单元(“LSU”)3714;互连网络3716;共享存储器/一级(“L1”)高速缓存3718;及其任何合适的组合。在至少一个实施例中,工作分配单元调度任务以在并行处理单元(“PPU”)的通用处理集群(“GPC”)上执行,并且每个任务被分配给GPC内部的特定数据处理集群(“DPC”),并且如果任务与着色器程序相关联,则将任务分配给SM 3700之一。在至少一个实施例中,调度器单元3704从工作分配单元接收任务并管理分配给SM 3700的一个或更多个线程块的指令调度。在至少一个实施例中,调度器单元3704调度线程块以作为并行线程的线程束来执行,其中,每个线程块被分配至少一个线程束。在至少一个实施例中,每个线程束执行线程。在至少一个实施例中,调度器单元3704管理多个不同的线程块,将线程束分配给不同的线程块,然后在每个时钟周期内将来自多个不同的协作组的指令分派给各种功能单元(例如,处理核心3710、SFU 3712和LSU 3714)。
在至少一个实施例中,“合作组”可以指用于组织通信线程组的编程模型,其允许开发人员表达线程正在通信的粒度,从而能够表达更丰富、更有效的并行分解。在至少一个实施例中,协作启动API支持线程块之间的同步以执行并行算法。在至少一个实施例中,常规编程模型的API提供了用于同步协作线程的单一、简单的构造:跨线程块的所有线程的屏障(例如,syncthreads()函数)。但是,在至少一个实施例中,程序员可以在小于线程块粒度的情形下来定义线程组,并在所定义的组内进行同步,以实现更高的性能、设计灵活性以及以集合组范围功能接口的形式实现软件重用。在至少一个实施例中,协作组使程序员能够以子块和多块粒度明确定义线程组,并执行集合操作,例如对协作组中的线程进行同步。在至少一个实施例中,子块粒度与单个线程一样小。在至少一个实施例中,编程模型支持跨软件边界的干净组合,从而库和实用程序功能可以在其本地环境中安全地同步,而不必进行关于收敛的假设。在至少一个实施例中,协作组图元使协作并行的新图案成为可能,包括但不限于生产者-消费者并行,机会主义并行以及整个线程块网格上的全局同步。
在至少一个实施例中,分派单元3706配置为将指令发送到功能单元中的一个或更多个,并且调度器单元3704包括但不限于两个分派单元3706,该两个分派单元3706使得来自相同线程束的两个不同指令能够在每个时钟周期被分派。在至少一个实施例中,每个调度器单元3704包括单个分派单元3706或附加分派单元3706。
在至少一个实施例中,每个SM 3700在至少一个实施例中包括但不限于寄存器文件3708,该寄存器文件3708为SM 3700的功能单元提供了一组寄存器。在至少一个实施例中,寄存器文件3708在每个功能单元之间划分,从而为每个功能单元分配寄存器文件3708的专用部分。在至少一个实施例中,寄存器文件3708在由SM 3700执行的不同线程束之间划分,并且寄存器文件3708为连接到功能单元的数据路径的操作数提供临时存储。在至少一个实施例中,每个SM 3700包括但不限于多个L个处理核心3710。在至少一个实施例中,SM3700包括但不限于大量(例如128个或更多)不同的处理核心3710。在至少一个实施例中,每个处理核心3710在至少一个实施例中包括但不限于全管线、单精度、双精度和/或混合精度处理单元,其包括但不限于浮点算术逻辑单元和整数算术逻辑单元。在至少一个实施例中,浮点算术逻辑单元实现用于浮点算术的IEEE 754-2008标准。在至少一个实施例中,处理核心3710包括但不限于64个单精度(32位)浮点核心、64个整数核心、32个双精度(64位)浮点核心和8个张量核心。
在至少一个实施例中,张量核心配置为执行矩阵运算。在至少一个实施例中,一个或更多个张量核心包括在处理核心3710中。在至少一个实施例中,张量核心配置为执行深度学习矩阵算术,例如用于神经网络训练和推理的卷积运算。在至少一个实施例中,每个张量核心在4×4矩阵上操作并且执行矩阵乘法和累加运算D=A×B+C,其中A、B、C和D是4×4矩阵。
在至少一个实施例中,矩阵乘法输入A和B是16位浮点矩阵,并且累加矩阵C和D是16位浮点或32位浮点矩阵。在至少一个实施例中,张量核心对16位浮点输入数据进行32位浮点累加运算。在至少一个实施例中,16位浮点乘法使用64个运算,并得到全精度乘积,然后使用32位浮点加法与其他中间乘积累加起来,以进行4x4x4矩阵乘法。在至少一个实施例中,张量核心用于执行由这些较小的元件构成的更大的二维或更高维度的矩阵运算。在至少一个实施例中,API(诸如CUDA-C++API)公开专门的矩阵加载、矩阵乘法和累加以及矩阵存储操作,以有效地使用来自CUDA-C++程序的张量核心。在至少一个实施例中,在CUDA级别,线程束级别接口假定跨越所有32个线程束线程的16×16大小的矩阵。
在至少一个实施例中,每个SM 3700包括但不限于执行特殊功能(例如,属性评估、倒数平方根等)的M个SFU 3712。在至少一个实施例中,SFU 3712包括但不限于配置为遍历分层树数据结构的树遍历单元。在至少一个实施例中,SFU 3712包括但不限于配置为执行纹理映射过滤操作的纹理单元。在至少一个实施例中,纹理单元配置为从存储器中加载纹理映射(例如,纹理像素的2D阵列)和采样纹理映射,以产生采样的纹理值以供由SM 3700执行的着色器程序使用。在至少一个实施例中,将纹理映射存储在共享存储器/L1高速缓存3718中。在至少一个实施例中,纹理单元使用mip映射(mip-maps)(例如,细节级别不同的纹理映射)来实现纹理操作(诸如过滤操作)。在至少一个实施例中,每个SM 3700包括但不限于两个纹理单元。
在至少一个实施例中,每个SM 3700包括但不限于实现共享存储器/L1高速缓存3718与寄存器文件3708之间的加载和存储操作的N个LSU3714。在至少一个实施例中,每个SM 3700包括但不限于互连网络3716,互连网络3716将每个功能单元连接到寄存器文件3708,并且LSU 3714连接到寄存器文件3708和共享存储器/L1高速缓存3718。在至少一个实施例中,互连网络3716是交叉开关,其可以配置为将任何功能单元连接到寄存器文件3708中的任何寄存器,并且将LSU 3714连接到寄存器文件3708和共享存储器/L1高速缓存3718中的存储器位置。
在至少一个实施例中,共享存储器/L1高速缓存3718是片上存储器的阵列,其在至少一个实施例中允许SM 3700与图元引擎之间以及SM3700中的线程之间的数据存储和通信。在至少一个实施例中,共享存储器/L1高速缓存3718包括但不限于128KB的存储容量,并且位于从SM 3700到分区单元的路径中。在至少一个实施例中,共享存储器/L1高速缓存3718在至少一个实施例中用于高速缓存读取和写入。在至少一个实施例中,共享存储器/L1高速缓存3718、L2高速缓存和存储器中的一个或更多个是后备存储。
在至少一个实施例中,将数据高速缓存和共享存储器功能组合到单个存储器块中,为两种类型的存储器访问提供了改进的性能。在至少一个实施例中,容量由不使用共享存储器的程序使用或将其用作高速缓存,例如如果共享存储器配置为使用一半容量,则纹理和加载/存储操作可以使用剩余容量。根据至少一个实施例,在共享存储器/L1高速缓存3718内的集成使共享存储器/L1高速缓存3718能够用作用于流传输数据的高吞吐量管线,同时提供对频繁重用的数据的高带宽和低延迟访问。在至少一个实施例中,当配置用于通用并行计算时,与图形处理相比,可以使用更简单的配置。在至少一个实施例中,绕过固定功能GPU,从而创建了更加简单的编程模型。在至少一个实施例中,在通用并行计算配置中,工作分配单元直接将线程的块分配和分布给DPC。在至少一个实施例中,块中的线程执行相同的程序,在计算中使用唯一的线程ID以确保每个线程生成唯一的结果,使用SM 3700执行程序并执行计算,使用共享存储器/L1高速缓存3718在线程之间进行通信,以及使用LSU3714通过共享存储器/L1高速缓存3718和存储器分区单元来读写全局存储器。在至少一个实施例中,当被配置用于通用并行计算时,SM 3700向调度器单元3704写入可以用来在DPC上启动新工作的命令。
在至少一个实施例中,PPU被包括在台式计算机、膝上型计算机、平板电脑、服务器、超级计算机、智能电话(例如,无线、手持设备)、PDA、数码相机、车辆、头戴式显示器、手持式电子设备等中或与之耦合。在至少一个实施例中,PPU被实现在单个半导体衬底上。在至少一个实施例中,PPU与一个或更多个其他设备(例如附加的PPU、存储器、RISCCPU,MMU、数模转换器(“DAC”)等)一起被包括在片上系统(“SoC”)中。
在至少一个实施例中,PPU可以被包括在包括一个或更多个存储设备的图形卡上。图形卡可以配置为与台式计算机主板上的PCIe插槽相连接。在至少一个实施例中,PPU可以是包括在主板的芯片组中的集成GPU(“iGPU”)。
在至少一个实施例中,利用关于图37所示或描述的至少一个组件来实现结合图1-18描述的技术和/或功能。在至少一个实施例中,流式多处理器3700被用于执行异步存储器分配和/或异步存储器解除分配。在至少一个实施例中,流式多处理器3700用于执行API,以使一个或更多个存储器位置被异步分配给一个或更多个处理器。在至少一个实施例中,流式多处理器3700被用于执行API以使一个或更多个存储器位置被异步分配到一个或更多个处理器。在至少一个实施例中,流式多处理器3700被用于执行API以使一个或更多个存储器位置被从一个或更多个处理器中异步地解除分配。在至少一个实施例中,流式多处理器3700被用于执行关于示例计算机系统100、示例计算机系统200、示例计算机系统300、示例计算机系统400、示例过程500、示例过程600、示例过程700、示例过程800、示例数据流900、数据流1000的示例第一部分、数据流1100的示例第二部分、数据流1200的示例第三部分、示例过程1300、示例计算机系统1400、示例计算机系统1500、示例过程1600、示例计算机系统1700和/或示例过程1800描述的至少一个方面。
通用计算的软件构造
以下各图阐述但不限于用于实现至少一个实施例的示例性软件构造。
图38示出了根据至少一个实施例的编程平台的软件栈。在至少一个实施例中,编程平台是用于利用计算系统上的硬件来加速计算任务的平台。在至少一个实施例中,软件开发人员可以通过库、编译器指令和/或对编程语言的扩展来访问编程平台。在至少一个实施例中,编程平台可以是但不限于CUDA,Radeon开放计算平台(“ROCm”),OpenCL(由Khronosgroup开发的OpenCLTM),SYCL或Intel One API。
在至少一个实施例中,编程平台的软件栈3800为应用程序3801提供执行环境。在至少一个实施例中,应用程序3801可以包括能够在软件栈3800上启动的任何计算机软件。在至少一个实施例中,应用程序3801可以包括但不限于人工智能(“AI”)/机器学习(“ML”)应用程序,高性能计算(“HPC”)应用程序,虚拟桌面基础架构(“VDI”)或数据中心工作负载。
在至少一个实施例中,应用程序3801和软件栈3800在硬件3807上运行。在至少一个实施例中,硬件3807可以包括一个或更多个GPU,CPU,FPGA,AI引擎和/或支持编程平台的其他类型的计算设备。在至少一个实施例中,例如采用CUDA,软件栈3800可以是厂商专用的,并且仅与来自特定厂商的设备兼容。在至少一个实施例中,例如在采用OpenCL中,软件栈3800可以与来自不同供应商的设备一起使用。在至少一个实施例中,硬件3807包括连接到一个或更多个设备的主机,该设备可经由应用程序编程接口(API)调用被访问以执行计算任务。在至少一个实施例中,与硬件3807内的主机相比,其可以包括但不限于CPU(但还可以包括计算设备)及其存储器,硬件3807内的设备可以包括但不限于GPU,FPGA,AI引擎或其他计算设备(但还可以包括CPU)及其存储器。
在至少一个实施例中,编程平台的软件栈3800包括但不限于多个库3803,运行时(runtime)3805和设备内核驱动器3806。在至少一个实施例中,库3803中的每个库可以包括可以由计算机程序使用并在软件开发期间利用的数据和编程代码。在至少一个实施例中,库3803可以包括但不限于预写的代码和子例程,类,值,类型规范,配置数据,文档,帮助数据和/或消息模板。在至少一个实施例中,库3803包括被优化用于在一种或更多种类型的设备上执行的函数。在至少一个实施例中,库3803可以包括但不限于用于在设备上执行数学、深度学习和/或其他类型的运算的函数。在至少一个实施例中,库3803与对应的API 3802相关联,API 3802可包括一个或更多个API,其暴露在库3803中实现的函数。
在至少一个实施例中,将应用程序3801编写为源代码,该源代码被编译成可执行代码,如下面结合图43-45更详细讨论的。在至少一个实施例中,应用程序3801的可执行代码可以至少部分地在由软件栈3800提供的执行环境上运行。在至少一个实施例中,在应用程序3801的执行期间,可以得到需要在设备(与主机相比)上运行的代码。在这种情况下,在至少一个实施例中,可以调用运行时3805以在设备上加载和启动必需的代码。在至少一个实施例中,运行时3805可以包括能够支持应用程序S01的执行的任何技术上可行的运行时系统。
在至少一个实施例中,运行时3805被实现为与对应的API(其被示为API 3804)相关联的一个或更多个运行时库。在至少一个实施例中,一个或更多个这样的运行时库可以包括但不限于用于存储器管理,执行控制,设备管理,错误处理和/或同步等等的函数。在至少一个实施例中,存储器管理函数可以包括但不限于用于分配、解除分配和复制设备存储器以及在主机存储器和设备存储器之间传输数据的函数。在至少一个实施例中,执行控制函数可以包括但不限于在设备上启动函数(当函数是可从主机调用的全局函数时,有时称为“内核”)的函数,和用于在运行时库为要在设备上执行的给定函数维护的缓冲区中设置属性值的函数。
在至少一个实施例中,可以任何技术上可行的方式来实现运行时库和相应的API3804。在至少一个实施例中,一个(或任意数量的)API可以公开用于设备的细粒度控制的低级函数集,而另一(或任意数量的)API可以公开这样的较高级的函数集。在至少一个实施例中,可以在低级API之上构建高级运行时API。在至少一个实施例中,一个或更多个运行时API可以是在与语言无关的运行时API之上分层的特定于语言的API。
在至少一个实施例中,设备内核驱动器3806被配置为促进与底层设备的通信。在至少一个实施例中,设备内核驱动器3806可以提供诸如API3804之类的API和/或其他软件所依赖的低级函数。在至少一个实施例中,设备内核驱动器3806可以被配置为在运行时将中间表示(“IR”)代码编译成二进制代码。在至少一个实施例中,对于CUDA,设备内核驱动器3806可以在运行时将非硬件专用的并行线程执行(“PTX”)IR代码编译为用于特定目标设备的二进制代码(高速缓存已编译的二进制代码),其有时也称为“最终”代码。在至少一个实施例中,这样做可以允许最终代码在目标设备上运行,而当源代码最初被编译为PTX代码时,该目标设备可能不存在。备选地,在至少一个实施例中,设备源代码可以离线地编译成二进制代码,而不需要设备内核驱动器3806在运行时编译IR代码。
在至少一个实施例中,利用关于图38所示或描述的至少一个组件来实现结合图1-18描述的技术和/或功能。在至少一个实施例中,编程平台的软件栈3800的至少一个元件被用于执行异步存储器分配和/或异步存储器解除分配。在至少一个实施例中,编程平台的软件栈3800的至少一个元件用于执行API,以使一个或更多个存储器位置被异步分配给一个或更多个处理器。在至少一个实施例中,编程平台的软件栈3800的至少一个元件被用于执行API以使一个或更多个存储器位置被异步分配到一个或更多个处理器。在至少一个实施例中,编程平台的软件栈3800的至少一个元件被用于执行API以使一个或更多个存储器位置被从一个或更多个处理器中异步地解除分配。在至少一个实施例中,编程平台的软件栈3800的至少一个元件被用于执行关于示例计算机系统100、示例计算机系统200、示例计算机系统300、示例计算机系统400、示例过程500、示例过程600、示例过程700、示例过程800、示例数据流900、数据流1000的示例第一部分、数据流1100的示例第二部分、数据流1200的示例第三部分、示例过程1300、示例计算机系统1400、示例计算机系统1500、示例过程1600、示例计算机系统1700和/或示例过程1800描述的至少一个方面。
图39示出了根据至少一个实施例的图38的软件栈3800的CUDA实现。在至少一个实施例中,可在其上启动应用程序3901的CUDA软件栈3900包括CUDA库3903,CUDA运行时3905,CUDA驱动器3907和设备内核驱动器3908。在至少一个实施例中,CUDA软件栈3900在硬件3909上执行,该硬件3909可以包括支持CUDA的GPU,其由加利福尼亚州圣克拉拉市的NVIDIA公司开发。
在至少一个实施例中,应用程序3901、CUDA运行时3905和设备内核驱动器3908可以分别执行与应用程序3801、运行时3805和设备内核驱动器3806类似的功能,以上结合图38对其进行了描述。在至少一个实施例中,CUDA驱动器3907包括实现CUDA驱动器API 3906的库(libcuda.so)。在至少一个实施例中,类似于由CUDA运行时库(cudart)实现的CUDA运行时API 3904,CUDA驱动器API 3906可以公开但不限于用于存储器管理、执行控制、设备管理、错误处理、同步和/或图形互操作性等的函数。在至少一个实施例中,CUDA驱动器API3906与CUDA运行时API 3904的不同之处在于,CUDA运行时API 3904通过提供隐式初始化、上下文(类似于进程)管理和模块(类似于动态加载的库)管理来简化设备代码管理。与高级CUDA运行时API 3904相反,在至少一个实施例中,CUDA驱动器API 3906是提供对设备的更细粒度控制的低级API,特别是关于上下文和模块加载。在至少一个实施例中,CUDA驱动器API 3906可以公开没有由CUDA运行时API 3904公开的用于上下文管理的函数。在至少一个实施例中,CUDA驱动器API 3906也与语言无关,并且除了支持CUDA运行时API 3904之外,还支持例如OpenCL。此外,在至少一个实施例中,包括CUDA运行时3905在内的开发库可被视为与驱动器组件分离,包括用户模式的CUDA驱动器3907和内核模式的设备驱动器3908(有时也称为“显示”驱动器)。
在至少一个实施例中,CUDA库3903可以包括但不限于数学库,深度学习库,并行算法库和/或信号/图像/视频处理库,并行计算应用程序(例如应用程序3901)可以利用这些库。在至少一个实施例中,CUDA库3903可包括数学库,例如cuBLAS库,其是用于执行线性代数运算的基本线性代数子程序(“BLAS”)的实现;用于计算快速傅立叶变换(“FFT”)的cuFFT库,以及用于生成随机数的cuRAND库等。在至少一个实施例中,CUDA库3903可以包括深度学习库,诸如用于深度神经网络的基元的cuDNN库和用于高性能深度学习推理的TensorRT平台等等。
在至少一个实施例中,利用关于图39所示或描述的至少一个组件来实现结合图1-18描述的技术和/或功能。在至少一个实施例中,CUDA软件栈3900的至少一个元件被用于执行异步存储器分配和/或异步存储器解除分配。在至少一个实施例中,CUDA软件栈3900的至少一个元件用于执行API,以使一个或更多个存储器位置被异步分配给一个或更多个处理器。在至少一个实施例中,CUDA软件栈3900的至少一个元件被用于执行API以使一个或更多个存储器位置被异步分配到一个或更多个处理器。在至少一个实施例中,CUDA软件栈3900的至少一个元件被用于执行API以使一个或更多个存储器位置被从一个或更多个处理器中异步地解除分配。在至少一个实施例中,CUDA软件栈3900的至少一个元件被用于执行关于示例计算机系统100、示例计算机系统200、示例计算机系统300、示例计算机系统400、示例过程500、示例过程600、示例过程700、示例过程800、示例数据流900、数据流1000的示例第一部分、数据流1100的示例第二部分、数据流1200的示例第三部分、示例过程1300、示例计算机系统1400、示例计算机系统1500、示例过程1600、示例计算机系统1700和/或示例过程1800描述的至少一个方面。
图40示出了根据至少一个实施例的图38的软件栈3800的ROCm实现。在至少一个实施例中,可在其上启动应用程序4001的ROCm软件栈4000包括语言运行时4003,系统运行时4005,thunk 4007和ROCm内核驱动器4008。在至少一个实施例中,ROCm软件栈4000在硬件4009上执行,硬件4009可以包括支持ROCm的GPU,其由加利福尼亚州圣克拉拉市的AMD公司开发。
在至少一个实施例中,应用程序4001可以执行与以上结合图38讨论的应用程序3801类似的功能。另外,在至少一个实施例中,语言运行时4003和系统运行时4005可以执行与以上结合图38讨论的运行时3805类似的功能。在至少一个实施例中,语言运行时4003和系统运行时4005的不同之处在于,系统运行时4005是实现ROCr系统运行时API 4004并利用异构系统架构(“HSA”)运行时API的语言无关运行时。在至少一个实施例中,HSA运行时API是一种瘦用户模式API,它公开接口以供访问和与AMDGPU交互,包括用于存储器管理、通过架构分派内核的执行控制、错误处理、系统和代理信息以及运行时初始化和关闭等的函数。在至少一个实施例中,与系统运行时4005相比,语言运行时4003是ROCr系统运行时API4004之上分层的特定于语言的运行时API 4002的实现。在至少一个实施例中,语言运行时API可以包括但不限于可移植异构计算接口(“HIP”)语言运行时API,异构计算编译器(“HCC”)语言运行时API或OpenCL API等等。特别是,HIP语言是C++编程语言的扩展,具有CUDA机制的功能相似版本,并且在至少一个实施例中,HIP语言运行时API包括与以上结合图39讨论的CUDA运行时API 3904相似的函数,例如用于存储器管理、执行控制、设备管理、错误处理和同步等的函数。
在至少一个实施例中,thunk(ROCt)4007是可用于与底层ROCm驱动器4008交互的接口4006。在至少一个实施例中,ROCm驱动器4008是ROCk驱动器,其是AMDGPU驱动器和HSA内核驱动器(amdkfd)的组合。在至少一个实施例中,AMDGPU驱动器是由AMD开发的用于GPU的设备内核驱动器,其执行与以上结合图38讨论的设备内核驱动器3806类似的功能。在至少一个实施例中,HSA内核驱动器是允许不同类型的处理器经由硬件特征更有效地共享系统资源的驱动器。
在至少一个实施例中,各种库(未示出)可以被包括在语言运行时4003上方的ROCm软件栈4000中,并且提供与以上结合图39讨论的CUDA库3903相似的功能。在至少一个实施例中,各种库可以包括但不限于数学、深度学习和/或其他库,例如实现与CUDA cuBLAS类似的函数的hipBLAS库,类似于CUDA cuFFT用于计算FFT的rocFFT库等。
在至少一个实施例中,利用关于图40所示或描述的至少一个组件来实现结合图1-18描述的技术和/或功能。在至少一个实施例中,ROCm软件栈4000的至少一个元件被用于执行异步存储器分配和/或异步存储器解除分配。在至少一个实施例中,ROCm软件栈4000的至少一个元件用于执行API,以使一个或更多个存储器位置被异步分配给一个或更多个处理器。在至少一个实施例中,ROCm软件栈4000的至少一个元件被用于执行API以使一个或更多个存储器位置被异步分配到一个或更多个处理器。在至少一个实施例中,ROCm软件栈4000的至少一个元件被用于执行API以使一个或更多个存储器位置被从一个或更多个处理器中异步地解除分配。在至少一个实施例中,ROCm软件栈4000的至少一个元件被用于执行关于示例计算机系统100、示例计算机系统200、示例计算机系统300、示例计算机系统400、示例过程500、示例过程600、示例过程700、示例过程800、示例数据流900、数据流1000的示例第一部分、数据流1100的示例第二部分、数据流1200的示例第三部分、示例过程1300、示例计算机系统1400、示例计算机系统1500、示例过程1600、示例计算机系统1700和/或示例过程1800描述的至少一个方面。
图41示出了根据至少一个实施例的图38的软件栈3800的OpenCL实现。在至少一个实施例中,可以在其上启动应用程序4101的OpenCL软件栈4100包括OpenCL框架4110,OpenCL运行时4106和驱动器4107。在至少一个实施例中,OpenCL软件栈4100在不是特定于供应商的硬件3909上执行。在至少一个实施例中,由于由不同厂商开发的设备支持OpenCL,因此可能需要特定的OpenCL驱动器才能与来自此类厂商的硬件进行互操作。
在至少一个实施例中,应用程序4101,OpenCL运行时4106,设备内核驱动器4107和硬件4108可以分别执行与上面结合图38讨论的应用程序3801、运行时3805、设备内核驱动器3806和硬件3807类似的功能。在至少一个实施例中,应用程序4101还包括具有将在设备上执行的代码的OpenCL内核4102。
在至少一个实施例中,OpenCL定义了一种“平台”,其允许主机控制连接到该主机的设备。在至少一个实施例中,OpenCL框架提供平台层API和运行时API,示出为平台API4103和运行时API 4105。在至少一个实施例中,运行时API 4105使用上下文来管理设备上内核的执行。在至少一个实施例中,每个标识的设备可以与各自的上下文相关联,运行时API4105可以使用该上下文来管理该设备的命令队列、程序对象和内核对象、共享存储器对象等。在至少一个实施例中,平台API 4103公开了允许设备上下文用于选择和初始化设备,经由命令队列将工作提交给设备,以及使得能够进行来自和去往设备的数据传输等的函数。另外,在至少一个实施例中,OpenCL框架提供各种内置函数(未示出),包括数学函数、关系函数和图像处理函数等。
在至少一个实施例中,编译器4104也被包括在OpenCL框架4110中。在至少一个实施例中,源代码可以在执行应用程序之前被离线编译或者在执行应用程序期间被在线编译。与CUDA和ROCm相反,至少一个实施例中的OpenCL应用程序可以由编译器4104在线编译,编译器4104被包括以代表可以用于将源代码和/或IR代码(例如标准可移植中间表示(“SPIR-V”)代码)编译为二进制代码的任意数量的编译器。可替代地,在至少一个实施例中,可以在执行这样的应用程序之前离线编译OpenCL应用程序。
在至少一个实施例中,利用关于图41所示或描述的至少一个组件来实现结合图1-18描述的技术和/或功能。在至少一个实施例中,OpenCL软件栈4100的至少一个元件被用于执行异步存储器分配和/或异步存储器解除分配。在至少一个实施例中,OpenCL软件栈4100的至少一个元件用于执行API,以使一个或更多个存储器位置被异步分配给一个或更多个处理器。在至少一个实施例中,OpenCL软件栈4100的至少一个元件被用于执行API以使一个或更多个存储器位置被异步分配到一个或更多个处理器。在至少一个实施例中,OpenCL软件栈4100的至少一个元件被用于执行API以使一个或更多个存储器位置被从一个或更多个处理器中异步地解除分配。在至少一个实施例中,OpenCL软件栈4100的至少一个元件被用于执行关于示例计算机系统100、示例计算机系统200、示例计算机系统300、示例计算机系统400、示例过程500、示例过程600、示例过程700、示例过程800、示例数据流900、数据流1000的示例第一部分、数据流1100的示例第二部分、数据流1200的示例第三部分、示例过程1300、示例计算机系统1400、示例计算机系统1500、示例过程1600、示例计算机系统1700和/或示例过程1800描述的至少一个方面。
图42示出了根据至少一个实施例的由编程平台支持的软件。在至少一个实施例中,编程平台4204被配置为支持应用程序4200可以依赖的各种编程模型4203,中间件和/或库4202以及框架4201。在至少一个实施例中,应用程序4200可以是使用例如深度学习框架(例如,MXNet,PyTorch或TensorFlow)实现的AI/ML应用,其可以依赖于诸如cuDNN,NVIDIACollective Communications Library(“NCCL”)”和/或NVIDIA开发人员数据加载库(“DALI”)CUDA库之类的库,以在底层硬件上提供加速的计算。
在至少一个实施例中,编程平台4204可以是以上分别结合图39、图40和图41描述的CUDA、ROCm或OpenCL平台之一。在至少一个实施例中,编程平台4204支持多个编程模型4203,其是底层计算系统的抽象,其允许算法和数据结构的表达。在至少一个实施例中,编程模型4203可以暴露底层硬件的特征以便改善性能。在至少一个实施例中,编程模型4203可以包括但不限于CUDA,HIP,OpenCL,C++加速大规模并行性(“C++AMP”),开放多处理(“OpenMP”),开放加速器(“OpenACC”)和/或Vulcan计算(Vulcan Compute)。
在至少一个实施例中,库和/或中间件4202提供编程模型4204的抽象的实现。在至少一个实施例中,这样的库包括可由计算机程序使用并在软件开发期间利用的数据和编程代码。在至少一个实施例中,除了可以从编程平台4204获得的那些之外,这样的中间件还包括向应用程序提供服务的软件。在至少一个实施例中,库和/或中间件4202可以包括但不限于cuBLAS、cuFFT、cuRAND和其他CUDA库,或rocBLAS、rocFFT、rocRAND和其他ROCm库。另外,在至少一个实施例中,库和/或中间件4202可以包括NCCL和ROCm通信集合库(“RCCL”)库,其提供用于GPU的通信例程,用于深度学习加速的MIOpen库和/或用于线性代数、矩阵和向量运算、几何变换、数值求解器以及相关算法的本征库。
在至少一个实施例中,应用程序框架4201依赖于库和/或中间件4202。在至少一个实施例中,每个应用程序框架4201是用于实现应用软件的标准结构的软件框架。回到上面讨论的AI/ML示例,在至少一个实施例中,可以使用框架(诸如Caffe,Caffe2,TensorFlow,Keras,PyTorch或MxNet深度学习框架)来实现AI/ML应用。
在至少一个实施例中,利用关于图42所示或描述的至少一个组件来实现结合图1-18描述的技术和/或功能。在至少一个实施例中,应用程序4200的至少一个元件被用于执行异步存储器分配和/或异步存储器解除分配。在至少一个实施例中,应用程序4200的至少一个元件用于执行API,以使一个或更多个存储器位置被异步分配给一个或更多个处理器。在至少一个实施例中,应用程序4200的至少一个元件的至少一个被用于执行API以使一个或更多个存储器位置被异步分配到一个或更多个处理器。在至少一个实施例中,应用程序4200的至少一个元件被用于执行API以使一个或更多个存储器位置被从一个或更多个处理器中异步地解除分配。在至少一个实施例中,应用程序4200的至少一个元件被用于执行关于示例计算机系统100、示例计算机系统200、示例计算机系统300、示例计算机系统400、示例过程500、示例过程600、示例过程700、示例过程800、示例数据流900、数据流1000的示例第一部分、数据流1100的示例第二部分、数据流1200的示例第三部分、示例过程1300、示例计算机系统1400、示例计算机系统1500、示例过程1600、示例计算机系统1700和/或示例过程1800描述的至少一个方面。
图43示出了根据至少一个实施例的编译代码以在图38-41的编程平台之一上执行。在至少一个实施例中,编译器4301接收源代码4300,其包括主机代码以及设备代码两者。在至少一个实施例中,编译器4301被配置为将源代码4300转换为用于在主机上执行的主机可执行代码4302以及用于在设备上执行的设备可执行代码4303。在至少一个实施例中,源代码4300可以在执行应用程序之前离线编译,或者在执行应用程序期间在线编译。
在至少一个实施例中,源代码4300可以包括编译器4301支持的任何编程语言的代码,例如C++、C、Fortran等。在至少一个实施例中,源代码4300可以包括在单一源(single-source)文件中,其具有主机代码和设备代码的混合,并在其中指示了设备代码的位置。在至少一个实施例中,单一源文件可以是包括CUDA代码的.cu文件或包括HIP代码的.hip.cpp文件。备选地,在至少一个实施例中,源代码4300可以包括多个源代码文件,而不是单一源文件,在该单一源文件中主机代码和设备代码是分开的。
在至少一个实施例中,编译器4301被配置为将源代码4300编译成用于在主机上执行的主机可执行代码4302和用于在设备上执行的设备可执行代码4303。在至少一个实施例中,编译器4301执行操作,包括将源代码4300解析为抽象系统树(AST),执行优化以及生成可执行代码。在源代码4300包括单一源文件的至少一个实施例中,编译器4301可以将设备代码与主机代码在这种单一源文件中分开,将设备代码和主机代码分别编译成设备可执行代码4303和主机可执行代码4302,以及将设备可执行代码4303和主机可执行代码4302在单个文件中链接到一起,如下面关于图44更详细讨论的。
在至少一个实施例中,主机可执行代码4302和设备可执行代码4303可以是任何合适的格式,例如二进制代码和/或IR代码。在CUDA的情况下,在至少一个实施例中,主机可执行代码4302可以包括本地对象代码,而设备可执行代码4303可以包括PTX中间表示的代码。在至少一个实施例中,在ROCm的情况下,主机可执行代码4302和设备可执行代码4303都可以包括目标二进制代码。
在至少一个实施例中,利用关于图43所示或描述的至少一个组件来实现结合图1-18描述的技术和/或功能。在至少一个实施例中,源代码4300中指定的主机可执行代码4302或设备可执行代码4303中的至少一个被用于执行异步存储器分配和/或异步存储器解除分配。在至少一个实施例中,源代码4300中指定的主机可执行代码4302或设备可执行代码4303中的至少一个用于执行API,以使一个或更多个存储器位置被异步分配给一个或更多个处理器。在至少一个实施例中,源代码4300中指定的主机可执行代码4302或设备可执行代码4303中的至少一个被用于执行API以使一个或更多个存储器位置被异步分配到一个或更多个处理器。在至少一个实施例中,源代码4300中指定的主机可执行代码4302或设备可执行代码4303中的至少一个被用于执行API以使一个或更多个存储器位置被从一个或更多个处理器中异步地解除分配。在至少一个实施例中,源代码4300中指定的主机可执行代码4302或设备可执行代码4303中的至少一个被用于执行关于示例计算机系统100、示例计算机系统200、示例计算机系统300、示例计算机系统400、示例过程500、示例过程600、示例过程700、示例过程800、示例数据流900、数据流1000的示例第一部分、数据流1100的示例第二部分、数据流1200的示例第三部分、示例过程1300、示例计算机系统1400、示例计算机系统1500、示例过程1600、示例计算机系统1700和/或示例过程1800描述的至少一个方面。
图44是根据至少一个实施例的编译代码以在图38-41的编程平台之一上执行的更详细图示。在至少一个实施例中,编译器4401被配置为接收源代码4400,编译源代码4400,并输出可执行文件4410。在至少一个实施例中,源代码4400是单一源文件,例如.cu文件,.hip.cpp文件或其他格式的文件,其包括主机代码和设备代码两者。在至少一个实施例中,编译器4401可以是但不限于用于在.cu文件中编译CUDA代码的NVIDIACUDA编译器(“NVCC”),或用于在.hip.cpp文件中编译HIP代码的HCC编译器。
在至少一个实施例中,编译器4401包括编译器前端4402,主机编译器4405,设备编译器4406和链接器4409。在至少一个实施例中,编译器前端4402被配置为在源代码4400中将设备代码4404与主机代码4403分开。在至少一个实施例中,设备代码4404由设备编译器4406编译成设备可执行代码4408,如所描述的,其可以包括二进制代码或IR代码。在至少一个实施例中,主机代码4403由主机编译器4405单独地编译成主机可执行代码4407。在至少一个实施例中,对于NVCC,主机编译器4405可以是但不限于输出本机目标代码的通用C/C++编译器,而设备编译器4406可以是但不限于基于低级虚拟机(“LLVM”)的编译器,其将LLVM编译器基础架构分叉,并输出PTX代码或二进制代码。在至少一个实施例中,对于HCC,主机编译器4405和设备编译器4406两者可以是但不限于输出目标二进制代码的基于LLVM的编译器。
在至少一个实施例中,在将源代码4400编译成主机可执行代码4407和设备可执行代码4408之后,链接器4409将主机和设备可执行代码4407和4408在可执行文件4410中链接到一起。在至少一个实施例中,主机和PTX的本机目标代码或设备的二进制代码可以在可执行和可链接格式(“ELF”)文件中链接在一起,该文件是用于存储目标代码的容器格式。
在至少一个实施例中,利用关于图44所示或描述的至少一个组件来实现结合图1-18描述的技术和/或功能。在至少一个实施例中,源代码4400中指定的可执行文件4410被用于执行异步存储器分配和/或异步存储器解除分配。在至少一个实施例中,源代码4400中指定的可执行文件4410用于执行API,以使一个或更多个存储器位置被异步分配给一个或更多个处理器。在至少一个实施例中,源代码4400中指定的可执行文件4410被用于执行API以使一个或更多个存储器位置被异步分配到一个或更多个处理器。在至少一个实施例中,源代码4400中指定的可执行文件4410被用于执行API以使一个或更多个存储器位置被从一个或更多个处理器中异步地解除分配。在至少一个实施例中,源代码4400中指定的可执行文件4410被用于执行关于示例计算机系统100、示例计算机系统200、示例计算机系统300、示例计算机系统400、示例过程500、示例过程600、示例过程700、示例过程800、示例数据流900、数据流1000的示例第一部分、数据流1100的示例第二部分、数据流1200的示例第三部分、示例过程1300、示例计算机系统1400、示例计算机系统1500、示例过程1600、示例计算机系统1700和/或示例过程1800描述的至少一个方面。
图45示出了根据至少一个实施例的在编译源代码之前转换源代码。在至少一个实施例中,源代码4500通过转换工具4501传递,转换工具4501将源代码4500转换成转换后的源代码4502。在至少一个实施例中,编译器4503用于将转换后的源代码4502编译成主机可执行代码4504和设备可执行代码4505,其过程类似于由编译器4301将源代码4300编译成主机可执行代码4302和设备可执行代码4303的过程,如以上结合图43所讨论的。
在至少一个实施例中,由转换工具4501执行的转换被用于移植(port)源代码4500,以在与最初打算在其上运行的不同的环境中执行。在至少一个实施例中,转换工具4501可以包括但不限于HIP转换器,其用于将用于CUDA平台的CUDA代码“移植(hipify)”为可以在ROCm平台上编译和执行的HIP代码。在至少一个实施例中,源代码4500的转换可以包括:解析源代码4500,并将对由一个编程模型(例如,CUDA)提供的API的调用转换为对由另一编程模型(例如,例如,HIP)提供的API的相应调用,如下面结合图46A-47更详细地讨论的。返回到移植CUDA代码的示例,在至少一个实施例中,对CUDA运行时API、CUDA驱动器API和/或CUDA库的调用可以被转换为对应的HIP API调用。在至少一个实施例中,由转换工具4501执行的自动转换有时可能是不完整的,需要额外的人工来完全移植源代码4500。
在至少一个实施例中,利用关于图45所示或描述的至少一个组件来实现结合图1-18描述的技术和/或功能。在至少一个实施例中,源代码4500中指定的主机可执行代码4504或设备可执行代码4505中的至少一个被用于执行异步存储器分配和/或异步存储器解除分配。在至少一个实施例中,源代码4500中指定的主机可执行代码4504或设备可执行代码4505中的至少一个用于执行API,以使一个或更多个存储器位置被异步分配给一个或更多个处理器。在至少一个实施例中,源代码4500中指定的主机可执行代码4504或设备可执行代码4505中的至少一个被用于执行API以使一个或更多个存储器位置被异步分配到一个或更多个处理器。在至少一个实施例中,源代码4500中指定的主机可执行代码4504或设备可执行代码4505中的至少一个被用于执行API以使一个或更多个存储器位置被从一个或更多个处理器中异步地解除分配。在至少一个实施例中,源代码4500中指定的主机可执行代码4504或设备可执行代码4505中的至少一个被用于执行关于示例计算机系统100、示例计算机系统200、示例计算机系统300、示例计算机系统400、示例过程500、示例过程600、示例过程700、示例过程800、示例数据流900、数据流1000的示例第一部分、数据流1100的示例第二部分、数据流1200的示例第三部分、示例过程1300、示例计算机系统1400、示例计算机系统1500、示例过程1600、示例计算机系统1700和/或示例过程1800描述的至少一个方面。
配置GPU用于通用计算
以下各图阐述但不限于根据至少一个实施例的用于编译和执行计算源代码的示例性架构。
图46A示出了根据至少一个实施例的被配置为使用不同类型的处理单元来编译和执行CUDA源代码4610的系统46A00。在至少一个实施例中,系统46A00包括但不限于CUDA源代码4610,CUDA编译器4650,主机可执行代码4670(1),主机可执行代码4670(2),CUDA设备可执行代码4684,CPU 4690,启用CUDA的GPU 4694,GPU 4692,CUDA到HIP转换工具4620,HIP源代码4630,HIP编译器驱动器4640,HCC 4660和HCC设备可执行代码4682。
在至少一个实施例中,CUDA源代码4610是CUDA编程语言的人类可读代码的集合。在至少一个实施例中,CUDA代码是CUDA编程语言的人类可读代码。在至少一个实施例中,CUDA编程语言是C++编程语言的扩展,其包括但不限于定义设备代码以及区分设备代码和主机代码的机制。在至少一个实施例中,设备代码是在编译之后可在设备上并行执行的源代码。在至少一个实施例中,设备可以是针对并行指令处理而优化的处理器,例如启用CUDA的GPU 4690、GPU 4692或另一GPGPU等。在至少一个实施例中,主机代码是在编译后可以在主机上执行的源代码。在至少一个实施例中,主机是针对顺序指令处理而优化的处理器,例如CPU 4690。
在至少一个实施例中,CUDA源代码4610包括但不限于,任意数量(包括零)的全局函数4612,任意数量(包括零)的设备函数4614,任意数量(包括零)的主机函数4616,以及任意数量(包括零)的主机/设备函数4618。在至少一个实施例中,全局函数4612,设备函数4614,主机函数4616和主机/设备函数4618在CUDA源代码4610中可以混合。在至少一个实施例中,每个全局函数4612可在设备上执行并且可从主机调用。因此,在至少一个实施例中,全局函数4612中的一个或更多个可以充当设备的入口点。在至少一个实施例中,每个全局函数4612是内核。在至少一个实施例中以及在一种称为动态并行性的技术中,一个或更多个全局函数4612定义了一内核,该内核可以在设备上执行并且可以从这样的设备调用。在至少一个实施例中,内核在执行期间由设备上的N个不同线程并行执行N次(其中N为任何正整数)。
在至少一个实施例中,每个设备函数4614在设备上执行并且只能从这样的设备调用。在至少一个实施例中,每个主机函数4616在主机上执行并且只能从这样的主机调用。在至少一个实施例中,每个主机/设备函数4616既定义了在主机上可执行并且只能从这样的主机调用的函数的主机版本,也定义了在设备上可执行并且只能从这样的设备调用的函数的设备版本。
在至少一个实施例中,CUDA源代码4610还可包括但不限于对通过CUDA运行时API4602定义的任意数量的函数的任意数量的调用。在至少一个实施例中,CUDA运行时API4602可以包括但不限于在主机上执行的任意数量的函数,用于分配和解除分配设备存储器,在主机存储器和设备存储器之间传输数据,管理具有多个设备的系统等。在至少一个实施例中,CUDA源代码4610还可以包括对在任意数量的其他CUDA API中指定的任意数量的函数的任意数量的调用。在至少一个实施例中,CUDA API可以是被设计为由CUDA代码使用的任何API。在至少一个实施例中,CUDA API包括但不限于CUDA运行时API 4602,CUDA驱动器API,用于任意数量的CUDA库的API等。在至少一个实施例中并且相对于CUDA运行时API4602,CUDA驱动器API是较低级别的API,但可以提供对设备的更细粒度的控制。在至少一个实施例中,CUDA库的示例包括但不限于cuBLAS,cuFFT,cuRAND,cuDNN等。
在至少一个实施例中,CUDA编译器4650编译输入的CUDA代码(例如,CUDA源代码4610)以生成主机可执行代码4670(1)和CUDA设备可执行代码4684。在至少一个实施例中,CUDA编译器4650是NVCC。在至少一个实施例中,主机可执行代码4670(1)是在CPU 4690上可执行的输入源代码中包括的主机代码的编译版本。在至少一个实施例中,CPU4690可以是针对顺序指令处理而优化的任何处理器。
在至少一个实施例中,CUDA设备可执行代码4684是在启用CUDA的GPU 4694上可执行的输入源代码中包括的设备代码的编译版本。在至少一个实施例中,CUDA设备可执行代码4684包括但不限于二进制代码。在至少一个实施例中,CUDA设备可执行代码4684包括但不限于IR代码,例如PTX代码,该IR代码在运行时被设备驱动器进一步编译为用于特定目标设备(例如,启用CUDA的GPU 4694)的二进制代码。在至少一个实施例中,启用CUDA的GPU4694可以是针对并行指令处理而优化并且支持CUDA的任何处理器。在至少一个实施例中,启用CUDA的GPU 4694由加利福尼亚州圣克拉拉市的NVIDIA公司开发。
在至少一个实施例中,CUDA到HIP转换工具4620被配置为将CUDA源代码4610转换成功能上相似的HIP源代码4630。在至少一个实施例中,HIP源代码4630是HIP编程语言的人类可读代码的集合。在至少一个实施例中,HIP代码是HIP编程语言的人类可读代码。在至少一个实施例中,HIP编程语言是C++编程语言的扩展,其包括但不限于CUDA机制的功能上相似的版本,用于定义设备代码并区分设备代码和主机代码。在至少一个实施例中,HIP编程语言可以包括CUDA编程语言的功能的子集。在至少一个实施例中,例如,HIP编程语言包括但不限于定义全局函数4612的机制,但是这样的HIP编程语言可能缺乏对动态并行性的支持,因此,在HIP代码中定义的全局函数4612仅可从主机调用。
在至少一个实施例中,HIP源代码4630包括但不限于任意数量(包括零)的全局函数4612,任意数量(包括零)的设备函数4614,任意数量(包括零)的主机函数4616以及任意数量(包括零)的主机/设备函数4618。在至少一个实施例中,HIP源代码4630还可以包括对在HIP运行时API4632中指定的任意数量的函数的任意数量的调用。在一个实施例中,HIP运行时API 4632包括但不限于CUDA运行时API 4602中包括的函数的子集的功能上相似的版本。在至少一个实施例中,HIP源代码4630还可以包括对在任意数量的其他HIP API中指定的任意数量的函数的任意数量的调用。在至少一个实施例中,HIP API可以是被设计为供HIP代码和/或ROCm使用的任何API。在至少一个实施例中,HIP API包括但不限于HIP运行时API 4632,HIP驱动器API,用于任意数量的HIP库的API,用于任意数量的ROCm库的API等。
在至少一个实施例中,CUDA到HIP转换工具4620将CUDA代码中的每个内核调用从CUDA语法转换为HIP语法,并将CUDA代码中的任意数量的其他CUDA调用转换为任意数量的其他功能上相似的HIP调用。在至少一个实施例中,CUDA调用是对在CUDA API中指定的函数的调用,并且HIP调用是对在HIP API中指定的函数的调用。在至少一个实施例中,CUDA到HIP转换工具4620将对在CUDA运行时API 4602中指定的函数的任意数量的调用转换为对在HIP运行时API 4632中指定的函数的任意数量的调用。
在至少一个实施例中,CUDA到HIP转换工具4620是被称为hipify-perl的工具,其执行基于文本的转换过程。在至少一个实施例中,CUDA到HIP转换工具4620是被称为hipify-clang的工具,相对于hipify-perl,其执行更复杂且更鲁棒的转换过程,该过程涉及使用clang(编译器前端)解析CUDA代码,然后转换得到的符号。在至少一个实施例中,除了由CUDA到HIP转换工具4620执行的那些修改之外,将CUDA代码正确地转换成HIP代码可能还需要修改(例如,手动编辑)。
在至少一个实施例中,HIP编译器驱动器4640是确定目标设备4646,然后配置与目标设备4646兼容的编译器以编译HIP源代码4630的前端。在至少一个实施例中,目标设备4646是针对并行指令处理而优化的处理器。在至少一个实施例中,HIP编译器驱动器4640可以以任何技术上可行的方式确定目标设备4646。
在至少一个实施例中,如果目标设备4646与CUDA兼容(例如,启用CUDA的GPU4694),则HIP编译器驱动器4640生成HIP/NVCC编译命令4642。在至少一个实施例中并且结合图46B更详细地描述的,HIP/NVCC编译命令4642配置CUDA编译器4650以使用但不限于HIP到CUDA转换头和CUDA运行时库来编译HIP源代码4630。在至少一个实施例中并且响应于HIP/NVCC编译命令4642,CUDA编译器4650生成主机可执行代码4670(1)和CUDA设备可执行代码4684。
在至少一个实施例中,如果目标设备4646与CUDA不兼容,则HIP编译器驱动器4640生成HIP/HCC编译命令4644。在至少一个实施例中并且如结合图46C更详细地描述的,HIP/HCC编译命令4644配置HCC 4660以使用HCC头和HIP/HCC运行时库编译HIP源代码4630。在至少一个实施例中并且响应于HIP/HCC编译命令4644,HCC 4660生成主机可执行代码4670(2)和HCC设备可执行代码4682。在至少一个实施例中,HCC设备可执行代码4682是HIP源代码4630中包含的可在GPU 4692上执行的设备代码的编译版本。在至少一个实施例中,GPU4692可以是针对并行指令处理而优化的、与CUDA不兼容且与HCC兼容的任何处理器。在至少一个实施例中,GPU 4692由加利福尼亚州圣克拉拉市的AMD公司开发。在至少一个实施例中,GPU 4692是不启用CUDA的GPU 4692。
仅出于说明性目的,在图46A中描绘了在至少一个实施例中可以实现为编译CUDA源代码4610以在CPU 4690和不同设备上执行的三个不同流程。在至少一个实施例中,直接CUDA流程编译CUDA源代码4610以在CPU 4690和启用CUDA的GPU 4694上执行,而无需将CUDA源代码4610转换为HIP源代码4630。在至少一个实施例中,间接CUDA流程将CUDA源代码4610转换为HIP源代码4630,然后编译HIP源代码4630以在CPU 4690和启用CUDA的GPU 4694上执行。在至少一个实施例中,CUDA/HCC流程将CUDA源代码4610转换为HIP源代码4630,然后编译HIP源代码4630以在CPU 4690和GPU 4692上执行。
可以通过虚线和一系列气泡注释A1-A3描绘可以在至少一个实施例中实现的直接CUDA流程。在至少一个实施例中,并且如气泡注释A1所示,CUDA编译器4650接收CUDA源代码4610和配置CUDA编译器4650以编译CUDA源代码4610的CUDA编译命令4648。在至少一个实施例中,直接CUDA流程中使用的CUDA源代码4610是用CUDA编程语言编写的,该CUDA编程语言基于除C++之外的其他编程语言(例如C,Fortran,Python,Java等)。在至少一个实施例中,并且响应于CUDA编译命令4648,CUDA编译器4650生成主机可执行代码4670(1)和CUDA设备可执行代码4684(用气泡注释A2表示)。在至少一个实施例中并且如用气泡注释A3所示,主机可执行代码4670(1)和CUDA设备可执行代码4684可以分别在CPU 4690和启用CUDA的GPU4694上执行。在至少一个实施例中,CUDA设备可执行代码4684包括但不限于二进制代码。在至少一个实施例中,CUDA设备可执行代码4684包括但不限于PTX代码,并且在运行时被进一步编译成用于特定目标设备的二进制代码。
可以通过虚线和一系列气泡注释B1-B6来描述可以在至少一个实施例中实现的间接CUDA流程。在至少一个实施例中并且如气泡注释B1所示,CUDA到HIP转换工具4620接收CUDA源代码4610。在至少一个实施例中并且如气泡注释B2所示,CUDA到HIP转换工具4620将CUDA源代码4610转换为HIP源代码4630。在至少一个实施例中并如气泡注释B3所示,HIP编译器驱动器4640接收HIP源代码4630,并确定目标设备4646是否启用了CUDA。
在至少一个实施例中并且如气泡注释B4所示,HIP编译器驱动器4640生成HIP/NVCC编译命令4642,并将HIP/NVCC编译命令4642和HIP源代码4630两者都发送到CUDA编译器4650。在至少一个实施例中并且如结合图46B更详细地描述的,HIP/NVCC编译命令4642配置CUDA编译器4650以使用但不限于HIP到CUDA转换头和CUDA运行时库来编译HIP源代码4630。在至少一个实施例中并且响应于HIP/NVCC编译命令4642,CUDA编译器4650生成主机可执行代码4670(1)和CUDA设备可执行代码4684(用气泡注释B5表示)。在至少一个实施例中并且如气泡注释B6所示,主机可执行代码4670(1)和CUDA设备可执行代码4684可以分别在CPU 4690和启用CUDA的GPU 4694上执行。在至少一个实施例中,CUDA设备可执行代码4684包括但不限于二进制代码。在至少一个实施例中,CUDA设备可执行代码4684包括但不限于PTX代码,并且在运行时被进一步编译成用于特定目标设备的二进制代码。
可以通过实线和一系列气泡注释C1-C6来描述可以在至少一个实施例中实现的CUDA/HCC流程。在至少一个实施例中并且如气泡注释C1所示,CUDA到HIP转换工具4620接收CUDA源代码4610。在至少一个实施例中并且如气泡注释C2所示,CUDA到HIP转换工具4620将CUDA源代码4610转换为HIP源代码4630。在至少一个实施例中并且如气泡注释C3所示,HIP编译器驱动器4640接收HIP源代码4630,并确定目标设备4646未启用CUDA。
在至少一个实施例中,HIP编译器驱动器4640生成HIP/HCC编译命令4644,并且将HIP/HCC编译命令4644和HIP源代码4630两者发送到HCC 4660(用气泡注释C4表示)。在至少一个实施例中并且如结合图46C更详细地描述的,HIP/HCC编译命令4644配置HCC 4660以使用但不限于HCC头和HIP/HCC运行时库编译HIP源代码4630。在至少一个实施例中并且响应于HIP/HCC编译命令4644,HCC 4660生成主机可执行代码4670(2)和HCC设备可执行代码4682(用气泡注释C5表示)。在至少一个实施例中并且如气泡注释C6所示,主机可执行代码4670(2)和HCC设备可执行代码4682可以分别在CPU 4690和GPU 4692上执行。
在至少一个实施例中,在将CUDA源代码4610转换为HIP源代码4630之后,HIP编译器驱动器4640可随后用于生成用于启用CUDA的GPU4694或GPU 4692的可执行代码,而无需将CUDA重新执行为HIP转换工具4620。在至少一个实施例中,CUDA到HIP转换工具4620将CUDA源代码4610转换为HIP源代码4630,然后将其存储在存储器中。在至少一个实施例中,HIP编译器驱动器4640然后配置HCC 4660以基于HIP源代码4630生成主机可执行代码4670(2)和HCC设备可执行代码4682。在至少一个实施例中,HIP编译器驱动器4640随后配置CUDA编译器4650以基于存储的HIP源代码4630生成主机可执行代码4670(1)和CUDA设备可执行代码4684。
图46B示出了根据至少一个实施例的被配置为使用CPU 4690和启用CUDA的GPU4694来编译和执行图46A的CUDA源代码4610的系统4604。在至少一个实施例中,系统4604包括但不限于CUDA源代码4610,CUDA到HIP转换工具4620,HIP源代码4630,HIP编译器驱动器4640,CUDA编译器4650,主机可执行代码4670(1),CUDA设备可执行代码4684,CPU 4690和启用CUDA的GPU 4694。
在至少一个实施例中并且如本文先前结合图46A所描述的,CUDA源代码4610包括但不限于任意数量(包括零)的全局函数4612,任意数量(包括零)的设备函数4614,任意数量(包括零)的主机函数4616以及任意数量(包括零)的主机/设备函数4618。在至少一个实施例中,CUDA源代码4610还包括但不限于对在任意数量的CUDA API中指定的任意数量的函数的任意数量的调用。
在至少一个实施例中,CUDA到HIP转换工具4620将CUDA源代码4610转换成HIP源代码4630。在至少一个实施例中,CUDA到HIP转换工具4620将CUDA源代码4610中的每个内核调用从CUDA语法转换为HIP语法,并将CUDA源代码4610中任意数量的其他CUDA调用转换为任意数量的其他功能上相似的HIP调用。
在至少一个实施例中,HIP编译器驱动器4640确定目标设备4646是启用CUDA的,并且生成HIP/NVCC编译命令4642。在至少一个实施例中,然后HIP编译器驱动器4640经由HIP/NVCC编译命令4642配置CUDA编译器4650以编译HIP源代码4630。在至少一个实施例中,作为配置CUDA编译器4650的一部分,HIP编译器驱动器4640提供对HIP到CUDA转换头4652的访问。在至少一个实施例中,HIP到CUDA转换头4652将任意数量的HIP API中指定的任意数量的机制(例如,函数)转换为任意数量的CUDA API中指定的任意数量的机制。在至少一个实施例中,CUDA编译器4650将HIP到CUDA转换头4652与对应于CUDA运行时API 4602的CUDA运行时库4654结合使用,以生成主机可执行代码4670(1)和CUDA设备可执行代码4684。在至少一个实施例中,然后可以分别在CPU4690和启用CUDA的GPU 4694上执行主机可执行代码4670(1)和CUDA设备可执行代码4684。在至少一个实施例中,CUDA设备可执行代码4684包括但不限于二进制代码。在至少一个实施例中,CUDA设备可执行代码4684包括但不限于PTX代码,并且在运行时被进一步编译成用于特定目标设备的二进制代码。
图46C示出了根据至少一个实施例的系统4606,该系统4606被配置为使用CPU4690和未启用CUDA的GPU 4692来编译和执行图46A的CUDA源代码4610。在至少一个实施例中,系统4606包括但不限于CUDA源代码4610,CUDA到HIP转换工具4620,HIP源代码4630,HIP编译器驱动器4640,HCC 4660,主机可执行代码4670(2),HCC设备可执行代码4682,CPU4690和GPU 4692。
在至少一个实施例中,并且如本文先前结合图46A所描述的,CUDA源代码4610包括但不限于任意数量(包括零)的全局函数4612,任意数量(包括零)的设备函数4614,任意数量(包括零)的主机函数4616以及任意数量(包括零)的主机/设备函数4618。在至少一个实施例中,CUDA源代码4610还包括但不限于对在任意数量的CUDA API中指定的任意数量的函数的任意数量的调用。
在至少一个实施例中,CUDA到HIP转换工具4620将CUDA源代码4610转换成HIP源代码4630。在至少一个实施例中,CUDA到HIP转换工具4620将CUDA源代码4610中的每个内核调用从CUDA语法转换为HIP语法,并将源代码4610中任意数量的其他CUDA调用转换为任意数量的其他功能上相似的HIP调用。
在至少一个实施例中,HIP编译器驱动器4640随后确定目标设备4646不是启用CUDA的,并生成HIP/HCC编译命令4644。在至少一个实施例中,然后HIP编译器驱动器4640配置HCC 4660以执行HIP/HCC编译命令4644,从而编译HIP源代码4630。在至少一个实施例中,HIP/HCC编译命令4644将HCC 4660配置为使用但不限于HIP/HCC运行时库4658和HCC头4656来生成主机可执行代码4670(2)和HCC设备可执行代码4682。在至少一个实施例中,HIP/HCC运行时库4658对应于HIP运行时API 4632。在至少一个实施例中,HCC头4656包括但不限于用于HIP和HCC的任意数量和类型的互操作性机制。在至少一个实施例中,主机可执行代码4670(2)和HCC设备可执行代码4682可以分别在CPU 4690和GPU 4692上执行。
在至少一个实施例中,利用关于图46A-46C所示或描述的至少一个组件来实现结合图1-18描述的技术和/或功能。在至少一个实施例中,系统4600、系统4604或系统4606中的至少一个元件被用于执行异步存储器分配和/或异步存储器解除分配。在至少一个实施例中,系统4600、系统4604或系统4606中的至少一个元件用于执行API,以使一个或更多个存储器位置被异步分配给一个或更多个处理器。在至少一个实施例中,系统4600、系统4604或系统4606中的至少一个元件被用于执行API以使一个或更多个存储器位置被异步分配到一个或更多个处理器。在至少一个实施例中系统4600、系统4604或系统4606中的至少一个元件被用于执行API以使一个或更多个存储器位置被从一个或更多个处理器中异步地解除分配。在至少一个实施例中,系统4600,系统4604或系统4606中的至少一个元件被用于执行关于示例计算机系统100、示例计算机系统200、示例计算机系统300、示例计算机系统400、示例过程500、示例过程600、示例过程700、示例过程800、示例数据流900、数据流1000的示例第一部分、数据流1100的示例第二部分、数据流1200的示例第三部分、示例过程1300、示例计算机系统1400、示例计算机系统1500、示例过程1600、示例计算机系统1700和/或示例过程1800描述的至少一个方面。
图47示出了根据至少一个实施例的由图46C的CUDA到HIP转换工具4620转换的示例性内核。在至少一个实施例中,CUDA源代码4610将给定内核被设计为解决的总体问题划分为可以使用线程块独立解决的相对粗糙的子问题。在至少一个实施例中,每个线程块包括但不限于任意数量的线程。在至少一个实施例中,每个子问题被划分为相对细小的部分(pieces),这些部分可以由线程块中的线程协作并行地解决。在至少一个实施例中,线程块内的线程可以通过共享存储器共享数据并通过同步执行以协调存储器访问来协作。
在至少一个实施例中,CUDA源代码4610将与给定内核相关联的线程块组织成线程块的一维、二维或三维网格。在至少一个实施例中,每个线程块包括但不限于任意数量的线程,并且网格包括但不限于任意数量的线程块。
在至少一个实施例中,内核是使用“__global__”声明说明符(specifier)定义的设备代码中的函数。在至少一个实施例中,使用CUDA内核启动语法4710来指定针对给定内核调用执行内核的网格的尺寸以及相关联的流。在至少一个实施例中,CUDA内核启动语法4710被指定为“KernelName<<<GridSize,BlockSize,SharedMemorySize,Stream>>>(KernelArguments);”。在至少一个实施例中,执行配置语法是“<<<...>>>”构造,其被插入在内核名称(“KernelName”)和内核参数的括号列表(“KernelArguments”)之间。在至少一个实施例中,CUDA内核启动语法4710包括但不限于CUDA启动函数语法而不是执行配置语法。
在至少一个实施例中,“GridSize”是dim3类型的,并且指定网格的尺寸和大小。在至少一个实施例中,类型dim3是CUDA定义的结构,其包括但不限于无符号整数x,y和z。在至少一个实施例中,如果未指定z,则z默认为1。在至少一个实施例中,如果未指定y,则y默认为1。在至少一个实施例中,网格中的线程块的数量等于GridSize.x、GridSize.y和GridSize.z的乘积。在至少一个实施例中,“BlockSize”是dim3类型的,并且指定每个线程块的尺寸和大小。在至少一个实施例中,每线程块的线程数等于BlockSize.x、BlockSize.y和BlockSize.z的乘积。在至少一个实施例中,给定执行内核的每个线程唯一的线程ID,该线程ID可通过内置变量(例如“threadIdx”)在内核内访问。
在至少一个实施例中,关于CUDA内核启动语法4710,“SharedMemorySize”是一可选参数,它指定共享存储器中除静态分配的存储器外,针对给定内核调用为每个线程块动态分配的字节数。在至少一个实施例中并且关于CUDA内核启动语法4710,SharedMemorySize默认为零。在至少一个实施例中并且关于CUDA内核启动语法4710,“流”是可选的参数,其指定相关联的流并且默认为零以指定默认流。在至少一个实施例中,流是按顺序执行的命令序列(其可能由不同的主机线程发出)。在至少一个实施例中,不同的流可以相对于彼此无序地或同时地执行命令。
在至少一个实施例中,CUDA源代码4610包括但不限于用于示例性内核“MatAdd”的内核定义和主函数。在至少一个实施例中,主函数是在主机上执行的主机代码,并且包括但不限于使内核MatAdd在设备上执行的内核调用。在至少一个实施例中,如图所示,内核MatAdd将大小为NxN的两个矩阵A和B相加,其中N为正整数,并将结果存储在矩阵C中。在至少一个实施例中,主函数将threadsPerBlock变量定义为16x16,numBlocks变量为N/16x N/16。在至少一个实施例中,然后主函数指定内核调用“MatAdd<<<numBlocks,threadsPerBlock>>>(A,B,C);”。在至少一个实施例中,并且根据CUDA内核启动语法4710,使用尺寸为N/16×N/16的线程块网格来执行内核MatAdd,其中每个线程块的尺寸为16×16。在至少一个实施例中,每个线程块包括256个线程,创建具有足够块的网格以使每个矩阵元素具有一个线程,并且该网格中的每个线程执行内核MatAdd以执行一个逐对的加法。
在至少一个实施例中,在将CUDA源代码4610转换成HIP源代码4630的同时,CUDA到HIP转换工具4620将CUDA源代码3510中的每个内核调用从CUDA内核启动语法4710转换成HIP内核启动语法4720,并将源代码4610中的任意数量的其他CUDA调用转换为任意数量的其他功能上相似的HIP调用。在至少一个实施例中,HIP内核启动语法4720被指定为“hipLaunchKernelGGL(KernelName,GridSize,BlockSize,SharedMemorySize,Stream,KernelArguments);”。在至少一个实施例中,KernelName,GridSize,BlockSize,ShareMemorySize,Stream和KernelArguments中的每一个在HIP内核启动语法4720中具有与在CUDA内核启动语法4710中(本文先前描述)相同的含义。在至少一个实施例中,参数SharedMemorySize和Stream在HIP内核启动语法4720中是必需的,而在CUDA内核启动语法4710中是可选的。
在至少一个实施例中,除了使内核MatAdd在设备上执行的内核调用之外,图47中描绘的HIP源代码4630的一部分与图47中描绘的CUDA源代码4610的一部分相同。在至少一个实施例中,在HIP源代码4630中定义内核MatAdd,具有与在CUDA源代码4610中定义内核MatAdd相同的“__global__”声明说明符。在至少一个实施例中,在HIP源代码4630中的内核调用是“hipLaunchKernelGGL(MatAdd,numBlocks,threadsPerBlock,0、0,A,B,C);”,而CUDA源代码4610中的相应内核调用是“MatAdd<<<numBlocks,threadsPerBlock>>>(A,B,C);”。
图48更详细地示出了根据至少一个实施例的图46C的未启用CUDA的GPU 4692。在至少一个实施例中,GPU 4692由圣塔克拉拉市的AMD公司开发。在至少一个实施例中,GPU4692可以被配置为以高度并行的方式执行计算操作。在至少一个实施例中,GPU 4692被配置为执行图形管线操作,诸如绘制命令、像素操作、几何计算以及与将图像渲染到显示器相关联的其他操作。在至少一个实施例中,GPU 4692被配置为执行与图形无关的操作。在至少一个实施例中,GPU 4692被配置为执行与图形有关的操作和与图形无关的操作两者。在至少一个实施例中,GPU 4692可以被配置为执行HIP源代码4630中包括的设备代码。
在至少一个实施例中,GPU 4692包括但不限于任意数量的可编程处理单元4820,命令处理器4810,L2高速缓存4822,存储器控制器4870,DMA引擎4880(1),系统存储器控制器4882,DMA引擎4880(2)和GPU控制器4884。在至少一个实施例中,每个可编程处理单元4820包括但不限于工作负载管理器4830和任意数量的计算单元4840。在至少一个实施例中,命令处理器4810读取来自一个或更多个命令队列(未示出)的命令,并将命令分发给工作负载管理器4830。在至少一个实施例中,对于每个可编程处理单元4820,相关的工作负载管理器4830将工作分发给包括在可编程处理单元4820中的计算单元4840。在至少一个实施例中,每个计算单元4840可以执行任意数量的线程块,但是每个线程块在单个计算单元4840上执行。在至少一个实施例中,工作组是线程块。
在至少一个实施例中,每个计算单元4840包括但不限于任意数量的SIMD单元4850和共享存储器4860。在至少一个实施例中,每个SIMD单元4850实现SIMD架构并且被配置为并行执行操作。在至少一个实施例中,每个SIMD单元4850包括但不限于向量ALU 4852和向量寄存器文件4854。在至少一个实施例中,每个SIMD单元4850执行不同的线程束。在至少一个实施例中,线程束是一组线程(例如16个线程),其中线程束中的每个线程属于单个线程块,并且被配置为基于单个指令集来处理不同的数据集。在至少一个实施例中,可以使用预测来禁用线程束中的一个或更多个线程。在至少一个实施例中,通道是线程。在至少一个实施例中,工作项是线程。在至少一个实施例中,波前是线程束。在至少一个实施例中,线程块中的不同波前可一起同步并经由共享存储器4860进行通信。
在至少一个实施例中,可编程处理单元4820被称为“着色引擎”。在至少一个实施例中,除了计算单元4840之外,每个可编程处理单元4820还包括但不限于任意数量的专用图形硬件。在至少一个实施例中,每个可编程处理单元4820包括但不限于任意数量(包括零)的几何处理器,任意数量(包括零)的光栅化器,任意数量(包括零)的渲染后端,工作负载管理器4830和任意数量的计算单元4840。
在至少一个实施例中,计算单元4840共享L2高速缓存4822。在至少一个实施例中,L2高速缓存4822被分区。在至少一个实施例中,GPU4692中的所有计算单元4840可访问GPU存储器4890。在至少一个实施例中,存储器控制器4870和系统存储器控制器4882促进GPU4692与主机之间的数据传输,并且DMA引擎4880(1)使能GPU 4692与此主机之间的异步存储器传输。在至少一个实施例中,存储器控制器4870和GPU控制器4884促进GPU 4692与其他GPU 4692之间的数据传输,并且DMA引擎4880(2)使能GPU 4692与其他GPU 4692之间的异步存储器传输。
在至少一个实施例中,GPU 4692包括但不限于任意数量和类型的系统互连,该系统互连促进在GPU 4692内部或外部的任意数量和类型的直接或间接链接的组件之间的数据和控制传输。在至少一个实施例中,GPU4692包括但不限于耦合到任意数量和类型的外围设备的任意数量和类型的I/O接口(例如,PCIe)。在至少一个实施例中,GPU 4692可以包括但不限于任意数量(包括零)的显示引擎和任意数量(包括零)的多媒体引擎。在至少一个实施例中,GPU 4692实现了存储器子系统,该存储器子系统包括但不限于任意数量和类型的存储器控制器(例如,存储器控制器4870和系统存储器控制器4882)以及专用于一个组件或在多个组件之间共享的存储器设备(例如,共享存储器4860)。在至少一个实施例中,GPU4692实现了高速缓存子系统,该高速缓存子系统包括但不限于一个或更多个高速缓存存储器(例如,L2高速缓存4822),每个高速缓存存储器可以是私有的或在任意数量的组件(例如,SIMD单元4850,计算单元4840和可编程处理单元4820)之间共享。
在至少一个实施例中,利用关于图48所示或描述的至少一个组件来实现结合图1-18描述的技术和/或功能。在至少一个实施例中,GPU 4692或可编程处理单元4820中的至少一个被用于执行异步存储器分配和/或异步存储器解除分配。在至少一个实施例中,GPU4692或可编程处理单元4820中的至少一个用于执行API,以使一个或更多个存储器位置被异步分配给一个或更多个处理器。在至少一个实施例中,GPU 4692或可编程处理单元4820中的至少一个被用于执行API以使一个或更多个存储器位置被异步分配到一个或更多个处理器。在至少一个实施例中,GPU 4692或可编程处理单元4820中的至少一个被用于执行API以使一个或更多个存储器位置被从一个或更多个处理器中异步地解除分配。在至少一个实施例中,GPU 4692或可编程处理单元4820中的至少一个被用于执行关于示例计算机系统100、示例计算机系统200、示例计算机系统300、示例计算机系统400、示例过程500、示例过程600、示例过程700、示例过程800、示例数据流900、数据流1000的示例第一部分、数据流1100的示例第二部分、数据流1200的示例第三部分、示例过程1300、示例计算机系统1400、示例计算机系统1500、示例过程1600、示例计算机系统1700和/或示例过程1800描述的至少一个方面。
图49示出了根据至少一个实施例的示例性CUDA网格4920的线程如何被映射到图48的不同计算单元4840。在至少一个实施例中,并且仅出于说明目的,网格4920具有BX乘以BY乘以1的GridSize(网格大小)和TX乘以TY乘以1的BlockSize(块大小)。因此,在至少一个实施例中,网格4920包括但不限于(BX*BY)线程块4930,每个线程块4930包括但不限于(TX*TY)线程4940。线程4940在图49中被描绘为弯曲箭头。
在至少一个实施例中,网格4920被映射到可编程处理单元4820(1),该可编程处理单元4820(1)包括但不限于计算单元4840(1)-4840(C)。在至少一个实施例中并且如图所示,将(BJ*BY)线程块4930映射到计算单元4840(1),并且将其余线程块4930映射到计算单元4840(2)。在至少一个实施例中,每个线程块4930可以包括但不限于任意数量的线程束,并且每个线程束被映射到图48的不同的SIMD单元4850。
在至少一个实施例中,给定线程块4930中的线程束可以一起同步并通过关联的计算单元4840中包括的共享存储器4860进行通信。例如并且在至少一个实施例中,线程块4930(BJ,1)中的线程束可以一起同步并通过共享存储器4860(1)进行通信。例如并且在至少一个实施例中,线程块4930(BJ+1,1)中的线程束可以一起同步并通过共享存储器4860(2)进行通信。
在至少一个实施例中,利用关于图49所示或描述的至少一个组件来实现结合图1-18描述的技术和/或功能。在至少一个实施例中,示例性CUDA网格4920的至少一个线程被用于执行异步存储器分配和/或异步存储器解除分配。在至少一个实施例中,示例性CUDA网格4920的至少一个线程用于执行API,以使一个或更多个存储器位置被异步分配给一个或更多个处理器。在至少一个实施例中,示例性CUDA网格4920的至少一个线程被用于执行API以使一个或更多个存储器位置被异步分配到一个或更多个处理器。在至少一个实施例中,示例性CUDA网格4920的至少一个线程被用于执行API以使一个或更多个存储器位置被从一个或更多个处理器中异步地解除分配。在至少一个实施例中,示例性CUDA网格4920的至少一个线程被用于执行关于示例计算机系统100、示例计算机系统200、示例计算机系统300、示例计算机系统400、示例过程500、示例过程600、示例过程700、示例过程800、示例数据流900、数据流1000的示例第一部分、数据流1100的示例第二部分、数据流1200的示例第三部分、示例过程1300、示例计算机系统1400、示例计算机系统1500、示例过程1600、示例计算机系统1700和/或示例过程1800描述的至少一个方面。
图50示出了根据至少一个实施例的如何将现有的CUDA代码迁移到数据并行C++代码。数据并行C++(DPC++)可以指单架构专有语言的一种开放的、基于标准的替代方案,其允许开发人员可以跨硬件目标(CPU和加速器,诸如GPU和FPGA)重用代码,并且还为特定加速器执行自定义调整。DPC++根据开发人员可能熟悉的ISO C++使用类似和/或相同的C和C++构造。DPC++结合了Khronos集团(The Khronos Group)的标准SYCL,以支持数据并行性和异构编程。SYCL是指跨平台的抽象层,它建立在OpenCL的底层概念、可移植性和效率之上,它使异构处理器的代码能够使用标准C++以“单源”风格编写。SYCL可以实现单源开发,其中C++模板函数可以包含主机代码和设备代码两者,以构建使用OpenCL加速的复杂算法,然后在不同类型的数据的整个源代码中重用它们。
在至少一个实施例中,使用DPC++编译器来编译可以跨各种硬件目标部署的DPC++源代码。在至少一个实施例中,DPC++编译器用于生成可跨各种硬件目标部署的DPC++应用程序,并且DPC++兼容性工具可用于将CUDA应用程序迁移到DPC++中的多平台程序。在至少一个实施例中,DPC++基础工具包包括:DPC++编译器,用于跨各种硬件目标部署应用程序;DPC++库,用于提高CPU、GPU和FPGA的生产力和性能;DPC++兼容性工具,用于将CUDA应用程序迁移到多平台应用程序;及其任何合适的组合。
在至少一个实施例中,DPC++编程模型用于通过使用现代C++特征来表达与称为数据并行C++的编程语言的并行性来简化与编程CPU和加速器有关的一个或更多个方面。DPC++编程语言可用于针对使用单源语言的主机(例如CPU)和加速器(例如GPU或FPGA)进行代码重用,并清楚地传达执行和内存依赖性。DPC++代码内的映射可用于将应用程序转换为在最能加速工作负载的硬件或硬件设备集上运行。即使在没有可用加速器的平台上,主机也可用于简化设备代码的开发和调试。
在至少一个实施例中,CUDA源代码5000作为输入提供给DPC++兼容性工具5002以生成人类可读的DPC++5004。在至少一个实施例中,人类可读的DPC++5004包括由DPC++兼容性工具5002生成的内联注释,其指导开发人员如何和/或在何处修改DPC++代码以完成编码和调整到所需性能5006,从而生成DPC++源代码5008。
在至少一个实施例中,CUDA源代码5000是或包括CUDA编程语言中人类可读源代码的集合。在至少一个实施例中,CUDA源代码5000是采用CUDA编程语言的人类可读源代码。在至少一个实施例中,CUDA编程语言是C++编程语言的扩展,其包括但不限于定义设备代码和区分设备代码和主机代码的机制。在至少一个实施例中,设备代码是源代码,其在编译后可在设备(例如,GPU或FPGA)上执行,并且可以包括可在设备的一个或更多个处理器核上执行的一个或更多个可并行工作流。在至少一个实施例中,设备可以是处理器,其针对并行指令处理进行优化,例如启用CUDA的GPU、GPU或另一GPGPU等。在至少一个实施例中,主机代码是在编译后可在主机上执行的源代码。在至少一个实施例中,主机代码和设备代码中的一些或全部可以跨CPU和GPU/FPGA并行执行。在至少一个实施例中,主机是针对顺序指令处理而优化的处理器,例如CPU。结合图50描述的CUDA源代码5000可与本文档中其他地方讨论的内容一致。
在至少一个实施例中,DPC++兼容性工具5002指的是用于促进将CUDA源代码5000迁移到DPC++源代码5008的可执行工具、程序、应用程序或任何其他合适类型的工具。在至少一个实施例中,DPC++兼容性工具5002是一种基于命令行的代码迁移工具,其可用作DPC++工具包的一部分,用于将现有的CUDA源移植到DPC++。在至少一个实施例中,DPC++兼容性工具5002将CUDA应用程序的一些或全部源代码从CUDA转换为DPC++,并生成至少部分用DPC++编写的结果文件,称为人类可读的DPC++5004。在至少一个实施例中,人类可读的DPC++5004包括由DPC++兼容性工具5002生成的注释,以指示可能需要用户干预的地方。在至少一个实施例中,当CUDA源代码5000调用没有类似DPC++API的CUDA API时,用户干预是必要的;需要用户干预的其他示例将在后面更详细地讨论。
在至少一个实施例中,用于迁移CUDA源代码5000(例如,应用程序或其部分)的工作流包括创建一个或更多个编译数据库文件;使用DPC++兼容性工具5002将CUDA迁移到DPC++;完成迁移并验证正确性,从而生成DPC++源代码5008;并使用DPC++编译器编译DPC++源代码5008以生成DPC++应用程序。在至少一个实施例中,兼容性工具提供了一种实用程序,该实用程序截获Makefile执行时使用的命令并将它们存储在编译数据库文件中。在至少一个实施例中,文件以JSON格式存储。在至少一个实施例中,拦截构建命令将Makefile命令转换为DPC兼容性命令。
在至少一个实施例中,拦截-构建(intercept-build)是一种实用程序脚本,其拦截构建进程以捕获编译选项、宏定义和包括路径,并将该数据写入编译数据库文件。在至少一个实施例中,编译数据库文件是JSON文件。在至少一个实施例中,DPC++兼容性工具5002解析编译数据库并在迁移输入源时应用选项。在至少一个实施例中,拦截-构建的使用是可选的,但强烈推荐用于基于Make或CMake的环境。在至少一个实施例中,迁移数据库包括命令、目录和文件:命令可以包括必要的编译标志;目录可包括到报头文件的路径;文件可包括到CUDA文件的路径。
在至少一个实施例中,DPC++兼容性工具5002通过尽可能生成DPC++来将用CUDA编写的CUDA代码(例如,应用程序)迁移到DPC++。在至少一个实施例中,DPC++兼容性工具5002作为工具包的一部分是可用的。在至少一个实施例中,DPC++工具包包括拦截-构建工具。在至少一个实施例中,拦截-构建工具创建编译数据库,该编译数据库捕获编译命令以迁移CUDA文件。在至少一个实施例中,DPC++兼容性工具5002使用拦截-构建工具生成的编译数据库将CUDA代码迁移到DPC++。在至少一个实施例中,非CUDA C++代码和文件被原样迁移。在至少一个实施例中,DPC++兼容性工具5002生成人类可读的DPC++5004,其可以是DPC++代码,如由DPC++兼容性工具5002生成的,不能由DPC++编译器编译并且需要额外的管道来验证未正确迁移的代码部分,并且可能涉及手动干预,例如由开发人员进行干预。在至少一个实施例中,DPC++兼容性工具5002提供嵌入代码中的提示或工具以帮助开发人员手动迁移无法自动迁移的附加代码。在至少一个实施例中,迁移是针对源文件、项目或应用程序的一次性活动。
在至少一个实施例中,DPC++兼容性工具50002能够成功地将CUDA代码的所有部分迁移到DPC++,并且可以简单地存在用于手动验证和调整所生成的DPC++源代码的性能的可选步骤。在至少一个实施例中,DPC++兼容性工具5002直接生成由DPC++编译器编译的DPC++源代码5008,而不需要或不利用人工干预来修改由DPC++兼容性工具5002生成的DPC++代码。在至少一个实施例中,DPC++兼容性工具生成可编译的DPC++代码,开发人员可以根据性能、可读性、可维护性和其他各种考虑因素或其任何组合选择性地对其进行调整。
在至少一个实施例中,至少部分地使用DPC++兼容性工具5002将一个或更多个CUDA源文件迁移到DPC++源文件。在至少一个实施例中,CUDA源代码包括一个或更多个头(header)文件,该头文件可以包括CUDA头文件。在至少一个实施例中,CUDA源文件包括可用于打印文本的<cuda.h>头文件和<stdio.h>头文件。在至少一个实施例中,向量加法内核CUDA源文件的一部分可以写成或相关于:
Figure BDA0003991081560001271
Figure BDA0003991081560001281
在至少一个实施例中,并结合以上呈现的CUDA源文件,DPC++兼容性工具5002解析CUDA源代码并且用适当的DPC++和SYCL头文件替换头文件。在至少一个实施例中,DPC++头文件包括助手声明。在CUDA中,存在线程ID的概念,相应地,在DPC++或SYCL中,针对每个元素都有本地标识符。
在至少一个实施例中,并且与以上呈现的CUDA源文件相关,有两个向量A和B,它们被初始化并且向量相加结果作为VectorAddKernel()的一部分被放入向量C中。在至少一个实施例中,作为将CUDA代码迁移到DPC++代码的一部分,DPC++兼容性工具5002经由本地ID将用于索引工作元素的CUDA线程ID转换为工作元素的SYCL标准寻址。在至少一个实施例中,可以优化由DPC++兼容性工具5002生成的DPC++代码——例如,通过降低nd_item的维度,从而增加存储器和/或处理器利用率。
在至少一个实施例中并且结合以上呈现的CUDA源文件,存储器分配被迁移。在至少一个实施例中,依赖于诸如平台、设备、上下文和队列之类的SYCL概念,将cudaMalloc()迁移到设备和上下文被传递到的统一共享存储器SYCL调用malloc_device()。在至少一个实施例中,SYCL平台可以具有多个设备(例如,主机和GPU设备);设备可具有多个队列,可以向其提交作业;每个设备都可具有上下文;并且上下文可具有多个设备并管理共享内存对象。
在至少一个实施例中并结合以上呈现的CUDA源文件,main()函数调用(invoke)或调用(call)VectorAddKernel()以将两个向量A和B相加并将结果存储在向量C中。在至少一个实施例中,调用VectorAddKernel()的CUDA代码被DPC++代码替换,以将内核提交到命令队列以供执行。在至少一个实施例中,命令组处理程序cgh传递提交到队列的数据、同步和计算,parallel_for被调用用于调用VectorAddKernel()的该工作组中的多个全局元素和多个工作项。
在至少一个实施例中并结合以上呈现的CUDA源文件,将复制设备存储器和然后向量A、B和C的空闲存储器的CUDA调用迁移到对应的DPC++调用。在至少一个实施例中,C++代码(例如,用于打印浮点变量向量的标准ISO C++代码)被原样迁移,无需由DPC++兼容性工具5002进行修改。在至少一个实施例中,DPC++兼容性工具5002修改用于内存设置和/或主机调用以在加速设备上执行内核的CUDA API。在至少一个实施例中并结合以上呈现的CUDA源文件,相应的人类可读DPC++5004(例如,可编译的)被编写为或相关于:
Figure BDA0003991081560001291
Figure BDA0003991081560001301
在至少一个实施例中,人类可读的DPC++5004指的是由DPC++兼容性工具5002生成的输出并且可以以一种或另一种方式进行优化。在至少一个实施例中,由DPC++兼容性工具5002生成的人类可读的DPC++5004可以在迁移后由开发人员手动编辑以使其更易于维护、性能或其他考虑。在至少一个实施例中,由DPC++兼容性工具50002生成的DPC++代码(例如公开的DPC++)可以通过为每个malloc_device()调用删除对get_current_device()和/或get_default_context()的重复调用来优化。在至少一个实施例中,上面生成的DPC++代码使用3维nd_range,其可以重构为仅使用单个维度,从而减少内存使用。在至少一个实施例中,开发人员可以手动编辑由DPC++兼容工具5002生成的DPC++代码,用访问器替换统一共享内存的使用。在至少一个实施例中,DPC++兼容性工具5002具有改变其如何将CUDA代码迁移到DPC++代码的选项。在至少一个实施例中,DPC++兼容性工具5002是冗长的,因为它使用通用模板将CUDA代码迁移到DPC++代码,DPC++代码适用于大量情况。
在至少一个实施例中,CUDA到DPC++的迁移工作流包括以下步骤:使用拦截-构建脚本准备迁移;使用DPC++兼容性工具5002执行CUDA项目到DPC++的迁移;人工审查和编辑迁移的源文件以确保其完整性和正确性;以及编译最终的DPC++代码以生成DPC++应用程序。在至少一个实施例中,在一种或更多种场景中可能需要人工审查DPC++源代码,包括但不限于:迁移的API不返回错误代码(CUDA代码可以返回错误代码,该错误代码随后可以被应用程序使用,但是SYCL使用异常来报告错误,因此不会使用错误代码来显露错误);DPC++不支持CUDA计算能力相关逻辑;无法删除语句。在至少一个实施例中,DPC++代码需要人工干预的场景可以包括但不限于:错误代码逻辑替换为(*,0)代码或注释掉;等效的DPC++API不可用;CUDA计算能力相关逻辑;硬件相关API(clock());缺少特征不受支持的API;执行时间测量逻辑;处理内置向量类型冲突;cuBLAS API的迁移;以及更多。
在至少一个实施例中,本文描述的一种或更多种技术利用一个API编程模型。在至少一个实施例中,oneAPI编程模型指的是用于与不同计算加速器架构交互的编程模型。在至少一个实施例中,oneAPI是指被设计成与各种计算加速器架构交互的应用编程接口(API)。在至少一个实施例中,oneAPI编程模型利用DPC++编程语言。在至少一个实施例中,DPC++编程语言是指用于数据并行编程生产力的高级语言。在至少一个实施例中,DPC++编程语言至少部分地基于C和/或C++编程语言。在至少一个实施例中,oneAPI编程模型是诸如由加利福尼亚州圣克拉拉市的英特尔公司开发的那些编程模型。
在至少一个实施例中,利用oneAPI和/或oneAPI编程模型来与各种加速器、GPU、处理器、和/或其变体、架构进行交互。在至少一个实施例中,oneAPI包括实现各个功能的一组库。在至少一个实施例中,oneAPI至少包括至少oneAPI DPC++库、oneAPI数学内核库、oneAPI数据分析库、oneAPI深度神经网络库、oneAPI集合通信库、oneAPI线程构建块库、oneAPI视频处理库和/或其变型。
在至少一个实施例中,oneAPI DPC++库(也称为oneDPL)是实现算法和功能以加速DPC++内核编程的库。在至少一个实施例中,oneDPL实现一个或更多个标准模板库(STL)功能。在至少一个实施例中,oneDPL实现一个或更多个并行STL功能。在至少一个实施例中,oneDPL提供一组库类别和函数,诸如并行算法、迭代器、函数对象类、基于范围的API和/或其变型。在至少一个实施例中,oneDPL实现C++标准库的一个或更多个类别和/或函数。在至少一个实施例中,oneDPL实现一个或更多个随机数生成器函数。
在至少一个实施例中,oneAPI数学内核库(也称为oneMKL)是实现用于各个数学函数和/或运算的各个优化和并行化例程的库。在至少一个实施例中,oneMKL实现一个或更多个基本线性代数子程序(BLAS)和/或线性代数封装(LAPACK)密集线性代数例程。在至少一个实施例中,oneMKL实现一个或更多个稀疏BLAS线性代数例程。在至少一个实施例中,oneMKL实现一个或更多个随机数生成器(RNG)。在至少一个实施例中,oneMKL实现用于对向量进行数学运算的一个或更多个向量数学(VM)例程。在至少一个实施例中,oneMKL实现一个或更多个快速傅里叶变换(FFT)函数。
在至少一个实施例中,oneAPI数据分析库(也称为oneDAL)是实现各个数据分析应用和分布式计算的库。在至少一个实施例中,oneDAL以批处理、在线处理和分布式处理模式的计算实现用于数据分析的预处理、变换、分析、建模、验证和决策的各个算法。在至少一个实施例中,oneDAL实现各个C++和/或Java API以及对一个或更多个数据源的各种连接器。在至少一个实施例中,oneDAL实现对传统C++接口的DPC++API扩展,并且使得GPU能够用于各种算法。
在至少一个实施例中,oneAPI深度神经网络库(也被称为oneDNN)是实现各个深度学习函数的库。在至少一个实施例中,oneDNN实现各个神经网络、机器学习和深度学习函数、算法和/或其变型。
在至少一个实施例中,oneAPI集合通信库(也称为oneCCL)是实现深度学习和机器学习工作负载的各个应用的库。在至少一个实施例中,在下级通信中间件(诸如消息传递接口(MPI)和libfabrics))上构建oneCCL。在至少一个实施例中,oneCCL启用一组深度学习特定优化,诸如优先化、持久操作、无序执行和/或其变型。在至少一个实施例中,oneCCL实现各个CPU和GPU功能。
在至少一个实施例中,oneAPI线程构建块库(也被称为oneTBB)是实现用于各个应用的各个并行化过程的库。在至少一个实施例中,oneTBB被用于主机上的基于任务的共享并行编程。在至少一个实施例中,oneTBB实现通用并行算法。在至少一个实施例中,oneTBB实现并发容器。在至少一个实施例中,oneTBB实现可扩展存储器分配器。在至少一个实施例中,oneTBB实现工作窃取任务调度器。在至少一个实施例中,oneTBB实现低级别同步原语(primitive)。在至少一个实施例中,oneTBB是编译器无关的并且可在各个处理器上使用,例如GPU、PPU、CPU和/或其变型。
在至少一个实施例中,oneAPI视频处理库(也称为oneVPL)是用于在一个或更多个应用中加速视频处理的库。在至少一个实施例中,oneVPL实现各个视频解码、编码和处理功能。在至少一个实施例中,oneVPL实施用于CPU、GPU和其他加速器上的媒体管线的各个功能。在至少一个实施例中,oneVPL实现以媒体为中心和视频分析工作负载的设备发现和选择。在至少一个实施例中,oneVPL实现用于零拷贝缓冲区共享的API原语。
在至少一个实施例中,oneAPI编程模型利用DPC++编程语言。在至少一个实施例中,DPC++编程语言是包括但不限于定义设备代码并且在设备代码和主机代码之间进行区分的CUDA机制的功能相似版本的编程语言。在至少一个实施例中,DPC++编程语言可以包括CUDA编程语言的功能的子集。在至少一个实施例中,使用DPC++编程语言使用oneAPI编程模型来执行一个或更多个CUDA编程模型操作。
应当注意,虽然本文描述的示例实施例可以涉及CUDA编程模型,但本文描述的技术可以与任何合适的编程模型一起使用,诸如HIP、oneAPI和/或其变型。
可以鉴于以下条款来描述本公开的至少一个实施例:
1.一种处理器,包括:一个或更多个电路,用于执行应用程序编程接口(“API”),以使一个或更多个存储器位置从一个或更多个处理器被异步地解除分配。
2.根据条款1所述的处理器,其中所述一个或更多个处理器中的一个或更多个处理器包括图形处理单元(“GPU”)。
3.根据条款1或2所述的处理器,其中所述一个或更多个存储器位置将使用虚拟存储器地址被异步地分配。
4.根据条款1-3中任一项所述的处理器,其中所述一个或更多个存储器位置将使用从存储器池分配的后备存储器被异步地分配。
5.根据条款1-4中任一项所述的处理器,其中所述一个或更多个存储器位置将在所述一个或更多个处理器上执行的进程完成执行时被异步地解除分配。
6.根据条款1-5中任一项所述的处理器,其中所述API至少指示要解除分配的虚拟存储器指针以及指示使用所述一个或更多个存储器位置的操作的流顺序的执行流。
7.根据条款1-6中任一项所述的处理器,其中所述一个或更多个存储器位置是GPU存储器中的存储器位置。
8.根据条款1-7中任一项所述的处理器,其中所述一个或更多个存储器位置响应于所述API而返回到存储器池。
9.一种计算机实现的方法,包括:
执行应用程序编程接口(“API”),以使一个或更多个存储器位置从一个或更多个处理器被异步地解除分配。
10.根据条款9所述的计算机实现的方法,其中所述一个或更多个处理器中的一个或更多个处理器包括图形处理单元(“GPU”)。
11.根据条款9或10所述的计算机实现的方法,其中所述一个或更多个处理器中的一个或更多个处理器包括并行处理单元(“PPU”)。
12.根据条款9-11中任一项所述的计算机实现的方法,其中所述API包括由于异步分配所述一个或更多个存储器位置而接收到的虚拟存储器指针。
13.根据条款9-12中任一项所述的计算机实现的方法,还包括:
将与所述一个或更多个存储器位置相关联的后备存储器返回到存储器池;以及
将所述后备存储器与和所述一个或更多个存储器位置相关联的虚拟存储器指针解除关联。
14.根据条款9-13中任一项所述的计算机实现的方法,还包括:
当进程开始在所述一个或更多个处理器上执行时,异步地分配后备存储器。
15.根据条款9-14中任一项所述的计算机实现的方法,还包括:
当进程在所述一个或更多个处理器上完成执行时,异步地解除分配后备存储器。
16.一种计算机系统,包括一个或更多个处理器和存储可执行指令的存储器,所述可执行指令由于被所述一个或更多个处理器执行,使所述计算机系统执行应用程序编程接口(“API”),以从一个或更多个处理器异步地解除分配一个或更多个存储器位置。
17.根据条款16所述的计算机系统,其中所述一个或更多个处理器中的一个或更多个处理器包括图形处理单元(“GPU”)。
18.根据条款16或17所述的计算机系统,其中所述一个或更多个存储器位置是GPU存储器中的存储器位置。
19.根据条款16-18中任一项所述的计算机系统,其中所述API指示一个或更多个所述可执行指令中的一者或多者的流顺序。
20.根据条款16-19中任一项所述的计算机系统,其中所述API指示响应于异步的存储器分配API而返回的虚拟存储器地址。
21.根据条款16-20中任一项所述的计算机系统,其中一个或更多个所述可执行指令至少包括用于在所述一个或更多个处理器上执行进程的可执行指令。
22.根据条款16-21中任一项所述的计算机系统,其中所述一个或更多个存储器位置将使用虚拟存储器地址被异步地分配。
23.根据条款16-22中任一项所述的计算机系统,其中:
在进程在所述一个或更多个处理器上执行之前,所述一个或更多个存储器位置被异步地分配;以及
在所述进程在所述一个或更多个处理器上执行后,所述一个或更多个存储位置被异步地解除分配。
24.一种机器可读介质,其上存储有一组指令,该组指令如果由一个或更多个处理器执行,则使所述一个或更多个处理器执行应用程序编程接口(“API”),以从一个或更多个处理器异步地解除分配一个或更多个存储器位置。
25.根据条款24所述的机器可读介质,其中所述一个或更多个处理器中的一个或更多个处理器包括图形处理单元(“GPU”)。
26.根据条款24或25所述的机器可读介质,其中所述一个或更多个存储器位置是GPU存储器中的存储器位置。
27.根据条款24-26中任一项所述的机器可读介质,其中:
所述一个或更多个存储器位置将使用虚拟存储器地址被异步地分配;
所述一个或更多个存储器位置将使用从存储器池分配的后备存储器被异步地分配;
所述虚拟存储器地址将与所述后备存储器相关联;以及
所述虚拟存储器地址将由所述API指示。
28.根据条款24-27中任一项所述的机器可读介质,其中至少部分地基于在所述API中指定的流执行顺序来确定所述一个或更多个存储器位置。
29.根据条款24-28中任一项所述的机器可读介质,其中至少部分地基于在所述一个或更多个处理器上执行的多个进程之间的一个或更多个同步事件来确定所述一个或更多个存储器位置。
30.根据条款24-29中任一项所述的机器可读介质,其中:
在进程在所述一个或更多个处理器上执行之前,所述一个或更多个存储器位置被异步地分配给所述一个或更多个处理器;以及
在进程在所述一个或更多个处理器上执行后,所述一个或更多个存储器位置从所述一个或更多个处理器被异步地解除分配。
其他变型在本公开的精神内。因此,尽管公开的技术易于进行各种修改和替代构造,但是某些示出的其实施例在附图中示出并且已经在上面进行了详细描述。然而,应理解,无意将公开内容限制为所公开的一种或更多种特定形式,而是相反,其意图是涵盖落入如所附权利要求书所定义的本公开内容的精神和范围内的所有修改、替代构造和等同物。
除非另有说明或显然与上下文矛盾,否则在描述所公开的实施例的上下文中(特别是在所附权利要求的上下文中),术语“一”和“一个”和“该”以及类似指代的使用应被解释为涵盖单数和复数,而不是作为术语的定义。除非另有说明,否则术语“包括”、“具有”、“包含”和“含有”应被解释为开放式术语(意味着“包括但不限于”)。术语“连接”(在未经修改时指的是物理连接)应解释为部分或全部包含在内、附接到或连接在一起,即使有某些介入。除非本文另外指出,否则本文中对数值范围的引用仅旨在用作分别指代落入该范围内的每个单独值的简写方法,并且每个单独值都被并入说明书中,就如同其在本文中被单独叙述一样。除非另外指出或与上下文矛盾,否则术语“集”(例如“项目集”)或“子集”的使用应解释为包括一个或更多个成员的非空集合。此外,除非另外指出或与上下文矛盾,否则术语相应集的“子集”不一定表示对应集的适当子集,而是子集和对应集可以相等。
除非以其他方式明确指出或与上下文明显矛盾,否则诸如“A,B和C中的至少一个”或“A,B与C中的至少一个”形式的短语之类的连接语在上下文中理解为通常用来表示项目、条款等,其可以是A或B或C,也可以是A和B和C集的任何非空子集。例如,在具有三个成员的集的说明性示例中,连接短语“A,B和C中的至少一个”和“A,B与C中的至少一个”是指以下任意集:{A},{B},{C},{A,B},{A,C},{B,C},{A,B,C}。因此,这种连接语言通常不旨在暗示某些实施例要求存在A中的至少一个,B中的至少一个和C中的至少一个。另外,除非另有说明或与上下文矛盾,否则术语“多个”表示复数的状态(例如,“多个项目”表示多个项目)。多个项目中项目的数量至少为两个,但如果明确指示或通过上下文指示,则可以更多。此外,除非另有说明或从上下文中可以清楚得知,否则短语“基于”是指“至少部分地基于”而不是“仅基于”。
除非本文另外指出或与上下文明显矛盾,否则本文描述的过程的操作可以任何合适的顺序执行。在至少一个实施例中,诸如本文所述的那些过程(或其变形和/或其组合)之类的过程在配置有可执行指令的一个或更多个计算机系统的控制下执行,并且被实现为代码(例如,可执行指令,一个或更多个计算机程序或一个或更多个应用程序),该代码通过硬件或其组合在一个或更多个处理器上共同执行。在至少一个实施例中,代码以例如计算机程序的形式存储在计算机可读存储介质上,该计算机程序包括可由一个或更多个处理器执行的多个指令。在至少一个实施例中,计算机可读存储介质是非暂时性计算机可读存储介质,其排除了暂时性信号(例如,传播的瞬态电或电磁传输),但包括非暂时性数据存储电路(例如,缓冲区、高速缓存和队列)。在至少一个实施例中,代码(例如,可执行代码或源代码)被存储在其上存储有可执行指令的一组一个或更多个非暂时性计算机可读存储介质(或用于存储可执行指令的其他存储器)上,该可执行指令在由计算机系统的一个或更多个处理器执行时(例如,作为被执行的结果),使得计算机系统执行本文所述的操作。在至少一个实施例中,一组非暂时性计算机可读存储介质包括多个非暂时性计算机可读存储介质,并且多个非暂时性计算机可读存储介质中的个体非暂时性存储介质中的一个或更多个缺少全部代码,而是多个非暂时性计算机可读存储介质共同存储全部代码。在至少一个实施例中,可执行指令被执行,以使得不同的指令由不同的处理器执行,例如,非暂时性计算机可读存储介质存储指令,并且主中央处理单元(“CPU”)执行一些指令,而图形处理单元(“GPU”)执行其他指令。在至少一个实施例中,计算机系统的不同组件具有单独的处理器,并且不同的处理器执行指令的不同子集。
因此,在至少一个实施例中,计算机系统被配置为实现单独地或共同地执行本文所述的过程的操作的一个或更多个服务,并且这样的计算机系统被配置有使能实施操作的适用的硬件和/或软件。此外,实现本公开的至少一个实施例的计算机系统是单个设备,并且在另一实施例中是分布式计算机系统,其包括以不同方式操作的多个设备,使得分布式计算机系统执行本文所述的操作,并且使得单个设备不执行所有操作。
本文提供的任何和所有示例或示例性语言(例如,“诸如”)的使用仅旨在更好地阐明本公开的实施例,并且不对公开的范围构成限制,除非另有要求。说明书中的任何语言都不应被解释为表示任何未要求保护的要素对于实践公开内容是必不可少的。
本文引用的所有参考文献,包括出版物、专利申请和专利,均通过引用并入本文,其程度就如同每个参考文献被单独且具体地指示为以引用的方式并入本文并且其全部内容在本文中阐述一样。
在说明书和权利要求中,可以使用术语“耦合”和“连接”以及它们的派生词。应当理解,这些术语可能不旨在作为彼此的同义词。相反,在特定示例中,“连接”或“耦合”可用于指示两个或更多个元件彼此直接或间接物理或电接触。“耦合”也可能意味着两个或更多个元素彼此不直接接触,但仍彼此协作或交互。
除非另有明确说明,否则可以理解,在整个说明书中,诸如“处理”、“计算”、“计算”、“确定”等之类的术语,是指计算机或计算系统或类似的电子计算设备的动作和/或过程,其将计算系统的寄存器和/或存储器中表示为物理量(例如电子)的数据处理和/或转换为类似表示为计算系统的存储器、寄存器或其他此类信息存储、传输或显示设备中的物理量的其他数据。
以类似的方式,术语“处理器”可以指处理来自寄存器和/或存储器的电子数据并将该电子数据转换成可以存储在寄存器和/或存储器中的其他电子数据的任何设备或存储器的一部分。作为非限制性示例,“处理器”可以是CPU或GPU。“计算平台”可以包括一个或更多个处理器。如本文所使用的,“软件”进程可以包括例如随时间执行工作的软件和/或硬件实体,诸如任务、线程和智能代理。同样,每个过程可以指代多个过程,以连续地或间歇地顺序地或并行地执行指令。术语“系统”和“方法”在本文中可以互换使用,只要系统可以体现一种或更多种方法,并且方法可以被认为是系统。
在至少一个实施例中,算术逻辑单元是一组组合逻辑电路,其采用一个或更多个输入来产生结果。在至少一个实施例中,处理器使用算术逻辑单元来实现数学运算,诸如加法、减法或乘法。在至少一个实施例中,算术逻辑单元用于实现逻辑运算,诸如逻辑AND/OR或XOR。在至少一个实施例中,算术逻辑单元是无状态的,并且由被布置为形成逻辑门的物理开关组件(诸如半导体晶体管)制成。在至少一个实施例中,算术逻辑单元可以在内部操作为具有相关联的时钟的有状态逻辑电路。在至少一个实施例中,算术逻辑单元可被构造为具有未维持在相关联的寄存器组中的内部状态的异步逻辑电路。在至少一个实施例中,算术逻辑单元被处理器用来组合被存储在处理器的一个或更多个寄存器中的操作数,并产生可以被处理器存储在另一寄存器或存储器位置中的输出。
在至少一个实施例中,作为处理由处理器检索的指令的结果,处理器向算术逻辑单元呈现一个或更多个输入或操作数,从而使得算术逻辑单元至少部分地基于提供给算术逻辑单元的输入的指令代码来产生结果。在至少一个实施例中,由处理器提供给ALU的指令代码至少部分地基于由处理器执行的指令。在至少一个实施例中,ALU中的组合逻辑处理输入并产生输出,该输出被放置在处理器内的总线上。在至少一个实施例中,处理器选择输出总线上的目的地寄存器、存储器位置、输出设备或输出存储位置,使得对处理器进行计时使得将ALU产生的结果发送到所需位置。
在本文件中,可以参考获得、获取、接收或将模拟或数字数据输入子系统、计算机系统或计算机实现的机器中。可以通过多种方式来完成获得、获取、接收或输入模拟和数字数据的过程,例如通过接收作为函数调用或对应用程序编程接口的调用的参数的数据。在一些实现方式中,可以通过经由串行或并行接口传输数据来完成获得、获取、接收或输入模拟或数字数据的过程。在另一实现方式中,可以通过经由计算机网络将数据从提供实体传输到获取实体来完成获得、获取、接收或输入模拟或数字数据的过程。也可以参考提供、输出、传送、发送或呈现模拟或数字数据。在各种示例中,提供、输出、传送、发送或呈现模拟或数字数据的过程可以通过将数据作为函数调用的输入或输出参数、应用程序编程接口或进程间通信机制的参数进行传输来实现。
尽管上面的讨论阐述了所描述的技术的示例实现,但是其他架构可以用于实现所描述的功能,并且旨在落入本公开的范围内。此外,尽管出于讨论的目的在上面定义了具体的职责分配,但是根据情况,可以以不同的方式分配和划分各种功能和职责。
此外,尽管已经用特定于结构特征和/或方法动作的语言描述了主题,但是应当理解,所附权利要求书所要求保护的主题不必限于所描述的特定特征或动作。而是,公开了特定的特征和动作作为实现权利要求的示例性形式。

Claims (30)

1.一种处理器,包括:
一个或更多个电路,用于执行应用程序编程接口API,以使一个或更多个存储器位置从一个或更多个处理器被异步地解除分配。
2.根据权利要求1所述的处理器,其中所述一个或更多个处理器中的一个或更多个处理器包括图形处理单元GPU。
3.根据权利要求1所述的处理器,其中所述一个或更多个存储器位置将使用虚拟存储器地址被异步地分配。
4.根据权利要求1所述的处理器,其中所述一个或更多个存储器位置将使用从存储器池分配的后备存储器被异步地分配。
5.根据权利要求1所述的处理器,其中所述一个或更多个存储器位置将在所述一个或更多个处理器上执行的进程完成执行时被异步地解除分配。
6.根据权利要求1所述的处理器,其中所述API至少指示要解除分配的虚拟存储器指针以及指示使用所述一个或更多个存储器位置的操作的流顺序的执行流。
7.根据权利要求1所述的处理器,其中所述一个或更多个存储器位置是GPU存储器中的存储器位置。
8.根据权利要求1所述的处理器,其中所述一个或更多个存储器位置响应于所述API而返回到存储器池。
9.一种计算机实现的方法,包括:
执行应用程序编程接口API,以使一个或更多个存储器位置从一个或更多个处理器被异步地解除分配。
10.根据权利要求9所述的计算机实现的方法,其中所述一个或更多个处理器中的一个或更多个处理器包括图形处理单元GPU。
11.根据权利要求9所述的计算机实现的方法,其中所述一个或更多个处理器中的一个或更多个处理器包括并行处理单元PPU。
12.根据权利要求9所述的计算机实现的方法,其中所述API包括由于异步分配所述一个或更多个存储器位置而接收到的虚拟存储器指针。
13.根据权利要求9所述的计算机实现的方法,还包括:
将与所述一个或更多个存储器位置相关联的后备存储器返回到存储器池;以及
将所述后备存储器与和所述一个或更多个存储器位置相关联的虚拟存储器指针解除关联。
14.根据权利要求9所述的计算机实现的方法,还包括:
当进程开始在所述一个或更多个处理器上执行时,异步地分配后备存储器。
15.根据权利要求9所述的计算机实现的方法,还包括:
当进程在所述一个或更多个处理器上完成执行时,异步地解除分配后备存储器。
16.一种计算机系统,包括一个或更多个处理器和存储可执行指令的存储器,所述可执行指令由于被所述一个或更多个处理器执行,使所述计算机系统执行应用程序编程接口API,以从一个或更多个处理器异步地解除分配一个或更多个存储器位置。
17.根据权利要求16所述的计算机系统,其中所述一个或更多个处理器中的一个或更多个处理器包括图形处理单元GPU。
18.根据权利要求16所述的计算机系统,其中所述一个或更多个存储器位置是GPU存储器中的存储器位置。
19.根据权利要求16所述的计算机系统,其中所述API指示一个或更多个所述可执行指令中的一者或多者的流顺序。
20.根据权利要求16所述的计算机系统,其中所述API指示响应于异步的存储器分配API而返回的虚拟存储器地址。
21.根据权利要求16所述的计算机系统,其中一个或更多个所述可执行指令至少包括用于在所述一个或更多个处理器上执行进程的可执行指令。
22.根据权利要求16所述的计算机系统,其中所述一个或更多个存储器位置将使用虚拟存储器地址被异步地分配。
23.根据权利要求16所述的计算机系统,其中:
在进程在所述一个或更多个处理器上执行之前,所述一个或更多个存储器位置被异步地分配;以及
在所述进程在所述一个或更多个处理器上执行后,所述一个或更多个存储位置被异步地解除分配。
24.一种机器可读介质,其上存储有一组指令,该组指令如果由一个或更多个处理器执行,则使所述一个或更多个处理器执行应用程序编程接口API,以从一个或更多个处理器异步地解除分配一个或更多个存储器位置。
25.根据权利要求24所述的机器可读介质,其中所述一个或更多个处理器中的一个或更多个处理器包括图形处理单元GPU。
26.根据权利要求24所述的机器可读介质,其中所述一个或更多个存储器位置是GPU存储器中的存储器位置。
27.根据权利要求24所述的机器可读介质,其中:
所述一个或更多个存储器位置将使用虚拟存储器地址被异步地分配;
所述一个或更多个存储器位置将使用从存储器池分配的后备存储器被异步地分配;
所述虚拟存储器地址将与所述后备存储器相关联;以及
所述虚拟存储器地址将由所述API指示。
28.根据权利要求24所述的机器可读介质,其中至少部分地基于在所述API中指定的流执行顺序来确定所述一个或更多个存储器位置。
29.根据权利要求24所述的机器可读介质,其中至少部分地基于在所述一个或更多个处理器上执行的多个进程之间的一个或更多个同步事件来确定所述一个或更多个存储器位置。
30.根据权利要求24所述的机器可读介质,其中:
在进程在所述一个或更多个处理器上执行之前,所述一个或更多个存储器位置被异步地分配给所述一个或更多个处理器;以及
在进程在所述一个或更多个处理器上执行后,所述一个或更多个存储器位置从所述一个或更多个处理器被异步地解除分配。
CN202211583500.3A 2021-12-09 2022-12-09 异步的存储器解除分配 Pending CN116401039A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/546,979 US20230185706A1 (en) 2021-12-09 2021-12-09 Asynchronous memory deallocation
US17/546,979 2021-12-09

Publications (1)

Publication Number Publication Date
CN116401039A true CN116401039A (zh) 2023-07-07

Family

ID=86498425

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211583500.3A Pending CN116401039A (zh) 2021-12-09 2022-12-09 异步的存储器解除分配

Country Status (3)

Country Link
US (1) US20230185706A1 (zh)
CN (1) CN116401039A (zh)
DE (1) DE102022132008A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220334898A1 (en) * 2021-04-14 2022-10-20 Nvidia Corporation Application programming interface to identify memory

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11593157B2 (en) * 2020-02-05 2023-02-28 Nec Corporation Full asynchronous execution queue for accelerator hardware
WO2021174223A1 (en) * 2020-02-28 2021-09-02 Riera Michael F C2mpi: a hardware-agnostic message passing interface for heterogeneous computing systems
US11995767B2 (en) * 2020-08-17 2024-05-28 Intel Corporation Apparatus and method for compressing ray tracing acceleration structure build data

Also Published As

Publication number Publication date
DE102022132008A1 (de) 2023-06-15
US20230185706A1 (en) 2023-06-15

Similar Documents

Publication Publication Date Title
CN116783578A (zh) 执行矩阵值指示
CN116724292A (zh) 线程组的并行处理
CN116225676A (zh) 用于限制存储器的应用程序编程接口
CN116243921A (zh) 用于修改图代码的技术
CN118339538A (zh) 用于指示图节点执行的应用程序编程接口
CN117136354A (zh) 多架构执行图
CN118043773A (zh) 不受操作数在存储器中的存储位置限制对矩阵操作数进行运算
CN116830101A (zh) 基于处理资源的张量修改
CN118119924A (zh) 用于利用可重用线程执行操作的应用程序编程接口
CN116401039A (zh) 异步的存储器解除分配
CN118103817A (zh) 用于执行选择性加载的应用程序编程接口
CN116521254A (zh) 基于图的存储器存储
CN117222984A (zh) 用于取消关联虚拟地址的应用程序编程接口
CN118302752A (zh) 用于控制图节点执行的应用程序编程接口
CN116436874A (zh) 使用备用指示集的网络组播
CN117178261A (zh) 使图代码更新信号量的应用程序编程接口
CN117157618A (zh) 用于创建和修改图形对象的应用程序编程接口
CN116257353A (zh) 用于互操作性的应用编程接口
CN116257354A (zh) 用于互操作性的应用编程接口
CN116802613A (zh) 同步图形执行
CN116097224A (zh) 同时启动代码
CN116414557A (zh) 异步的存储器分配
CN117480495A (zh) 可配置的处理器分区
CN116802606A (zh) 与位置无关的数据访问
CN116433460A (zh) 用于存储图像的部分的应用程序编程接口

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination