CN116391276A - 改进的锂离子可充电电池 - Google Patents

改进的锂离子可充电电池 Download PDF

Info

Publication number
CN116391276A
CN116391276A CN202180066936.2A CN202180066936A CN116391276A CN 116391276 A CN116391276 A CN 116391276A CN 202180066936 A CN202180066936 A CN 202180066936A CN 116391276 A CN116391276 A CN 116391276A
Authority
CN
China
Prior art keywords
lithium ion
electrode
silicon substrate
ion battery
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180066936.2A
Other languages
English (en)
Inventor
赖安·雷德福德
丹尼尔·卡罗瑟斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dan NierKaluosesi
Lai AnLeidefude
Original Assignee
Dan NierKaluosesi
Lai AnLeidefude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dan NierKaluosesi, Lai AnLeidefude filed Critical Dan NierKaluosesi
Publication of CN116391276A publication Critical patent/CN116391276A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

一种锂离子电池,具有阴极电极;由多孔硅基板形成的阳极电极,其中多孔硅基板的孔的表面至少部分地涂覆有金属硅化物;设置在阴极和阳极之间的分隔元件;和电解液。

Description

改进的锂离子可充电电池
背景技术
对高容量可充电电池的需求强劲且每年都在增加。例如航空航天、医疗设备、便携式电子产品和汽车应用的许多应用都需要高重量和/或体积容量的电池。锂离子电极技术在这个领域提供了显著的改进。然而,迄今为止,采用石墨电极的锂离子电池限于仅372mAh/g的理论比能量密度。
由于其高电化学容量,硅是用于锂离子电池材料的有吸引力的活性电极。硅具有约为4200mAh/g的理论容量,其对应于Li4.4Si相。然而,硅并未广泛用于商用可充电锂离子电池。一个原因是硅在充电和放电循环期间表现出显著的体积变化。例如,硅在充电至其理论容量时可能膨胀多达400%。这种量级的体积变化会在活性材料结构中引起巨大的应力,从而导致断裂和粉碎、电极内电气和机械连接的损失以及容量衰减。
传统的可充电锂离子电池电极通常包括聚合物粘合剂,用于将活性材料保持在碳或石墨基板上。然而,大多数聚合物粘合剂的弹性不足以适应一些高容量材料的大膨胀。结果,活性材料颗粒倾向于彼此分离以及与集电器分离。总的来说,需要高容量活性材料在可充电锂离子电池电极中的改进的应用,以最小化上述的缺点。
美国专利号8,257,866和8,450,012提出通过提供一种电化学活性电极材料来解决现有技术可充电锂离子电池电极材料的弹性和膨胀问题,该电化学活性电极材料包括含有金属硅化物的高表面积模板和沉积在模板上的高容量活性材料层。据报道,模板用作活性材料的机械支撑和/或活性材料与例如基板之间的电导体。根据发明人,由于模板的高表面积,即使是薄的活性材料层也可以提供足够的活性材料负载和相应的单位表面积的电极容量。因此,活性材料层的厚度理论上可以保持足够小,以低于其断裂阈值从而在电池循环期间保持其结构完整性。活性层的厚度和/或组成也可以被特别地设计,以减少基板接口附近的膨胀并保持接口连接。
发明内容
为了克服现有技术中的上述和其他问题,我们提供了用于形成可充电锂离子电池的阳极电极的高表面积多孔硅基板材料。更具体地,根据本公开,硅基板材料经受电化学蚀刻以形成互连的纳米结构或穿过硅基板材料的通孔或孔。此后,例如通过使用各种沉积技术在多孔硅基板材料上沉积合适的金属(例如钛或钨),从而在硅基板材料的孔的表面上形成例如金属硅化物的电化学活性材料,各种沉积技术包括但不限于作为示例给出的化学气相沉积(CVD)、等离子体增强化学气相沉积(PECVD)、热CVD、电镀、化学镀和/或溶液沉积技术,并且多孔硅基板材料上的金属涂层通过加热转化为相应的金属硅化物。
所得基板是多孔硅基板,其包括在多孔结构的壁上的金属硅化物的冶金结合的表面层,其有利地可用作可充电锂离子电池中的电极。
虽然所得多孔基板材料的每电荷容积的效率可能略低于例如可充电锂离子电池中使用的常规的碳或石墨基电极,但多孔结构提供了几个显著的优点。一方面,多孔结构允许质子有更多时间移动通过电极基质。结果,充电循环期间的膨胀显著减少。因此,基板在充电循环期间不太可能形成枝晶或断裂。因此,可以增加充电和放电速率而没有断裂或爆炸的危险。此外,当用作阳极时,阳极可以做得比阴极大得多,从而进一步提高整体性能。
本发明还提供锂离子电池,包括:阴极电极;由多孔硅基板形成的阳极电极,其中多孔硅基板的孔的表面至少部分地涂覆有金属硅化物;设置在阴极和阳极之间的分隔元件;和电解液。硅基板可以包括单晶硅、多晶硅或非晶硅。优选地,孔的长度与直径的高宽比>50:1,并且电解液包含在有机溶剂(作为示例给出的,如碳酸亚乙烯酯、1,3-丙磺酸内酯、2-丙基甲烷硫酸酯、苯基环己烷、叔戊苯或己二腈)中的常规锂盐电解液,如LiPF6或LiBF4
在一个实施方式中,金属硅化物涂层选自由作为示例给出的TiSi2、CoSi2和WSi2组成的组。
本公开还提供了一种用于锂离子电池的电极,其中阳极电极包括由多孔硅形成的基板,其中孔的表面区域至少部分地涂覆有金属硅化物。硅基板可以包括单晶硅、多晶硅或非晶硅,孔的长度与直径的高宽比>50:1,金属硅化物优选地选自由作为示例给出的TiSi2、CoSi2和WSi2组成的组。
附图说明
结合附图,从下面的详细描述中可以看出本公开的进一步的特征和优点,其中相同的数字表示相同的部分,并且其中:
图1为根据本公开的一个实施方式的电极材料生产工艺的示意性框图;
图2A和图2B是根据本公开的处于不同生产阶段的电极材料的横截面图;
图3为根据本公开的另一实施方式的电极材料的生产工艺的示意性框图;
图4为根据本公开的用于生产电极材料的又一种工艺的示意性框图;
图5是根据本公开制造的可再充电电池的横截面图;
图6为根据本公开的用于生产电极材料的又一种工艺的示意性框图;
图7是根据本公开的可再充电电池的横截面图;和
图8是根据本公开制造的电池的透视图。
具体实施方式
参考图1,从通常50-200密耳厚的薄单晶硅晶片10开始,在电化学蚀刻步骤12中,通过将晶片浸入电化学浸槽的蚀刻剂(如二甲基甲酰胺(DMF)/二甲基亚砜(DMSO)/HF蚀刻剂)中的同时在晶片上施加均匀电场,对晶片10进行电化学蚀刻,从而形成如图2A所示的穿过晶片的微米级的通孔或孔16。遵循Santos等人(Electrochemically EngineeredNanoporous Material,Springer Series in Materials Science 220(2015),第1章)(其内容通过引用并入本文)的教导,可以通过控制蚀刻条件,即蚀刻电流密度、蚀刻剂浓度、温度、硅掺杂等,来控制明确定义的圆柱形微孔或通孔的生长。
所得孔具有高的长度与横截面直径的高宽比,通常长度与直径的高宽比>50:1。如图2A所示的所得结构包括多孔硅晶片18,其具有基本上圆柱形的通孔或孔16,通孔或孔16具有例如180μm的长度和1.6μm的直径,即高宽比为112.5:1,这对于用作如下所述的锂离子电池中的电极是非常有效的。然后在步骤20中,将所得多孔硅晶片18的壁涂覆金属,诸如钛或钨,之后在加热步骤22中,对涂有金属的多孔硅晶片进行热处理,以在热处理步骤22中将沉积的金属转化为相应的金属硅化物25。得到多孔硅基板材料24,其中材料孔的壁表面涂覆有金属硅化物材料26的薄层(图2A)。
图3示出了本公开的替代实施方式。该工艺从硅晶片30开始,薄金属层32在步骤34中例如通过喷镀被施加到晶片30的背面上。晶片背面上的金属层32促进与晶片的改善的电接触。使用电化学蚀刻(步骤36)来形成穿过硅晶片30的孔37。在多孔硅形成之后,使用湿法蚀刻(步骤38)从背面移除薄金属32。与图2A所示的多孔硅基板相似的多孔硅晶片然后在步骤40中被涂覆金属,该金属在与第一实施方式相似的加热步骤42中金属被转化为硅化物。得到多孔硅基板,其中孔的壁表面的表面涂覆有类似于图2B所示的多孔硅基板的金属硅化物。
图4示出了本公开的第三实施方式。该工艺开始于硅晶片50,硅晶片50在步骤52中在一侧覆盖有例如由诸如铂的贵金属形成的保护性金属层54。然后,在步骤56中,通过在晶片被浸入含有蚀刻剂(例如HF和H2O2)的电化学槽时在金属层54和基板晶片50上施加均匀电场来对硅晶片50进行电化学蚀刻,由此产生穿过硅晶片基板50的暴露部分到金属层54的基本上均匀的孔58。如前所述,再次遵循Santos等人的教导,明确定义的圆柱形微孔或通孔的生长可以通过控制蚀刻条件来控制,即蚀刻电流密度、蚀刻浓度、温度、硅掺杂等。可替代地,可以通过用纳米多孔阳极氧化铝掩模覆盖硅晶片的选定部分来控制微孔或通孔的形成。自序纳米多孔阳极氧化铝基本上是一种基于氧化铝的纳米多孔基质,其特征是六边形排列的单元的密织阵列,圆柱形纳米孔在其中心处垂直于下面的铝基板生长。可以再次遵循Santos等人的教导(其教导通过引用并入本文),通过铝的电化学阳极氧化来生产纳米多孔阳极氧化铝。然后可以在步骤58中去除保护性金属层54,留下具有基本上圆柱形的通孔或孔的多孔硅晶片,通孔或孔的长度与直径的高宽比>50:1,即,类似于图2A中所示的多孔硅基板。然后在步骤58中,用金属涂覆多孔硅基板,在步骤60中将多孔硅基板加热以将金属转化为金属硅化物,由此生产出其中孔的壁表面涂覆有类似于图2B的金属硅化物的多孔硅基板。
如下文将描述的,如上生产的多孔硅晶片被组装成锂离子电池。
图5示出了根据本公开的锂离子电池60。电池60包括外壳62、由如上所述形成的涂覆有金属硅化物的多孔硅基板形成的阳极64,以及由膜或分离器68隔开的由例如石墨形成的阴极66。阳极64和阴极66分别连接到外部突片70、72。含锂电解液74(例如锂钴氧化物)包含在电池60内。
阳极和阴极都允许锂离子分别通过称为插入(嵌入)或取出(脱嵌)的过程移入和移出其结构。放电时,正锂离子通过电解液从负极(阳极)移动到形成锂化合物的正极(阴极),同时电子沿相同方向流过外部电路。当电池充电时,情况相反,锂离子和电子以更高的净能量状态移回负电极。
本公开的一个特征和优点是阳极可以制造得物理上比阴极大,即比阴极更厚。阳极的厚度增加的多孔结构允许质子有更多时间移动到电极矩阵中。此外,类似的能量储存需要更少的锂电解液。而且,由于质子更缓慢地进入阳极,允许更快的充电和放电速率,而不会有电极断裂或粉碎的危险。
在不脱离其精神和范围的情况下,可对上述公开内容进行变化。例如,虽然阳极生产已被描述为由单晶硅晶片形成,但单晶硅带可有利地用于形成阳极。参考图6,使用硅带80允许连续的过程,其中带运行通过电化学蚀刻浴82以形成穿过带的孔,然后通过金属涂覆站84,之后通过热处理站86从而在孔壁表面上形成金属硅化物。然后,所得多孔硅的金属硅化物涂覆的带可用于使用标准辊制造技术形成锂离子电池。例如,参考图7,涂有硅化物的多孔硅带阳极电极84可以与阴极电极86一起组装成在分离片88之间的堆。电极84、86和分离片88一起卷绕成果冻(jelly)卷,然后插入外壳90,其中正极突片92和负极突片94从果冻卷延伸。然后可以将突片焊接到电极84、86的暴露部分,外壳90填充有电解液,外壳90被密封。得到了一种高容量锂离子可充电电池,其中阳极材料包括涂覆有多孔金属硅化物的多孔硅带,其能够重复充电和放电而没有不利影响。
其他变化也是可能的。例如,硅可以是多晶硅或非晶硅,而不是使用单晶硅片或单晶硅带。此外,虽然钨、钴和钛已被描述为用于形成金属硅化物的优选金属,但也可以有利地使用通常用于形成的其他金属,包括银(Ag)、铝(Al)、金(Au)、钯(Pd)、铂(Pt)、Zn、Cd、Hg、B、Ga、In、Th、C、Si、Ge、Sn、Pb、As、Sb、Bi、Se和Te。此外,虽然LiPF6和LiBf4已被描述为有用的电解液,但通常用于锂离子电池的其他电解液包括但不限于锂钴氧化物(LiCoO2)。

Claims (13)

1.一种锂离子电池,包括:
阴极电极;
由多孔硅基板形成的阳极电极,其中多孔硅基板的孔的表面至少部分地涂覆有金属硅化物;
设置在阴极和阳极之间的分隔元件;和
电解液。
2.根据权利要求1所述的锂离子电池,其中所述硅基板包括单晶硅。
3.根据权利要求1所述的锂离子电池,其中所述硅基板包括多晶硅。
4.根据权利要求1所述的锂离子电池,其中所述硅基板包括非晶硅。
5.根据权利要求1所述的锂离子电池,其中所述金属硅化物涂层选自由TiSi2、CoSi2和WSi2组成的组。
6.根据权利要求1所述的锂离子电池,其中所述孔的长度与直径的高宽比>50:1。
7.根据权利要求1所述的锂离子电池,其中所述电解液选自由LiPF6、LiBF4和LiCoO2组成的组。
8.一种用于锂离子电池的电极,其中阳极电极包括由多孔硅形成的基板,其中孔的表面区域至少部分地涂覆有金属硅化物。
9.根据权利要求8所述的电极,其中所述硅基板包括单晶硅。
10.根据权利要求8所述的电极,其中所述硅基板包括多晶硅。
11.根据权利要求8所述的电极,其中所述硅基板包括非晶硅。
12.根据权利要求8所述的电极,其中所述孔的长度与直径的高宽比>50:1。
13.根据权利要求8所述的电极,其中所述金属硅化物选自由TiSi2、CoSi2和WSi2组成的组。
CN202180066936.2A 2020-09-29 2021-09-28 改进的锂离子可充电电池 Pending CN116391276A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US202063085081P 2020-09-29 2020-09-29
US63/085,081 2020-09-29
PCT/US2021/052460 WO2022072375A1 (en) 2020-09-29 2021-09-28 Improved lithium ion rechargeable batteries

Publications (1)

Publication Number Publication Date
CN116391276A true CN116391276A (zh) 2023-07-04

Family

ID=80951807

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180066936.2A Pending CN116391276A (zh) 2020-09-29 2021-09-28 改进的锂离子可充电电池

Country Status (5)

Country Link
EP (1) EP4222795A1 (zh)
JP (1) JP2023543366A (zh)
KR (1) KR20230107555A (zh)
CN (1) CN116391276A (zh)
WO (1) WO2022072375A1 (zh)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140197801A1 (en) * 2011-05-20 2014-07-17 The Board Of Trustees Of The University Of Illinois Silicon-based electrode for a lithium-ion cell
KR101456201B1 (ko) * 2012-10-16 2014-10-31 국립대학법인 울산과학기술대학교 산학협력단 리튬 이차 전지용 음극 활물질, 리튬 이차 전지용 음극 활물질의 제조 방법 및 상기 리튬 이차 전지용 음극 활물질을 포함하는 리튬 이차 전지
JP6459479B2 (ja) * 2014-12-17 2019-01-30 日産自動車株式会社 電気デバイス用負極、およびこれを用いた電気デバイス

Also Published As

Publication number Publication date
JP2023543366A (ja) 2023-10-13
KR20230107555A (ko) 2023-07-17
EP4222795A1 (en) 2023-08-09
WO2022072375A1 (en) 2022-04-07

Similar Documents

Publication Publication Date Title
US10403884B2 (en) Electrode structures
US10256500B2 (en) Three-dimensional batteries and methods of manufacturing the same
Nathan et al. Three-dimensional thin-film Li-ion microbatteries for autonomous MEMS
US7618748B2 (en) Three-dimensional microbattery
JP5634623B2 (ja) 改良されたバッテリーおよび組立方法
KR101460153B1 (ko) 부극 및 그것을 이용한 전지, 및 부극의 제조 방법
US20060216603A1 (en) Lithium-ion rechargeable battery based on nanostructures
US10014517B2 (en) Three dimensional batteries and methods of manufacturing the same
US9959983B2 (en) Robust porous electrodes for energy storage devices
US20230006194A1 (en) Lithium ion battery with thin anode
JP2003007288A (ja) リチウム二次電池用電極の製造方法
US20230035022A1 (en) A novel gold-based porous material for a lithium battery
CN112789748A (zh) 用于生产锂离子电池的阳极的方法
CN116391276A (zh) 改进的锂离子可充电电池
US20210226228A1 (en) Energy generation or energy storage system
US11527759B2 (en) Dual porosity cathode for lithium-air battery
CN116420249A (zh) 改进的能量生成或能量存储系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40096617

Country of ref document: HK