CN116399922A - 一种小型柔性电化学器件中的参比电极的制备方法及其应用 - Google Patents

一种小型柔性电化学器件中的参比电极的制备方法及其应用 Download PDF

Info

Publication number
CN116399922A
CN116399922A CN202211518782.9A CN202211518782A CN116399922A CN 116399922 A CN116399922 A CN 116399922A CN 202211518782 A CN202211518782 A CN 202211518782A CN 116399922 A CN116399922 A CN 116399922A
Authority
CN
China
Prior art keywords
electrode
fishbone
agcl
electrochemical
chlorination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211518782.9A
Other languages
English (en)
Inventor
孙晶
梅亚磊
梁燕
赵欣彤
郎明非
金正睦
那兆霖
王鑫
陈宏牲
郑吉琪
白鹰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University
Original Assignee
Dalian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University filed Critical Dalian University
Priority to CN202211518782.9A priority Critical patent/CN116399922A/zh
Publication of CN116399922A publication Critical patent/CN116399922A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/301Reference electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Hybrid Cells (AREA)

Abstract

一种小型柔性电化学器件中的参比电极的制备方法及其应用,属于电化学领域。本发明通过电化学沉积的方法在经修饰过的Flexdym柔性基底上沉积出具有鱼骨状银纳米线结构的电极,之后对该电极进行电化学氯化制得Fishbone‑Ag/AgClRE。本发明首次以Flexdym材料为柔性基底,首次使用PAA和Gly的混合溶液对Flexdym柔性基底进行亲水修饰。本发明采用电化学氯化法,具有更好的可控性,制备的参比电极性能更优。本发明首次制备出具有鱼骨状银纳米线结构的参比电极,该结构的参比电极相比于已发表或市售的片状参比电极具有更优异的稳定性、使用寿命和存储寿命。本发明参比电极可应用于电化学电催化反应,并易于制备成小型柔性电化学器件。

Description

一种小型柔性电化学器件中的参比电极的制备方法及其应用
技术领域
本发明属于电化学领域,具体涉及一种小型柔性电化学器件中的参比电极的制备方法及其应用。
背景技术
近年来由于小型化集成化设备的发展[1],人们一直致力于研究片状参比电极的制备[2],目前比较广泛使用的制备方法是丝网印刷法[3]和喷墨打印法[4]。但是这两种方法制备的参比电极都是由银纳米粒子组成,制得的参比电极存在问题如下:1.电极稳定性低且与商业硬质玻璃Ag/AgCl参比电极差距很大;2.电极的使用寿命很短;3.电极的长期稳定性很差,影响了电极在实际生活中的应用。之前本发明申请人课题组发表的专利[5],以PDMS基底,制备了一种基于银纳米线的参比电极,发现这种线状和珠状结合的Ag/AgCl纳米结构使参比电极具有更好的稳定性和更长的使用寿命,但是这种参比电极的稳定性还是无法和商业硬质玻璃Ag/AgCl参比电极相媲美。目前,片状参比电极研究领域所要解决的首要难题是如何提高电极的稳定性,使之达到商业硬质玻璃Ag/AgCl参比电极的水平,同时在使用寿命和长期稳定性方面均得到提高。
发明内容
针对现有技术制备的电极稳定性较低、使用寿命短以及长期稳定性较差等不足,本发明公开了一种小型柔性电化学器件中的参比电极即柔性鱼骨状Ag/AgCl参比电极(Fishbone-Ag/AgCl RE)的制备方法及其应用。该电极具有灵敏度高,性能稳定,选择性高且使用寿命长等优点,并可用于电化学的催化与检测。
为实现上述目的,本发明采用的技术方案是:先通过电化学沉积的方法在经修饰过的Flexdym柔性基底上沉积出具有鱼骨状银纳米线结构的电极,之后通过计时电位法对该电极进行氯化制得Fishbone-Ag/AgCl RE。具体步骤如下:
步骤1:制作热塑性弹性体Flexdym材料为柔性基底;
步骤2:将Flexdym柔性基底材料浸泡于修饰液中进行表面亲水修饰;
步骤3:Fishbone-Ag/AgCl RE的制备;
步骤3.1:在Flexdym基底表面均匀涂布AgNWs溶液,得到AgNWs电极;
步骤3.2:将步骤3.1制得的AgNWs电极放置于AgNO3和KNO3混合溶液中,采用计时电位法沉积银,得到Fishbone-Ag电极;
步骤3.3:氯化Fishbone-Ag电极,将步骤3.2中制得的Fishbone-Ag电极作为工作电极,以Ag/AgCl电极为参比电极,以铂电极为对电极,在HCl溶液中,使用计时电位法进行电化学氯化,得到Fishbone-Ag/AgCl参比电极。
上述方法中,步骤2中,所述修饰液为质量分数为1~5%的聚丙烯酸(PAA)和质量分数为5~10%的丙三醇(Gly)的混合溶液,优选的,采用质量分数为3%的PAA与质量分数为7%的Gly的混合溶液。采用PAA和Gly的混合溶液作为修饰液,可增加Flexdym基底的亲水性,可使后续操作中AgNWs溶液更容易涂布。
上述方法中,步骤2中,所述表面亲水修饰方法为:将Flexdym柔性基底材料置于质量分数为3%的PAA与质量分数为7%的Gly组成的修饰液中浸泡30min,70℃真空烘箱中干燥1.5h,重复进行一次修饰液浸泡30min与70℃真空干燥1.5h后,置于90℃的真空烘箱中热固定30min。再重复进行一次修饰液浸泡30min、70℃真空干燥1.5h及90℃真空烘箱热固定30min。
上述方法中,步骤3.1中,AgNWs溶液的浓度为1~5mg/mL,优选的,AgNWs溶液的浓度3mg/mL。
上述方法中,步骤3.2中,AgNO3溶液的浓度为0.01~0.02M,KNO3溶液的浓度0.1~0.2M,优选的,AgNO3溶液的浓度0.015M,KNO3溶液的浓度0.15M。
上述方法中,步骤3.2中,使用计时电位法沉积银,沉积电流为-0.6mA,沉积时间为500~2000s,优选的,沉积电流为-0.6mA,沉积时间为1800s。
上述方法中,步骤3.3中,HCl溶液的浓度为0.05~0.15M,优选的,HCl溶液的浓度0.1M。
上述方法中,步骤3.3中,使用计时电位法进行电化学氯化,氯化电位为OCP+100mV、OCP+150mV、OCP+200mV、OCP+250mV、OCP+300mV,氯化时间为800s、1600s、2400s、2700s、3200s,优选的,氯化电位为OCP+200mV,氯化时间为2700s。
本发明同时保护一种Fishbone-Ag/AgCl RE在乙醇的电化学催化和检测中的应用。用制得的Fishbone-Ag/AgCl为参比电极,采用循环伏安法对乙醇进行催化,实验结果显示自制Fishbone-Ag/AgCl电极的乙醇的氧化峰与商业硬质玻璃Ag/AgCl电极的氧化峰相似,可以用于电催化领域。
本发明同时保护一种Fishbone-Ag/AgCl RE在小型柔性电化学器件中对葡萄糖进行检测的应用,该片状参比电极为电化学系统的小型化、便携化提供了一种可能。
有益效果:本发明首次以Flexdym材料为柔性基底,具有加工时间短,制作工艺简单,成型快等优点。首次使用PAA和Gly的混合溶液对Flexdym柔性基底进行亲水修饰,可有效增加Flexdym基底的亲水性。本发明采用电化学氯化法,具有更好的可控性,制备的参比电极性能更优。本发明首次制备出具有鱼骨状银纳米线结构的电极,该结构的电极相比于已发表或市售的片状参比电极具有非常优异的稳定性、使用寿命和存储寿命。本发明电极可应用于电化学电催化反应,并易于制备成小型柔性电化学器件。
附图说明
图1为化学氯化法制备的Fishbone-Ag/AgCl RE的SEM图;
图2为电化学氯化法制备的Fishbone-Ag/AgCl RE的SEM图;
图3为电化学氯化法制备的Fishbone-Ag/AgCl RE和化学法制备的Fishbone-Ag/AgCl RE的OCP结果;
图4为在最优条件制备的Fishbone-Ag/AgCl RE与AgNWs-Ag/AgCl RE在3MKCl水溶液的OCP曲线;
图5为Fishbone-Ag/AgCl RE与商业硬质玻璃Ag/AgCl RE在3M KCl水溶液的OCP曲线;
图6为Fishbone-Ag/AgCl RE的储存寿命;
图7为Fishbone-Ag/AgCl RE与商业硬质玻璃Ag/AgCl RE催化乙醇氧化峰的对比图;
图8为三电极集成器件实物图;
图9为三电极集成器件催化20mM葡萄糖的循环伏安图。
具体实施方式
下面结合实施例对本发明作进一步说明。实施例中所述实验方法如无特殊说明,均为常规方法;如无特殊说明,所述实验试剂和材料,均可从商业途径获得。
实施例1
一种应用于小型柔性电化学器件中的参比电极Fishbone-Ag/AgCl RE的制备方法,具体步骤如下:
步骤1:制作热塑性弹性体Flexdym材料为柔性基底
本发明使用的Flexdym材料购自浙江扬清芯片技术有限公司,规格为20cm×20cm,厚度为2mm。
取一片Flexdym材料,剪切成4英寸硅片大小的圆形,将其放置在两个单面抛光的硅片之间,硅片已预先用硅烷化试剂进行表面处理,将硅片放在热压机中,设置温度为167℃,时间为6min,之后揭下热压过的Flexdym薄膜,即制成热塑性弹性体Flexdym材料的柔性基底。将此柔性基底切成小块备用。
步骤2:Flexdym基底表面的亲水修饰
步骤2.1:配制质量百分数为3%PAA与7%Gly的混合水溶液;
步骤2.2:将制备好的Flexdym柔性基底浸泡于质量百分数为3%PAA和7%Gly混合溶液中30min,再放入70℃的真空烘箱中干燥1.5h;
步骤2.3:重复步骤2.2一次;
步骤2.4:将Flexdym柔性基底放入90℃的真空烘箱中热固定30min;
步骤2.5:重复步骤2.2、2.4一次,得到表面亲水层修饰的Flexdym基底。
步骤3:Fishbone-Ag/AgCl RE的制备
步骤3.1:制备AgNWs电极,将3mg/mL的AgNWs均匀涂布在Flexdym基底表面,在室温下放置1天,得到AgNWs电极;
步骤3.2:取步骤3.1制得的AgNWs电极放置于0.015M的AgNO3和0.15M的KNO3的混合溶液中采用计时电位法沉积银,沉积电流为-0.6mA,沉积时间为1800s,沉积后的电极具有鱼骨状纳米结构的银枝,将该电极用N2保护,放置备用;
步骤3.3:氯化Fishbone-Ag,将步骤3.2中制得的Fishbone-Ag电极作为工作电极,以Ag/AgCl电极为参比电极,以铂电极为对电极,在0.1MHCl溶液中,使用计时电位法进行氯化,氯化电位为OCP+200mV,氯化时间为2700s,制备得到Fishbone-Ag/AgCl RE,然后使用去离子水清洗3次,N2吹干,在常温下避光保存。
对比例1
本发明采用电化学氯化法,具有更好的可控性,制备的参比电极性能更优。本发明电极与现有技术相比的不同点如表1所示:
表1本发明电极与现有技术相比的不同点
Figure SMS_1
对比例2化学氯化法和电化学氯化法对制备参比电极性能影响的对比
为了进一步验证Fishbone-Ag/AgCl RE的性能,通过开路电位(OCP)测试结果对其稳定性进行对比,并对比化学氯化法和电化学氯化法制备Fishbone-Ag/AgCl RE的外貌及形状。结果表明电化学氯化法制备的Fishbone-Ag/AgCl RE性能要优于化学氯化法制备的Fishbone-Ag/AgCl RE的性能。
首先通过化学氯化法制备Fishbone-Ag/AgCl RE(制备条件已进行优化,即使用20mg/mLNaClO溶液进行氯化,氯化时间为60s),制得的Fishbone-Ag/AgCl RE的SEM图如图1所示。然后通过电化学氯化法制备Fishbone-Ag/AgCl RE(采用最优制备条件条件,即Ag沉积时间为1800s,氯化电位为OCP+200mV,氯化时间为2700s),制得的Fishbone-Ag/AgCl RE的SEM图如图2所示。由图1可知,化学氯化法制备的Fishbone-Ag/AgCl RE其电极表面呈现碎片化的团簇,这是由于Ag与NaClO发生反应大量形成AgCl颗粒所致,剧烈的反应过程使鱼骨结构发生断裂,故即使表面形成了AgCl颗粒,但是断裂的部分仍阻碍了电子的高速传输和转移,从而影响了电极的导电性。而由图2可以清楚地观察到,电化学氯化法制备得到的Fishbone-Ag/AgCl RE仍然保持着鱼骨状结构,这些纳米颗粒按照鱼骨状有序排列。
图3为在3M KCl溶液中电化学氯化法制备的Fishbone-Ag/AgCl RE和化学氯化法制备的Fishbone-Ag/AgCl RE的OCP结果。实验结果表明,电化学氯化法制备的Fishbone-Ag/AgCl RE的OCP更加稳定,而化学氯化法制备的Fishbone-Ag/AgCl RE的电位则出现明显的波动。由此可说明电化学氯化法制备的参比电极的稳定性远远优于化学氯化法制备的参比电极的稳定性。这可能是由于电化学氯化法只在Fishbone银线结构表面形成了AgCl颗粒,Fishbone银线的结构并没有被破坏,电子仍可以在银线层中高速传输。
对比例3Fishbone状RE与NWs状RE的性能对比
对比NWs状的参比电极与鱼骨状Fishbone状参比电极的性能,对Fishbone-Ag/AgCl RE比AgNWs-Ag/AgCl RE进行OCP测试,结果如图4所示。Fishbone-Ag/AgCl RE比AgNWs-Ag/AgCl RE的OCP曲线波动更小,这表明Fishbone-Ag/AgCl RE的稳定性能优于AgNWs-Ag/AgCl RE。分析可能是由于Fishbone状的AgNWs结构有更粗的直径,氯化只在纳米结构表层发生,并不会破坏内层的银,因此氯化后电极的电子传输速率不会受到影响。而AgNWs的直径较细,氯化可能已经破坏了某些银线内层的Ag,使电子传输速率不稳定,因此在OCP测试中出现明显的波动。
对比例4Fishbone-Ag/AgCl RE与商业硬质玻璃Ag/AgCl RE的稳定性对比
对上述两种参比电极进行OCP测试,结果如图5所示,Fishbone-Ag/AgCl RE与商业硬质玻璃Ag/AgCl RE的测试曲线均十分平稳,且差距不大。由此可知本发明制备的柔性参比电极的稳定性可以达到商业硬质玻璃Ag/AgCl RE的水平,而现有技术中的片状参比电极的稳定性均无法达到商业硬质玻璃Ag/AgCl RE的水平。
且在无N2保护的黑暗环境下,对经3天、60天、120天和180天的储存后的Fishbone-Ag/AgCl RE进行稳定性研究,结果表明如图6所示,Fishbone-Ag/AgCl RE在储存60天后性质依然很稳定(ΔE<0.002V),120天和180天后ΔE略有增加(ΔE<0.005V和ΔE<0.008V),ΔE的轻微增加并不影响电极的正常使用,这表明Fishbone-Ag/AgCl RE具有较长的储存期,具有十分突出的运行稳定性。
应用例1将Fishbone-Ag/AgCl RE应用于乙醇的催化
图7为Fishbone-Ag/AgCl RE与商业硬质玻璃Ag/AgCl RE催化乙醇氧化峰的对比图。以PdNPs/AgNWs电极为工作电极、铂丝电极为对电极,分别以自制Fishbone-Ag/AgCl和商业硬质玻璃Ag/AgCl为参比电极,采用循环伏安法对乙醇进行催化,实验结果如图7所示。由图7可知自制Fishbone-Ag/AgCl RE的乙醇的氧化峰与商业硬质玻璃Ag/AgCl RE的氧化峰相似,可说明本发明制备的Fishbone-Ag/AgCl RE可以用于电催化领域。
应用例2将Fishbone-Ag/AgCl RE应用于小型柔性电化学器件并对葡萄糖进行检测
Fishbone-Ag/AgCl RE易于集成,图8是将工作电极(PdNPs/AgNWs电极)、参比电极(自制Fishbone-Ag/AgCl电极)、对电极(铂电极)集成于同一器件的实物图。将该器件用于电催化20mM葡萄糖,所得的循环伏安曲线如图9所示,在0.1V出现了葡萄糖的氧化峰。由此可知,Fishbone-Ag/AgCl RE可应用于小型柔性电化学器件,可用于进行葡萄糖检测,该片状参比电极为电化学系统的小型化、便携化提供了一种可能。
上述实施例只是用于对本发明的举例和说明,而非意在将本发明限制于所描述的实施例范围内。此外本领域技术人员可以理解的是,本发明不局限于上述实施例,根据本发明的教导还可以做出更多种的变型和修改,这些变型和修改均落在本发明所要求保护的范围内。
参考文献
[1]Tu H L,Zhao H B,Wei F,Zhang Q Z,Fan YY,Du J.Research progress inadvanced sensing materials andrelated devices[J].Chinese Journal ofRareMetals,2019,43(1):1.
[2]Zai J Z,Fu YB,Zai X R,Ji H W,LiuA,Chai F G.Fabrication ofnovelAg/AgCl electrodepair on the template of carbon foam as marine electric fieldsensor and its electrochemical performances[J].Ionics,2017,23(8):2213.
[3]Lindner E,Guzinski M,Khan T A,et al.Reference electrodes withionic liquid salt bridge:when will these innovative novel referenceelectrodes gain broad acceptance[J].Acs Sensors,2019,4(3):549-561.
[4]Cardoso R M,Kalinke C,Rocha R G,et al.Additive-manufactured(3D-printed)electrochemical sensors:Acritical review[J].Analytica chimica acta,2020,1118:73-91.
[5]孙晶,王清翔,申贵隽,郎明非.一种可重复性使用基于PDMS的Ag/AgCl微电极的制备方法和应用[P].辽宁省:CN108195911B,2020-05-19.
[6]程仲平,何辉,林如山,贾艳虹,肖益群,叶国安.氧化物电还原体系银/氯化银参比电极性能研究[J].无机盐工业,2019,51(05):49-52+96.
[7]张清,李萍,白真权.Ag/AgCl高温参比电极的制备[J].应用科技,2005(06):62-63.
[8]杜宝中,李向阳,闫烨,康志强,张东霞,张荣.无液接裸露式Ag/AgCl参比电极的研制及应用[J].化学分析计量,2006(05):58-60。

Claims (9)

1.一种小型柔性电化学器件中的参比电极的制备方法,其特征在于,具体步骤如下:
步骤1:制作热塑性弹性体Flexdym材料为柔性基底;
步骤2:将Flexdym柔性基底材料浸泡于修饰液中进行表面亲水修饰;
步骤3:Fishbone-Ag/AgCl RE的制备;
步骤3.1:在Flexdym基底表面均匀涂布AgNWs溶液,得到AgNWs电极;
步骤3.2:将步骤3.1制得的AgNWs电极放置于AgNO3和KNO3混合溶液中,采用计时电位法沉积银,得到Fishbone-Ag电极;
步骤3.3:氯化Fishbone-Ag电极,将步骤3.2中制得的Fishbone-Ag电极作为工作电极,以Ag/AgCl电极为参比电极,以铂电极为对电极,在HCl溶液中,使用计时电位法进行电化学氯化,得到Fishbone-Ag/AgCl参比电极。
2.根据权利要求1所述的方法,其特征在于,步骤2中所述修饰液为质量分数为1~5%的PAA和质量分数为5~10%的Gly的混合溶液。
3.根据权利要求1所述的方法,其特征在于,步骤3.1中,AgNWs溶液的浓度范围为1~5mg/mL。
4.根据权利要求1所述的方法,其特征在于,步骤3.2中,AgNO3溶液的浓度为0.01~0.02M,KNO3溶液的浓度为0.1~0.2M,使用计时电位法沉积银,沉积电流为-0.6mA,沉积时间为500~2000s。
5.根据权利要求1所述的方法,其特征在于,步骤3.3中,使用计时电位法进行电化学氯化,HCl溶液的浓度为0.05~0.15M,氯化电位为OCP+100mV、OCP+150mV、OCP+200mV、OCP+250mV、OCP+300mV,氯化时间为800s、1600s、2400s、2700s、3200s。
6.根据权利要求1所述的方法,其特征在于,步骤3.3中,使用计时电位法进行电化学氯化,HCl溶液的浓度为0.1M,氯化电位为OCP+200mV,氯化时间为2700s。
7.权利要求1中所述方法制备的电极在乙醇的电化学催化和检测中的应用。
8.权利要求1中所述方法制备的电极在小型柔性电化学器件中的应用。
9.根据权利要求11所述的应用,该电极电极在小型柔性电化学器件中对葡萄糖检测方面的应用。
CN202211518782.9A 2022-11-30 2022-11-30 一种小型柔性电化学器件中的参比电极的制备方法及其应用 Pending CN116399922A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211518782.9A CN116399922A (zh) 2022-11-30 2022-11-30 一种小型柔性电化学器件中的参比电极的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211518782.9A CN116399922A (zh) 2022-11-30 2022-11-30 一种小型柔性电化学器件中的参比电极的制备方法及其应用

Publications (1)

Publication Number Publication Date
CN116399922A true CN116399922A (zh) 2023-07-07

Family

ID=87011059

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211518782.9A Pending CN116399922A (zh) 2022-11-30 2022-11-30 一种小型柔性电化学器件中的参比电极的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN116399922A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117825469A (zh) * 2024-02-29 2024-04-05 乐普(北京)医疗器械股份有限公司 一种Ag/AgCl参比电极组合物及Ag/AgCl参比电极和应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117825469A (zh) * 2024-02-29 2024-04-05 乐普(北京)医疗器械股份有限公司 一种Ag/AgCl参比电极组合物及Ag/AgCl参比电极和应用

Similar Documents

Publication Publication Date Title
Zhang et al. Graphene‐based electrochemical glucose sensors: Fabrication and sensing properties
He et al. Superaerophobic electrode with metal@ metal‐oxide powder catalyst for oxygen evolution reaction
Liu et al. Hydrothermal synthesis of Au@ SnO2 hierarchical hollow microspheres for ethanol detection
JP5514212B2 (ja) ホウ素ドープダイヤモンド
Ngai et al. Voltammetry detection of ascorbic acid at glassy carbon electrode modified by single-walled carbon nanotube/zinc oxide
He et al. A novel non-enzymatic hydrogen peroxide sensor based on poly-melamine film modified with platinum nanoparticles
Nodehi et al. Palladium-silver polyaniline composite as an efficient catalyst for ethanol oxidation
Pak et al. Cobalt-copper bimetallic nanostructures prepared by glancing angle deposition for non-enzymatic voltammetric determination of glucose
CN116399922A (zh) 一种小型柔性电化学器件中的参比电极的制备方法及其应用
Lu et al. A novel nonenzymatic hydrogen peroxide sensor based on three-dimensional porous Ni foam modified with a Pt electrocatalyst
Sahraoui et al. A Nitrite Electrochemical Sensor Based on Boron‐Doped Diamond Planar Electrochemical Microcells Modified with a Monolacunary Silicotungstate Polyoxoanion
Baumung et al. Influence of particle size on the apparent electrocatalytic activity of LiMn 2 O 4 for oxygen evolution
Rajkumar et al. Electrochemical synthesis of palladium nano urchins decorated multi walled carbon nanotubes for electrocatalytic oxidation of hydrazine and reduction of hydrogen peroxide
CN101124688A (zh) 用于燃料电池的电极催化剂和燃料电池
CN113295746B (zh) 一种硫掺杂多孔管束状氮化碳/石墨烯复合材料的制备方法及其应用
Yang et al. Nafion particles doped with methyl viologen: electrochemistry
Zhao et al. Electrocatalytic reduction of nitrite using a carbon nanotube electrode in the presence of cupric ions
CN108037163B (zh) 一种Cu3P@Ti-MOF-NH2复合材料、电化学传感器及其制备方法和应用
Yao et al. A stable sandwich-type hydrogen peroxide sensor based on immobilizing horseradish peroxidase to a silver nanoparticle monolayer supported by PEDOT: PSS-nafion composite electrode
Teepoo et al. Highly sensitive pencil-based renewable biosensor for hydrogen peroxide detection with a novel bionanomultilayer
Xie et al. Bioelectrocatalytic performance of glucose oxidase/nitrogen‐doped titania nanotube array enzyme electrode
Tian et al. An electrochemical sensing strategy based on a three dimensional ordered macroporous polyaniline–platinum platform and a mercury (ii) ion-mediated DNAzyme functionalized nanolabel
Zhang et al. Poly (thiophene-3-acetic acid)-palladium nanoparticle composite modified electrodes for supersensitive determination of hydrazine
Yang et al. Direct determination of uric acid in human serum samples using polypyrrole nanoelectrode ensembles
KOÇAK et al. Highly improved electrocatalytic oxidation of dimethylamine borane on silvernanoparticles modified polymer composite electrode

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination