CN116390740A - 枸杞糖肽在制备预防和/或治疗肌萎缩侧索硬化的药物中的应用 - Google Patents

枸杞糖肽在制备预防和/或治疗肌萎缩侧索硬化的药物中的应用 Download PDF

Info

Publication number
CN116390740A
CN116390740A CN202280006961.6A CN202280006961A CN116390740A CN 116390740 A CN116390740 A CN 116390740A CN 202280006961 A CN202280006961 A CN 202280006961A CN 116390740 A CN116390740 A CN 116390740A
Authority
CN
China
Prior art keywords
lycium barbarum
glycopeptide
mice
lateral sclerosis
amyotrophic lateral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202280006961.6A
Other languages
English (en)
Other versions
CN116390740B (zh
Inventor
乐卫东
苏国辉
徐晓兰
徐晓皎
周立兵
张力
于哲雄
王金霞
樊福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningxia Qipeptide Technology Co ltd
Original Assignee
Ningxia Qipeptide Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningxia Qipeptide Technology Co ltd filed Critical Ningxia Qipeptide Technology Co ltd
Publication of CN116390740A publication Critical patent/CN116390740A/zh
Application granted granted Critical
Publication of CN116390740B publication Critical patent/CN116390740B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/14Peptides containing saccharide radicals; Derivatives thereof, e.g. bleomycin, phleomycin, muramylpeptides or vancomycin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/81Solanaceae (Potato family), e.g. tobacco, nightshade, tomato, belladonna, capsicum or jimsonweed
    • A61K36/815Lycium (desert-thorn)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Botany (AREA)
  • Neurology (AREA)
  • Microbiology (AREA)
  • Medical Informatics (AREA)
  • Biotechnology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Mycology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明涉及生物医药领域,特别涉及枸杞糖肽在制备预防和/或治疗肌萎缩侧索硬化的药物中的应用。实验结果表明,枸杞糖肽在制备预防和/或治疗肌萎缩侧索硬化的药物中的应用。具体的,枸杞糖肽减缓SOD1G93A转基因小鼠体重下降,延长SOD1G93A转基因小鼠的生存周期,延长SOD1G93A转基因小鼠的病程,下调SOD1G93A转基因小鼠腰段脊髓炎症因子的相对表达量。

Description

枸杞糖肽在制备预防和/或治疗肌萎缩侧索硬化的药物中的应用
本申请要求于2021年09月08日提交中国专利局、申请号为202111047838.2、发明名称为“枸杞糖肽在制备预防和/或治疗肌萎缩侧索硬化的药物中的应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及生物医药领域,特别涉及枸杞糖肽在制备预防和/或治疗肌萎缩侧索硬化的药物中的应用。
背景技术
肌萎缩侧索硬化是一种涉及多种分子机制的复杂性疾病,其病因和发病机制尚未阐明,有研究发现其发病与核浆转运体缺陷、RNA代谢及结合蛋白的异常、蛋白的异常聚集、DNA修复障碍、线粒体功能障碍和氧化应激、少突胶质细胞功能缺陷、小胶质细胞功能异常、轴突运输障碍、囊泡运输缺陷、兴奋氨基酸毒性作用等相关。
随着科学技术的进步,对肌萎缩侧索硬化的病因学及发病机制有了更深入的了解,科学家根据其发病机制开发了众多的治疗方式,包括药物治疗,基因治疗,干细胞治疗等。其中,唯有利鲁唑和依达拉奉通过批准,在临床上用于肌萎缩侧索硬化的治疗。利鲁唑属于苯并噻唑类,是一种谷氨酸抑制剂,它可以干扰NMDA(N‐methyl‐D‐aspartate)受体介导的反应,持续调节钠通道电流,阻滞钙通道电流,从而减少谷氨酸的突触前释放。利鲁唑在延长患者的生存期方面具有一定作用,但对延髓功能和肢体功能的作用甚微。依达拉奉是一种自由基清除剂,对肌萎缩侧索硬化有一定的疗效,但其通过静脉注射给药,不能口服,且价格昂贵,因此临床推广有局限性。而基因治疗和干细胞治疗的疗效和安全性仍存在很大的争议,目前仍在研究阶段,尚未应用于临床。
可见,肌萎缩侧索硬化的治疗是医学领域的难点,也是科研领域的热点。现有的治疗方法具有诸多局限性,因此,提供一种治疗肌萎缩侧索硬化的 药物具有重要的现实意义。
发明内容
有鉴于此,本发明提供了枸杞糖肽在制备预防和/或治疗肌萎缩侧索硬化的药物中的应用。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了枸杞糖肽在制备预防和/或治疗肌萎缩侧索硬化的药物中的应用。
在本发明的一些具体实施方案中,所述枸杞糖肽减缓SOD1G93A转基因小鼠体重下降。
在本发明的一些具体实施方案中,所述枸杞糖肽延长SOD1G93A转基因小鼠的生存周期。
在本发明的一些具体实施方案中,所述枸杞糖肽延长SOD1G93A转基因小鼠的病程。
在本发明的一些具体实施方案中,所述枸杞糖肽下调SOD1G93A转基因小鼠腰段脊髓炎症因子的相对表达量。
在本发明的一些具体实施方案中,所述炎症因子包括IL-1β,IL-6或TNF-α中的一个或多个。
在本发明的一些具体实施方案中,所述枸杞糖肽的剂量为1mg/kg动物体重~100mg/kg动物体重。
在本发明的一些具体实施方案中,所述枸杞糖肽的剂量为20mg/kg动物体重。
在本发明的一些具体实施方案中,所述枸杞糖肽能够:
(1)促进小胶质细胞向M2型活化和/或抑制小胶质细胞向M1型活化;和/或
(2)所述枸杞糖肽上调IL-10的表达。
本发明还提供了预防和/或治疗肌萎缩侧索硬化的方法,施用枸杞糖肽。在本发明的一些具体实施方案中,所述枸杞糖肽的剂量为1mg/kg动物体重~100mg/kg动物体重。在本发明的一些具体实施方案中,所述枸杞 糖肽的剂量为20mg/kg动物体重。
本发明提供了枸杞糖肽在制备预防和/或治疗肌萎缩侧索硬化的药物中的应用。实验结果表明,枸杞糖肽在制备预防和/或治疗肌萎缩侧索硬化的药物中的应用。具体的,枸杞糖肽减缓SOD1G93A转基因小鼠体重下降,延长SOD1G93A转基因小鼠的生存周期,延长SOD1G93A转基因小鼠的病程,下调SOD1G93A转基因小鼠腰段脊髓炎症因子的相对表达量。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1示本发明技术路线;
图2示Tg-LBP、Tg-Con组小鼠的体重曲线;
图3示枸杞糖肽延长SOD1 G93A小鼠的生存周期和病程;Kaplan-Meier生存分析曲线提示枸杞糖肽组小鼠和生理盐水组小鼠的(A)(B)生存周期、(C)(D)发病时间和(E)(F)病程的变化;Log-rank test分析显示,与Tg-Con组小鼠相比,Tg-LBP组小鼠的平均生存周期延长39天(199.2±10.3 vs 160.5±12.2,*p<0.05)病;与此同时,Tg-LBP组小鼠的平均病程延长22天(53.3±4.3 vs 31.2±3.0,**p<0.01);
图4示枸杞糖肽对SOD1G93A小鼠腰段脊髓IL-1β(A)、IL-6(B)和TNF-α(C)的影响;
图5示实施例4的技术路线;
图6示枸杞糖肽治疗对SOD1 G93A小鼠的发病时间、生存期和疾病病程的影响;其中;(a)SOD1 G93A小鼠给药组和对照组发病时间的kaplan-Meier统计分析;(b)SOD1 G93A小鼠给药组和对照组发病年龄比较;(c)SOD1 G93A小鼠给药组和对照组生存期的kaplan-Meier统计分析;(d)SOD1 G93A小鼠给药组和对照组发病年龄比较;(e)SOD1 G93A小鼠给药组和对照组疾病病程的kaplan-Meier统计分析;(f)SOD1 G93A小鼠给药组和对照组病程比较;数据以mean±SEM表示,每组n=10,**p<0.01,***p <0.001;
图7示枸杞糖肽对SOD1 G93A小鼠星型胶质细胞的影响;其中(a)WT-NS,WT-LbGp,TG-NS,TG-LbGp组小鼠脊髓星形胶质细胞GFAP的免疫荧光染色图片;(b)GFAP免疫荧光染色的单位面积平均荧光密度定量分析;数据以mean±SEM表示,每组n=3;与WT-NS相比,***p<0.001,与WT-LbGP相比,###p<0.001,与TG-NS相比,&&p<0.01;
图8示枸杞糖肽对SOD1 G93A小鼠小胶质细胞的影响;其中,(a)四组小鼠脊髓小胶质细胞Iba-1的免疫荧光染色(b)Iba-1免疫荧光染色的单位面积平均荧光密度定量分析;数据以mean±SEM表示,每组n=3;与WT-NS相比,****p<0.0001,与WT-LbGP相比,####p<0.0001,与TG-NS相比,&&p<0.01;
图9示枸杞糖肽对SOD1 G93A小鼠腰段脊髓M1/M2型小胶质细胞标志物mRNA相对表达量的影响;其中,(a)四组小鼠脊髓组织CD86的mRNA相对表达量;(b)四组小鼠脊髓组织iNOS的mRNA相对表达量;(c)四组小鼠脊髓组织CD206的mRNA相对表达量;数据以mean±SEM表示,每组n=3;与WT-NS相比,**p<0.01,***p<0.001;与WT-LbGP相比,#p<0.05,##p<0.01,###p<0.001;与TG-NS相比,&p<0.05,&&p<0.01;
图10示枸杞糖肽对SOD1 G93A小鼠腰段脊髓炎症因子mRNA相对表达量的影响;其中,(a)四组小鼠脊髓IL-6的mRNA相对表达量;(b)四组小鼠脊髓TNF-α的mRNA相对表达量;(c)四组小鼠脊髓IL-1β的mRNA相对表达量;(c)四组小鼠脊髓IL-10的mRNA相对表达量;数据以mean±SEM表示,每组n=3;与WT-NS相比,****p<0.0001,***p<0.001;与WT-LbGP相比,##p<0.01,###p<0.001,####p<0.0001;与TG-NS相比,&p<0.05,&&p<0.01。
具体实施方式
本发明公开了枸杞糖肽在制备预防和/或治疗肌萎缩侧索硬化的药物中的应用,本领域技术人员可以借鉴本文内容,适当改进工艺参数实现。 特别需要指出的是,所有类似的替换和改动对本领域技术人员来说是显而易见的,它们都被视为包括在本发明。本发明的方法及应用已经通过较佳实施例进行了描述,相关人员明显能在不脱离本发明内容、精神和范围内对本文所述的方法和应用进行改动或适当变更与组合,来实现和应用本发明技术。
术语解释:枸杞中提取的几个多糖缀合物的混合物称之为枸杞糖肽,部分实验中以LBP或LbGp指代,枸杞糖肽经柱层析分离获得其中的五种组分,文章中常以LbGp1(LB1)、LbGp2(LB2)、LbGp3(LB3)、LbGp4(LB4)、LbGp5(LB5)表示。
本发明提供的枸杞糖肽在制备预防和/或治疗肌萎缩侧索硬化的药物中的应用中,所用原料及试剂均可由市场购得。其中,枸杞糖肽购自宁夏天仁枸杞生物科技股份有限公司。
实验动物分组及给药
使用生理盐水溶解枸杞糖肽(来源:宁夏天仁枸杞生物科技股份有限公司)使其终浓度2mg/ml,按0.01ml/g体重灌胃给药,给药浓度为20mg/Kg·d。
10只SOD1G93A雌性小鼠:
Tg-LBP组(n=5),枸杞糖肽20mg/Kg·d灌胃;
Tg-Con组(n=5),0.01ml/g·d生理盐水灌胃。
下面结合实施例,进一步阐述本发明:
实施例1 枸杞糖肽对SOD1 G93A转基因小鼠体重的影响
从小鼠90天龄开始,每3天测一次体重,以观察枸杞糖肽对SOD1G93A小鼠体重的影响。从图2小鼠的体重曲线中,我们可以观察到Tg-Con组和Tg-LBP组小鼠在发病后体重显著下降,与Tg-Con组小鼠相比,Tg-LBP组小鼠体重下降时间稍晚,体重曲线下降速度减缓。该结果提示枸杞糖肽有减缓SOD1G93A转基因小鼠体重下降速度的趋势,且具有显著的统计学差异(p<0.01)。
表1枸杞糖肽对SOD1 G93A转基因小鼠体重的影响
Tg-LBP Tg-Con
90 19.74±0.95 19.60±0.29
93 19.74±0.97 19.35±0.4
96 19.78±0.96 19.88±0.29
99 19.82±0.89 19.80±0.39
102 20.26±1.01 19.90±0.34
105 20.26±0.97 19.83±0.30
108 20.5±1.03 20.00±0.37
111 21.18±1.09 20.8±0.21
114 20.72±1.05 20.18±0.38
117 21.08±1.01 20.05±0.42
120 21.02±1.27 20.6±0.38
123 20.8±1.2 20.35±0.21
126 21±1.22 20.7±0.07
129 20.8±1.02 20.6±0.2
132 20.84±1.13 19.63±0.33
135 20.62±0.87 20.18±0.31
138 21.16±1.05 20.28±0.43
141 21.24±1.17 19.33±0.53
144 21.04±1.11 19.08±0.58
147 20.5±1.22 17.98±0.65
150 21.02±1.24 17.5±0.23*
153 21.22±1.3 14.08±0.5**
所有数据都以mean±SEM表示,使用GraphPad 8.0进行统计分析,*p<0.05,**p<0.01。
实施例2 枸杞糖肽对SOD1G93A转基因小鼠发病时间和生存周期的影 响
从小鼠90天龄开始,每3天测一次转棒,根据小鼠的转棒成绩和体重变化评估小鼠的发病时间。根据疾病终末期小鼠的翻正反射判断小鼠的死亡时间,以评估小鼠的生存周期。由图3实验结果提示:枸杞糖肽延长SOD1G93A转基因小鼠生存周期(n=5,*p<0.05)和病程(n=5,**p<0.01)。
表2
组别 生存周期(天) 发病时间(天) 病程(天)
Tg-Con组 160.5±12.2 129.8±7.3 31.2±3.0
Tg-LBP组 199.2±10.3* 132.6±6.9 53.3±4.3**
所有数据都以mean±SEM表示,使用t-tests(GraphPad 8.0)进行统计分析,*p<0.05,**p<0.01。
实施例3 枸杞糖肽对SOD1G93A转基因小鼠腰段脊髓炎症因子的影响
研究表明,小胶质细胞在ALS的发生发展中发挥重要作用。M1型小胶质细胞通过分泌IL-1β、IL-6和TNF-α等促炎因子促进神经炎症反应并加剧神经元的损伤。使用RT-PCR方法对腰段脊髓促炎因子(IL-1β,IL-6,TNF-α)的mRNA的相对表达量进行检测。如图4的实验结果提示,与Tg-Con组小鼠比较,Tg-LBP组小鼠腰段脊髓IL-1β和IL-6的mRNA的相对表达量有显著的下降,差异有统计学意义,但TNF-α的mRNA的相对表达量仅有下降趋势,差异无统计学意义。由此可见,枸杞糖肽可以抑制SOD1G93A转基因小鼠腰段脊髓促炎因子的表达,通过抑制神经炎症发挥神经保护作用。
表3
组别 IL-1β IL-6 TNF-α
Tg-Con 1.0±0.18 1.0±0.08 1.0±0.16
Tg-LBP 0.4±0.11* 0.62±0.07* 0.74±0.09
所有数据都以mean±SEM表示,使用t-tests(GraphPad 8.0)进行统计分析,*p<0.05,**p<0.01。
实施例4
1.实验动物分组及给药:
使用生理盐水溶解枸杞糖肽(来源:宁夏天仁枸杞生物科技公司)使其终浓度2mg/ml,按0.01ml/g体重灌胃给药,给药浓度为20mg/Kg·d。
将32只雌性转基因鼠(transgenic mouse,TG)混笼饲养,每笼4只。使用随机分组将32只转基因雌鼠随机分为枸杞糖肽治疗组(TG-LbGp)和生理盐水对照组(TG-NS),每组16只。同时将年龄性别相匹配的同窝野生型(Wildtype,WT)雌鼠32只随机分为枸杞糖肽治疗组(WT-LbGp)和生理盐水对照组(WT-NS),每组16只。具体方案如下:从90天开始,TG-LbGp和WT-LbGp组小鼠给与枸杞糖肽溶液灌胃,剂量为20mg/kg,直到转基因小鼠死亡,TG-NS和WT-NS组小鼠给与等体积生理盐水灌胃至转基因小鼠死亡。在170天龄时每组随机取6只小鼠处死取材用于病理和生化相关指标的检测,每组中剩余的10只小鼠用来于观察发病时间和生存期。
2.技术路线:如图5所示。
3.实验结果:
3.1枸杞糖肽对发病时间生存期和疾病病程的影响
本研究使用转棒实验评估小鼠的发病时间,如图6所示,给予枸杞糖肽治疗后,与TG-NS组小鼠相比,TG-LbGp组小鼠发病时间有延迟(见图6a),但无统计学差异(133.5±4.801 vs 148.5±6.712,P=0.0858)(图6b)。在疾病终末期使用小鼠的翻正反射判定小鼠的死亡时间以统计生存期,研究结果如图6所示,与TG-NS组小鼠比较,TG-LbGp组小鼠的平均生存期延长了约30天(171.1±5.896 vs 201.1±5.305,P<0.01),(见图6c,图6d)该研究结果提示,枸杞糖肽治疗可延长SOD1 G93A转基因小鼠的寿命约17.5%。病程是指转基因小鼠从发病到死亡所持续的时间,该指标一定程度上反应了疾病的进展速度。通过比较TG-NS组小鼠和TG-LbGp组小鼠病程,我们发现给与枸杞糖肽治疗后,TG-LbGp组小鼠的病程较TG-NS组小鼠延长约35.1%(37.60±2.566 vs 50.60±1.572,P<0.001),(见图6e,图6f)该结果提示,枸杞糖肽治疗可以延缓疾病进程。TG-NS组小鼠延 长约35.1%(37.60±2.566 vs 50.60±1.572,P<0.001),(见图6e,图6f)该结果提示,枸杞糖肽治疗可以延缓疾病进程。
3.2枸杞糖肽对星型胶质细胞的影响
星形胶质细胞具有多种功能,是中枢神经系统中最常见的细胞,也是维持和支持中枢神经系统运动神经元存活的关键因素。SOD1小鼠和人类ALS患者的脊髓和大脑运动区域都发现了星形胶质细胞的胞体增大,突触增加,GFAP表达上调。在ALS的动物模型和ALS疾病患者中发现活化的星形胶质细胞通过多种机制在ALS的病理学中起关键作用,因此调控星形胶质细胞的活化可能是ALS的潜在治疗靶点。为观察枸杞糖肽对星形胶质细胞的影响,我们使用抗GFAP抗体对SOD1 G93A转基因小鼠腰段脊髓冰冻切片进行免疫荧光染色,以评估星形胶质细胞的数量。结果如图3-4示,SOD1 G93A转基因小鼠腰段脊髓组织内GFAP染色阳性的星形胶质细胞明显多于野生型小鼠;与TG-NS组小鼠相比,TG-LbGp组GFAP染色阳性的星形胶质细胞明显更少(见图7a),TG-LbGp组GFAP单位面积平均荧光密度减少了约27.1%(见图7b)也进一步证明该结果,提示枸杞糖肽治疗可以有效抑制ALS转基因模型小鼠体内星形胶质细胞的增生。
3.3枸杞糖肽对小胶质细胞的影响
为评估枸杞糖肽治疗对小胶质细胞的作用,本研究使用抗Iba-1抗体免疫荧光染色对SOD1 G93A小鼠脊髓组织冰冻切片进行观察。研究结果如图8所示,SOD1 G93A转基因小鼠腰段脊髓组织内小胶质细胞激活程度较野生型小鼠明显增加,给予枸杞糖肽治疗后,与TG-NS组小鼠相比,TG-LbGp组小鼠腰段脊髓内Iba-1染色阳性的细胞减少(见图8a),经过定量分析TG-LbGp组Iba-1单位面积平均荧光密度下降了28.5%,(见图8b)提示小胶质细胞的激活程度显著降低。该结果提示,枸杞糖肽治疗可以有效抑制ALS转基因小鼠体内小胶质细胞的激活。
3.4本实验使用qPCR技术对SOD1 G93A转基因小鼠模型腰段脊髓组织的M1型小胶质细胞的标记物CD86和iNOS,以及M2型小胶质细胞的标记物CD206的mRNA相对表达量进行了检测。实验结果表明(见图9),与野生型小鼠比较,SOD1G 93A转基因小鼠模型腰段脊髓组织中CD86的mRNA相对表达量明显增加,给予枸杞糖肽治疗后,TG-LbGp组小鼠CD86的mRNA相对表达量较TG-NS组小鼠降低54%;给予枸杞糖肽治疗后,TG-LbGp组小鼠iNOS的mRNA相对表达量较Tg-NS组小鼠也有下降趋势。此外,与TG-NS,组小鼠相比较,TG-LbGp组小鼠腰段脊髓组织中CD206的mRNA相对表达量增加约66.1%。以上实验结果提示,枸杞糖肽可能能够调节小胶质细胞的活化状态,抑制其向M1型活化,促进其向M2型活化的能力,从而提高M2型小胶质细胞的比例,缓解ALS的疾病进展。
3.5枸杞糖肽对脊髓炎症因子的影响
目前的研究表明,当存在神经元损伤或其他损伤时,根据刺激的类型和强度,小胶质细胞将被激活以分泌增强细胞毒性的促炎因子(例如IL-1β,IL-6和TNF-α)或抗炎神经保护因子(例如IL-10)。SOD1 G93A小鼠模型中活化的小胶质细胞所介导的神经炎症反应在ALS疾病的发生及进展过程中发挥重要作用。在本次研究中,使用qPCR技术检测了SOD1 G93A小鼠模型L4-5段脊髓炎症因子mRNA的相对表达量。实验结果如图10所示,与野生型小鼠相比较,SOD1 G93A转基因小鼠L4-5段脊髓组织的促炎因子IL-6,IL-1β和TNF-α的mRNA的相对表达量显著增加;给予枸杞糖肽治疗后,TG-LbGp组小鼠IL-6和TNF-α的mRNA相对表达量较TG-NS组小鼠分别降低64.8%和25.9%,IL-1βmRNA相对表达量也出现了下降趋势,但差异无统计学意义。给予枸杞糖肽治疗后,TG-LbGp组小鼠IL-10的mRNA相对表达量较TG-NS组小鼠增加68.2%。以上结果提示,枸杞糖肽治疗可能抑制促炎因子的产生,从而发挥治疗作用。
以上对本发明所提供的枸杞糖肽在制备预防和/或治疗肌萎缩侧索硬化的药物中的应用进行了详细介绍。本文应用了具体个例对本发明的原理 及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (10)

  1. 枸杞糖肽在制备预防和/或治疗肌萎缩侧索硬化的药物中的应用。
  2. 如权利要求1所述的应用,其特征在于,所述枸杞糖肽减缓SOD1G93A转基因小鼠体重下降。
  3. 如权利要求1所述的应用,其特征在于,所述枸杞糖肽延长SOD1G93A转基因小鼠的生存周期。
  4. 如权利要求1所述的应用,其特征在于,所述枸杞糖肽延长SOD1G93A转基因小鼠的病程。
  5. 如权利要求1所述的应用,其特征在于,所述枸杞糖肽下调SOD1G93A转基因小鼠腰段脊髓炎症因子的相对表达量。
  6. 如权利要求5所述的应用,其特征在于,所述炎症因子包括IL-1β,IL-6或TNF-α中的一个或多个。
  7. 如权利要求1至6任一项所述的应用,其特征在于,所述枸杞糖肽的剂量为1mg/kg动物体重~100mg/kg动物体重。
  8. 如权利要求7所述的应用,其特征在于,所述枸杞糖肽的剂量为20mg/kg动物体重。
  9. 如权利要求1至8任一项所述的应用,其特征在于,所述枸杞糖肽:
    (1)促进小胶质细胞向M2型活化和/或抑制小胶质细胞向M1型活化;和/或
    (2)所述枸杞糖肽上调IL-10的表达。
  10. 预防和/或治疗肌萎缩侧索硬化的方法,其特征在于,施用枸杞糖肽。
CN202280006961.6A 2021-09-08 2022-08-15 枸杞糖肽在制备预防和/或治疗肌萎缩侧索硬化的药物中的应用 Active CN116390740B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202111047838.2A CN113842449B (zh) 2021-09-08 2021-09-08 枸杞糖肽在制备预防和/或治疗肌萎缩侧索硬化的药物中的应用
CN2021110478382 2021-09-08
PCT/CN2022/112447 WO2023035867A1 (zh) 2021-09-08 2022-08-15 枸杞糖肽在制备预防和/或治疗肌萎缩侧索硬化的药物中的应用

Publications (2)

Publication Number Publication Date
CN116390740A true CN116390740A (zh) 2023-07-04
CN116390740B CN116390740B (zh) 2024-07-09

Family

ID=78973403

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202111047838.2A Active CN113842449B (zh) 2021-09-08 2021-09-08 枸杞糖肽在制备预防和/或治疗肌萎缩侧索硬化的药物中的应用
CN202280006961.6A Active CN116390740B (zh) 2021-09-08 2022-08-15 枸杞糖肽在制备预防和/或治疗肌萎缩侧索硬化的药物中的应用

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202111047838.2A Active CN113842449B (zh) 2021-09-08 2021-09-08 枸杞糖肽在制备预防和/或治疗肌萎缩侧索硬化的药物中的应用

Country Status (3)

Country Link
US (1) US20240139281A1 (zh)
CN (2) CN113842449B (zh)
WO (1) WO2023035867A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113842449B (zh) * 2021-09-08 2024-02-23 乐卫东 枸杞糖肽在制备预防和/或治疗肌萎缩侧索硬化的药物中的应用
CN114558108A (zh) * 2022-01-20 2022-05-31 宁夏杞肽科技有限公司 枸杞糖肽在制备缓解神经病理性疼痛的药物中的应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1172699C (zh) * 2002-05-22 2004-10-27 阎洪臣 一种治疗脊髓空洞症的中药制剂
US20070185012A1 (en) * 2003-07-10 2007-08-09 Rajadhyaksha V J Glycopeptides for the treatment of als and other metabolic and autoimmune disorders
WO2009097512A1 (en) * 2008-02-01 2009-08-06 Innovative Drug Discovery Inc. Herbal pharmaceutical compositions to treat inflammation and inflammation associated conditions and diseases
EP2512514B1 (en) * 2009-12-14 2014-11-05 Kyoto University Screening method for identifying compounds for treating amyotrophic lateral sclerosis
WO2019217916A1 (en) * 2018-05-10 2019-11-14 The Methodist Hospital Methods for prognosis and management of disease
CN109172692A (zh) * 2018-11-02 2019-01-11 杨京润 一种抗压力抗氧化防治肌肉萎缩的药物及其制备方法
CN113842449B (zh) * 2021-09-08 2024-02-23 乐卫东 枸杞糖肽在制备预防和/或治疗肌萎缩侧索硬化的药物中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
付松等: "枸杞多糖对小胶质细胞HSP60-TLR4通路的抑制作用", 教育教学论坛, no. 47, pages 247 - 248 *

Also Published As

Publication number Publication date
US20240139281A1 (en) 2024-05-02
CN113842449A (zh) 2021-12-28
CN116390740B (zh) 2024-07-09
WO2023035867A8 (zh) 2023-08-10
WO2023035867A1 (zh) 2023-03-16
CN113842449B (zh) 2024-02-23

Similar Documents

Publication Publication Date Title
CN116390740B (zh) 枸杞糖肽在制备预防和/或治疗肌萎缩侧索硬化的药物中的应用
Bilbo et al. Early-life infection leads to altered BDNF and IL-1β mRNA expression in rat hippocampus following learning in adulthood
Geng et al. The effects of hyperbaric oxygen on macrophage polarization after rat spinal cord injury
Shen et al. Neuroprotective effect of epigallocatechin-3-gallate in a mouse model of chronic glaucoma
Xu et al. Differential expression of pro-inflammatory and anti-inflammatory genes of layer chicken bursa after experimental infection with infectious bursal disease virus
Karelina et al. Minocycline blocks traumatic brain injury-induced alcohol consumption and nucleus accumbens inflammation in adolescent male mice
Yan et al. Salidroside attenuates allergic airway inflammation through negative regulation of nuclear factor-kappa B and p38 mitogen–activated protein kinase
Yan et al. Phellinus linteus extract exerts anti-asthmatic effects by suppressing NF-κB and p38 MAPK activity in an OVA-induced mouse model of asthma
Barak et al. Involvement of brain cytokines in the neurobehavioral disturbances induced by HIV-1 glycoprotein120
CN114340609B (zh) 产生安全量的一氧化氮的药物组合物及其用途
Liu et al. Novel synergistic mechanism of 11-keto-β-boswellic acid and Z-Guggulsterone on ischemic stroke revealed by single-cell transcriptomics
Li et al. Protective effect of Zhen-Wu-Tang (ZWT) through keeping DA stable and VMAT 2/DAT mRNA in balance in rats with striatal lesions induced by MPTP
Fan et al. Prophylactic treatment of curcumin in a rat model of depression by attenuating hippocampal synaptic loss
Shen et al. Essential role of the NO signaling pathway in the hippocampal CA1 in morphine-associated memory depends on glutaminergic receptors
US12090176B2 (en) Use of extract from rabbit skin inflamed by vaccinia virus in treating hematopoietic system damage
CN110934879A (zh) 靶向组织微环境中衰老细胞的抗衰老药物d/a及其应用
Hetze et al. Taste-immune associative learning amplifies immunopharmacological effects and attenuates disease progression in a rat glioblastoma model
CN104288168B (zh) 延龄草苷在制备用于治疗和/或预防小胶质细胞介导的疾病的药物中的用途
Wang et al. From the immune system to mood disorders especially induced by Toxoplasma gondii: CD4+ T cell as a bridge
WO2020244507A1 (zh) 一种烟酰胺单核苷酸和/或烟酰胺单核苷酸盐的应用
Li et al. Interferon-induced transmembrane protein 3 in the hippocampus: a potential novel target for the therapeutic effects of recombinant human brain natriuretic peptide on sepsis-associated encephalopathy
Liu et al. Secukinumab attenuates neuroinflammation and neurobehavior defect via PKCβ/ERK/NF-κB pathway in a rat model of GMH
Dachs et al. Chronic treatment with lithium does not improve neuromuscular phenotype in a mouse model of severe spinal muscular atrophy
Zou et al. Asiatic acid and andrographolide reduce hippocampal injury through suppressing neuroinflammation caused by Salmonella typhimurium infection
Zhang et al. Hen egg lysozyme alleviates static mechanical pain via NRF1-Parkin-TACAN signaling axis in sensory neurons

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant