CN116395761A - 一种纳米级球形氧化亚镍及其制备工艺和应用 - Google Patents

一种纳米级球形氧化亚镍及其制备工艺和应用 Download PDF

Info

Publication number
CN116395761A
CN116395761A CN202310400819.6A CN202310400819A CN116395761A CN 116395761 A CN116395761 A CN 116395761A CN 202310400819 A CN202310400819 A CN 202310400819A CN 116395761 A CN116395761 A CN 116395761A
Authority
CN
China
Prior art keywords
nickel oxide
nano
product
spherical nickel
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310400819.6A
Other languages
English (en)
Inventor
张磊
孟田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Yunfu Nanotechnology Co ltd
Original Assignee
Shanghai Yunfu Nanotechnology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Yunfu Nanotechnology Co ltd filed Critical Shanghai Yunfu Nanotechnology Co ltd
Priority to CN202310400819.6A priority Critical patent/CN116395761A/zh
Publication of CN116395761A publication Critical patent/CN116395761A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/04Opacifiers, e.g. fluorides or phosphates; Pigments
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种纳米级球形氧化亚镍及其制备工艺和应用,包括如下步骤:S1、将镍盐与无水碳酸钠搅拌混合均匀,再与水进行混合,控制反应温度为40‑60℃,混合溶液的pH值为9‑10,搅拌至反应完全;S2、将步骤S1中得到的反应产物进行研磨处理,然后在380‑520℃下焙烧处理16‑28h;S3、将焙烧后得到的产物经过多次水洗,直至其pH值为7‑7.5,再经烘干、粉碎处理,得到成品。其制备工艺简单,原料成本低廉,制得的产品杂质含量低,粒度较小,平均粒径在20nm左右,粒径较为均一,表面球形度较好,活性更高,该纳米级球形氧化亚镍用于催化剂、陶瓷添加剂与玻璃染色剂、电池电极材料、传感器等领域。

Description

一种纳米级球形氧化亚镍及其制备工艺和应用
技术领域
本发明涉及纳米材料制备技术领域,具体涉及一种纳米级球形氧化亚镍及其制备工艺和应用。
背景技术
纳米概念包括“尺度”与“效应”两个方面,在临界尺度下,材料的性能会产生突变。
氧化亚镍,化学式:NiO,分子量:74.71,外观为绿黑色立方晶体,溶于酸和氨水,不溶于水,受热时颜色变黄。氧化亚镍是一种重要的功能材料,随着纳米氧化亚镍的超细化,其表面结构和晶体结构发生了独特改变,导致产生了表面效应、小尺寸效应、量子尺寸效应和宏观量子隧道效应,从而使纳米氧化亚镍具有优异的催化性能、电学性能等。基于这一系列优异特性,纳米氧化镍可广泛应用于先进储能材料、催化剂材料、气体传感器、半导体等领域。
氧化亚镍的合成方法很多,主要有化学沉淀煅烧法,醇溶剂法,低热固相法等。目前,工业上普遍采用化学沉淀煅烧法,其通常以NiC12、NiSO4或Ni(NO3)2为原料,NaOH或氨水作为沉淀剂,经反应制得氢氧化镍沉淀,再在空气中煅烧而得。上述制备工艺中,原料来源、反应物配比、溶液的pH、反应温度和煅烧温度等因素对产品的产率和平均粒径均有较大的影响。现有技术中通过该方法制得的产品为无定形产品,杂质含量较高,粒度大,形貌不可控,易烧结。虽然现有技术中也提到可采用高温喷雾热解法将氯化镍溶液通过高温热裂解制得氧化亚镍,该法制得的氧化亚镍为不规则形状,流动性差,使用时不易与其它原料混合均匀,同时生产过程中溶液产生三氧化二镍杂质,影响产品质量。
发明内容
为了解决上述背景技术中存在的问题,本发明提供一种纳米级球形氧化亚镍的制备工艺,其制备工艺简单,原料成本低廉,制得的产品杂质含量低,粒度较小,平均粒径在20nm左右,粒径较为均一,表面球形度较好,活性更高。此外,本发明还提供一种采用上述制备工艺制得的粒度较小,粒径较为均一,表面球形度较好,活性更高的纳米级球形氧化亚镍,及其在催化剂、陶瓷添加剂与玻璃染色剂、电池电极材料、传感器等领域的应用。
为了实现上述目的,本发明采用以下技术方案:
本发明的第一方面,提供一种纳米级球形氧化亚镍的制备工艺,包括如下步骤:
S1、将镍盐与无水碳酸钠搅拌混合均匀,再与水进行混合,控制反应温度为40-60℃,混合溶液的pH值为9-10,搅拌至反应完全;
S2、将步骤S1中得到的反应产物进行研磨处理,然后在380-520℃下焙烧处理16-28h;
S3、将焙烧后得到的产物经过多次水洗,直至其pH值为7-7.5,再经烘干、粉碎处理,得到成品。
采用上述技术方案:
本申请中,通过控制反应体系的pH值在9-10,镍盐与碳酸钠反应速度适中且易于控制,两者反应生成碳酸镍沉淀,达到了在溶液反应中控制碳酸镍生长速度、形貌和粒度大小的目的;再将反应物过胶体磨3遍,进行充分的研磨处理,使碳酸镍均质化,随后在一定温度下将碳酸镍沉淀物进行热分解,得到粒度较小,平均粒径在20nm左右,粒径较为均一,表面球形度较好,活性更高的氧化亚镍,然后经水洗洗去多余的钠离子,产物的杂质含量低。
具体地,所述步骤S1中,镍盐为六水合硫酸镍。
镍盐为可溶性镍盐,包括六水合氯化镍、六水合硫酸镍、四水合醋酸镍、六水合硝酸镍,优选地,选用六水合硫酸镍。
具体地,所述步骤S1中,镍盐与无水碳酸钠的重量比为(1.6-2.4):1。
具体地,所述步骤S2中,焙烧处理在氧化性气氛调控下进行。
氧化性气氛为空气气氛或氧气气氛。
本发明的第二方面,提供一种由上述制备工艺制备而成的纳米级球形氧化亚镍,所述纳米级球形氧化亚镍的表面球形度较好,平均粒径为18-22nm。
采用本申请中制备工艺制得的纳米级球形氧化亚镍,其为球形粒子,表面球形度较好,粒度较小,平均粒径在20nm左右,粒径较为均一,活性更高。
本发明的第三方面,提供一种上述纳米级球形氧化亚镍的应用,所述纳米级球形氧化亚镍用于催化剂、陶瓷添加剂与玻璃染色剂、电池电极材料、传感器领域。
具体地,
1.纳米氧化镍用于催化剂中:
纳米NiO是一种催化作用较好的氧化催化剂,Ni2+具有3d轨道,对多电子氧具有择优吸附的倾向,对其它还原气体也有活化作用,并对还原气体的O2起催化作用,在有机物的分解合成,转化过程中,如汽油氢化裂化,是石化处理中烃类转化,重油氢化过程中,纳米NiO是良好的催化剂。在废水处理中,NiO是除去其中CH4,氰化物,N2,促使NOx分解的催化剂。纳米NiO作为光催化降解酸性红的催化剂,在处理有机染料废水中,效果非常显著。
2.纳米氧化镍用于陶瓷添加剂与玻璃染色剂:
陶瓷制品中用纳米NiO来提高其冲击力,当加入NiO(O.02(wt)%),还可以提高材料的各项电性能,如压电性能和介电性能。在玻璃中加纳米NiO主要是控制玻璃的颜色,在能吸收紫外线的着色稳定的棕色透明玻璃中就含少量的NiO。透明玻璃镜和装饰用玻璃中,均添加了适量的纳米NiO作着色剂。
3.纳米氧化镍应用于传感器
NiO是近几年来越来越受到重视的气体传感器材料。目前已有用纳米NiO制作成的甲醛传感器,CO传感器,H2传感器等应用于实际生产。
4.纳米氧化镍用于电池电极材料方面:
普通氧化镍蓄电池放电30min后,其端电压就接近衰竭,而纳米氧化镍蓄电池到了90min以后才出现衰竭,表现出良好的放电性能。产生这一现象的原因是因为这些纳米微粒与导电材料分布于正极活性物质的空隙中,这样既有利于电子电荷的传递,也有利于离子电荷的传递。并且其小尺寸效应增加了活性物质的空隙率和反应的表面积。普通氧化镍蓄电池一开始就表现为较大电流的充电,而纳米氧化镍蓄电池则表现为小电流充电,60min后电流趋于相等,表现出良好的充电性能。因此纳米氧化镍蓄电池具有优良的应用前景。有研究表明颗粒状氧化镍比针形氧化镍具有更好的电化学性能和更高的比电容。
与现有技术相比,本发明具有如下有益效果:
本发明中通过控制反应体系的pH值在9-10,镍盐与碳酸钠反应速度适中且易于控制,两者反应生成碳酸镍沉淀,达到了在溶液反应中控制碳酸镍生长速度、形貌和粒度大小的目的;再将反应物过胶体磨3遍,进行充分的研磨处理,使碳酸镍均质化,随后在一定温度下将碳酸镍沉淀物进行热分解,得到粒度较小,平均粒径在20nm左右,粒径较为均一,表面球形度较好,活性更高的氧化亚镍,然后经水洗洗去多余的钠离子,产物的杂质含量低。
附图说明
下面结合附图与具体实施例对本发明作进一步详细说明。
图1为实施例1制得的纳米级球形氧化亚镍的XRD图;
图2为实施例1制得的纳米级球形氧化亚镍的TEM图;
图3为实施例1制得的纳米级球形氧化亚镍的BET测试图;
具体实施方式
为了便于理解本发明,下文将结合较佳的实施例对本发明作更全面、细致地描述,但本发明的保护范围并不限于以下具体的实施例。
除非另有定义,下文中所使用的所有专业术语与本领域技术人员通常理解的含义相同。本文中所使用的专业术语只是为了描述具体实施例的目的,并不是旨在限制本发明的保护范围。
除有特别说明,本发明中用到的各种试剂、原料均为可以从市场上购买的商品或者可以通过公知的方法制得的产品。
本发明提供一种纳米级球形氧化亚镍的制备工艺,包括如下步骤:
S1、将可溶性镍盐与无水碳酸钠搅拌混合均匀,再与水进行混合,控制反应温度为40-60℃,混合溶液的pH值为9-10,搅拌至反应完全;
S2、将步骤S1中得到的反应产物过胶体磨3遍进行研磨处理,使其均质化,然后在380-520℃下焙烧处理16-28h;
S3、将焙烧后得到的产物经过多次水洗,洗去多余的钠离子,直至其pH值为7-7.5,再经烘干、粉碎处理,得到成品。
具体地,步骤S1中,可溶性镍盐,包括六水合氯化镍、六水合硫酸镍、四水合醋酸镍、六水合硝酸镍,优选地,选用六水合硫酸镍。
具体地,步骤S1中,镍盐与无水碳酸钠的重量比为(1.6-2.4):1。
具体地,步骤S2中,焙烧处理在氧化性气氛调控下进行,氧化性气氛为空气气氛或氧气气氛。
采用上述制备工艺制得的纳米级球形氧化亚镍,其为球形粒子,表面球形度较好,粒度较小,平均粒径在18-22nm,粒径较为均一,活性更高。
上述纳米级球形氧化亚镍可用于催化剂、陶瓷添加剂与玻璃染色剂、电池电极材料、传感器领域。
实施例1
一种纳米级球形氧化亚镍的制备工艺,包括如下步骤:
S1、将重量比为2:1的六水合硫酸镍与无水碳酸钠搅拌混合均匀,再与水进行混合,控制反应温度为50℃,混合溶液的pH值为9.6,搅拌至反应完全;
S2、将步骤S1中得到的反应产物过胶体磨3遍进行研磨处理,使其均质化,然后在450℃下焙烧处理22h,焙烧处理在空气气氛调控下进行;
S3、将焙烧后得到的产物经过多次水洗,洗去多余的钠离子,直至其pH值为7,再经烘干、粉碎处理,得到成品。
实施例2
一种纳米级球形氧化亚镍的制备工艺,包括如下步骤:
S1、将重量比为1.6:1的六水合硫酸镍与无水碳酸钠搅拌混合均匀,再与水进行混合,控制反应温度为40℃,混合溶液的pH值为10,搅拌至反应完全;
S2、将步骤S1中得到的反应产物过胶体磨3遍进行研磨处理,使其均质化,然后在380℃下焙烧处理28h,焙烧处理在空气气氛调控下进行;
S3、将焙烧后得到的产物经过多次水洗,洗去多余的钠离子,直至其pH值为7.5,再经烘干、粉碎处理,得到成品。
实施例3
一种纳米级球形氧化亚镍的制备工艺,包括如下步骤:
S1、将重量比为2.1:1的六水合硫酸镍与无水碳酸钠搅拌混合均匀,再与水进行混合,控制反应温度为60℃,混合溶液的pH值为9.7,搅拌至反应完全;
S2、将步骤S1中得到的反应产物过胶体磨3遍进行研磨处理,使其均质化,然后在520℃下焙烧处理16h,焙烧处理在空气气氛调控下进行;
S3、将焙烧后得到的产物经过多次水洗,洗去多余的钠离子,直至其pH值为7.2,再经烘干、粉碎处理,得到成品。
实施例4
一种纳米级球形氧化亚镍的制备工艺,包括如下步骤:
S1、将重量比为2.4:1的六水合硫酸镍与无水碳酸钠搅拌混合均匀,再与水进行混合,控制反应温度为50℃,混合溶液的pH值为9,搅拌至反应完全;
S2、将步骤S1中得到的反应产物过胶体磨3遍进行研磨处理,使其均质化,然后在450℃下焙烧处理22h,焙烧处理在空气气氛调控下进行;
S3、将焙烧后得到的产物经过多次水洗,洗去多余的钠离子,直至其pH值为7,再经烘干、粉碎处理,得到成品。
实验例
1.X射线衍射测试分析
实施例1中制得的产物的X射线衍射图谱见图1。由图1可知,产物为单一相成分的NiO纯相。
2.透射电镜测试分析
实施例1中制得的产物的透射电镜照片见图2。由图2可以看出,氧化亚镍表面球形度较好,粒度较小,平均粒径在20nm,粒径较为均一。
3.ICP(电感耦合等离子直读光谱)测试分析
实施例1中制得的产物的ICP测试结果见表1。由表1中测试结果可知,样品的纯度>99.5%,即采用本发明中制备工艺制得的纳米级球形氧化亚镍的纯度高,无杂相。
表1
Figure BDA0004179513810000051
Figure BDA0004179513810000061
4.比表面积测试分析
实施例1中制得的产物的BET比表面积测试结果见图3,产物NiO粉末的比表面积为46.84m2/g,经BET结果计算出产物NiO的平均粒径为19nm,与透射电镜测试结果测得的平均粒径为20nm的结果一致。
综上,本发明中通过控制反应体系的pH值在9-10,镍盐与碳酸钠反应速度适中且易于控制,两者反应生成碳酸镍沉淀,达到了在溶液反应中控制碳酸镍生长速度、形貌和粒度大小的目的;再将反应物过胶体磨3遍,进行充分的研磨处理,使碳酸镍均质化,随后在一定温度下将碳酸镍沉淀物进行热分解,得到粒度较小,平均粒径在20nm左右,粒径较为均一,表面球形度较好,活性更高的氧化亚镍,然后经水洗洗去多余的钠离子,产物的杂质含量低。
以上应用了具体个例对本发明进行阐述,只是用于帮助理解本发明,并不用以限制本发明。对于本发明所属技术领域的技术人员,依据本发明的思想,还可以做出若干简单推演、变形或替换。

Claims (6)

1.一种纳米级球形氧化亚镍的制备工艺,其特征在于,包括如下步骤:
S1、将镍盐与无水碳酸钠搅拌混合均匀,再与水进行混合,控制反应温度为40-60℃,混合溶液的pH值为9-10,搅拌至反应完全;
S2、将步骤S1中得到的反应产物进行研磨处理,然后在380-520℃下焙烧处理16-28h;
S3、将焙烧后得到的产物经过多次水洗,直至其pH值为7-7.5,再经烘干、粉碎处理,得到成品。
2.根据权利要求1所述的纳米级球形氧化亚镍的制备工艺,其特征在于,所述步骤S1中,镍盐为六水合硫酸镍。
3.根据权利要求2所述的纳米级球形氧化亚镍的制备工艺,其特征在于,所述步骤S1中,镍盐与无水碳酸钠的重量比为(1.6-2.4):1。
4.根据权利要求1所述的纳米级球形氧化亚镍的制备工艺,其特征在于,所述步骤S2中,焙烧处理在氧化性气氛调控下进行。
5.一种由权利要求1-4中任一项所述的制备工艺制备而成的纳米级球形氧化亚镍,其特征在于,所述纳米级球形氧化亚镍的表面球形度较好,平均粒径为18-22nm。
6.一种如权利要求5所述的纳米级球形氧化亚镍的应用,其特征在于,所述纳米级球形氧化亚镍用于催化剂、陶瓷添加剂与玻璃染色剂、电池电极材料、传感器领域。
CN202310400819.6A 2023-04-14 2023-04-14 一种纳米级球形氧化亚镍及其制备工艺和应用 Pending CN116395761A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310400819.6A CN116395761A (zh) 2023-04-14 2023-04-14 一种纳米级球形氧化亚镍及其制备工艺和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310400819.6A CN116395761A (zh) 2023-04-14 2023-04-14 一种纳米级球形氧化亚镍及其制备工艺和应用

Publications (1)

Publication Number Publication Date
CN116395761A true CN116395761A (zh) 2023-07-07

Family

ID=87017721

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310400819.6A Pending CN116395761A (zh) 2023-04-14 2023-04-14 一种纳米级球形氧化亚镍及其制备工艺和应用

Country Status (1)

Country Link
CN (1) CN116395761A (zh)

Similar Documents

Publication Publication Date Title
Gosavi et al. Pure phase LaFeO3 perovskite with improved surface area synthesized using different routes and its characterization
US20080305025A1 (en) Methods for Production of Metal Oxide Nano Particles, and Nano Particles and Preparations Produced Thereby
Yan et al. Synthesis of porous ZnMn2O4 flower-like microspheres by using MOF as precursors and its application on photoreduction of CO2 into CO
Etape et al. Synthesis and characterization of CuO, TiO2, and CuO-TiO2 mixed oxide by a modified oxalate route
Farag et al. Exploring the functional properties of CuCo2O4/CuS nanocomposite as improved material for supercapacitor electrode
DE19848032A1 (de) Pt/Rh/Fe-Legierungskatalysator für Brennstoffzellen und Verfahren zu dessen Herstellung
Henzie et al. Biomineralization-inspired crystallization of monodisperse α-Mn 2 O 3 octahedra and assembly of high-capacity lithium-ion battery anodes
CA2634226A1 (en) Methods for production of metal oxide nano particles with controlled properties, and nano particles and preparations produced thereby
Darbandi et al. Nanoparticulate cathode thin films with high electrochemical activity for low temperature SOFC applications
WO2013021974A1 (ja) 酸化ニッケル微粉末及びその製造方法
Sun et al. Controllable fabrication of platinum nanospheres with a polyoxometalate-assisted process
Jiang et al. Effect of Bi/Ti ratio on (Na0. 5Bi0. 5) TiO3/Bi4Ti3O12 heterojunction formation and photocatalytic performance
CN1644282A (zh) 一种纳米金属镍粉的制备方法
KR100497775B1 (ko) 탄소 나노 섬유 합성용 촉매 및 그 제조 방법과, 이를이용한 탄소 나노 섬유 및 그 제조 방법
Azarang et al. Green gelatin-assisted: Synthesis of Co3O4NPs@ rGO nanopowder for highly efficient magnetically separable methylene orange dye degradation
Basaleh Rapid and efficient visible-light-actuated green photocatalytic synthesis of aniline from toxic nitrobenzene through novel mesoporous AgVO3/Bi2WO6 nanosheets
CN114045522A (zh) NiMo6-S@HCS纳米复合材料、制备方法及电催化制氢中的应用
CN112246264B (zh) 一种碳化钼金属钼碳化硅三元复合材料、及其制备方法以及在光催化产氢上的作用
Luo et al. Interfacial effects of Fe2O3@ Co3O4 on the thermal decomposition of ammonium perchlorate
Wang et al. Cu2O-rGO-CuO composite: an effective Z-scheme visible-light photocatalyst
CN116395761A (zh) 一种纳米级球形氧化亚镍及其制备工艺和应用
Al-Hada et al. Up-scalable synthesis of size-controlled NiSe nanoparticles using single step technique
Noviyanto et al. Anomalous Temperature-Induced Particle Size Reduction in Manganese Oxide Nanoparticles
Jiang et al. Hydrothermal synthesis of new CuVO2 delafossite hexagonal nanoplates
Gautam et al. Band gap engineering through calcium addition in (Mg, Co, Ni, Cu, Zn) O high entropy oxide for efficient photocatalysis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination