CN116380305A - Magnetorheological liquid metal pressure sensing device and manufacturing method thereof - Google Patents
Magnetorheological liquid metal pressure sensing device and manufacturing method thereof Download PDFInfo
- Publication number
- CN116380305A CN116380305A CN202310356277.7A CN202310356277A CN116380305A CN 116380305 A CN116380305 A CN 116380305A CN 202310356277 A CN202310356277 A CN 202310356277A CN 116380305 A CN116380305 A CN 116380305A
- Authority
- CN
- China
- Prior art keywords
- liquid metal
- magnetic field
- field excitation
- excitation device
- pressure sensing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910001338 liquidmetal Inorganic materials 0.000 title claims abstract description 82
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 9
- 230000005291 magnetic effect Effects 0.000 claims abstract description 89
- 230000005284 excitation Effects 0.000 claims abstract description 59
- 238000001514 detection method Methods 0.000 claims abstract description 39
- 239000003365 glass fiber Substances 0.000 claims abstract description 8
- 229920006324 polyoxymethylene Polymers 0.000 claims abstract description 8
- 239000002245 particle Substances 0.000 claims description 49
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 44
- 239000004205 dimethyl polysiloxane Substances 0.000 claims description 13
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 9
- 238000005516 engineering process Methods 0.000 claims description 6
- 238000003756 stirring Methods 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 5
- 229910000846 In alloy Inorganic materials 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 3
- 239000003795 chemical substances by application Substances 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 229910052733 gallium Inorganic materials 0.000 claims description 3
- 239000003292 glue Substances 0.000 claims description 3
- 238000002347 injection Methods 0.000 claims description 3
- 239000007924 injection Substances 0.000 claims description 3
- 238000001746 injection moulding Methods 0.000 claims description 3
- 229920002379 silicone rubber Polymers 0.000 claims description 3
- 235000013870 dimethyl polysiloxane Nutrition 0.000 claims 4
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 claims 4
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 claims 4
- 238000000605 extraction Methods 0.000 claims 2
- 239000000463 material Substances 0.000 claims 2
- 238000001259 photo etching Methods 0.000 claims 1
- 238000002360 preparation method Methods 0.000 claims 1
- 238000004080 punching Methods 0.000 claims 1
- 238000007789 sealing Methods 0.000 claims 1
- 230000035945 sensitivity Effects 0.000 abstract description 12
- -1 polyoxymethylene Polymers 0.000 abstract description 7
- 229930040373 Paraformaldehyde Natural products 0.000 abstract description 6
- 239000000758 substrate Substances 0.000 abstract description 2
- 230000007547 defect Effects 0.000 abstract 1
- 230000008859 change Effects 0.000 description 15
- 230000005415 magnetization Effects 0.000 description 11
- 239000012530 fluid Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 230000035699 permeability Effects 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 239000013530 defoamer Substances 0.000 description 4
- 230000005672 electromagnetic field Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000006249 magnetic particle Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 239000004945 silicone rubber Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000011553 magnetic fluid Substances 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000005298 paramagnetic effect Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/20—Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Fluid Pressure (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种压力传感装置,具体涉及一种智能化的检测限和灵敏度可调节的磁流变液态金属压力传感装置和该压力传感装置的制造方法。The invention relates to a pressure sensing device, in particular to an intelligent magneto-rheological liquid metal pressure sensing device with adjustable detection limit and sensitivity and a manufacturing method of the pressure sensing device.
背景技术Background technique
压力传感器在工业生产和科研测试领域具有广阔的应用范围,除了传统的刚性压力传感器,现有技术中,中国专利CN 113091988A公开了一种基于液态金属的柔性压力传感器,它采用弹性材料作为表面覆盖物构成的液态金属压力传感器;CN 115507216A公开了一种磁流体压力控制阀及调控方法,它采用磁流变液为调节基体,无级调控阻力间隙截流面积,从而改变压力的阀门装置。但用这些用液态金属制成的压力传感器存在以下问题:Pressure sensors have a wide range of applications in industrial production and scientific research testing. In addition to traditional rigid pressure sensors, in the prior art, Chinese patent CN 113091988A discloses a flexible pressure sensor based on liquid metal, which uses elastic materials as surface covering A liquid metal pressure sensor composed of objects; CN 115507216A discloses a magnetic fluid pressure control valve and its regulation method, which uses magnetorheological fluid as the regulating substrate, and steplessly regulates the blocking area of the resistance gap to change the pressure of the valve device. But there are problems with these pressure sensors made of liquid metal:
1、压力检测范围固定,压力检测上下限不可调节,不能同时兼顾较低的检测下限与较高的检测上限,量程小;1. The pressure detection range is fixed, the upper and lower limits of pressure detection cannot be adjusted, and the lower detection limit and higher detection upper limit cannot be taken into account at the same time, and the measuring range is small;
2、压力检测灵敏度低,无法适用于不同的压力检测场景;2. The sensitivity of pressure detection is low, so it cannot be applied to different pressure detection scenarios;
3、压力感应体耐久性差,微流道的排布以及接线口位置不合理,导致局部应力集中、受力不均匀;3. The durability of the pressure sensing body is poor, and the arrangement of the micro-channels and the position of the wiring port are unreasonable, resulting in local stress concentration and uneven force;
4、无法根据所测压力变化,智能调控电流和磁场强度,不能实现压力的智能化检测;4. It is impossible to intelligently regulate the current and magnetic field strength according to the measured pressure change, and it is impossible to realize the intelligent detection of pressure;
5、用于阀门装置的磁流变液的导电性差,且存在较大的磁阻效应,无法得到规律性的电阻值变化。所谓磁阻效应是指某些金属或半导体的电阻值随外加磁场变化而变化的现象,在现有的非导电性磁流变液或者导电性弱的磁流变液(包括CN 115507216A公开的磁流变液)中,羰基铁粒子由无磁场松散排列到磁化时的定向排列,会发生很大的电阻值变化。5. The magnetorheological fluid used in the valve device has poor conductivity and has a large magnetoresistance effect, so regular resistance value changes cannot be obtained. The so-called magnetoresistance effect refers to the phenomenon that the resistance value of some metals or semiconductors changes with the external magnetic field. In the rheological fluid), carbonyl iron particles are loosely arranged in the absence of a magnetic field to an oriented arrangement when magnetized, and a large change in resistance value will occur.
发明内容Contents of the invention
针对现有技术存在的问题,本发明所要解决的技术问题就是提供一种磁流变液态金属压力传感装置,它能提高压力传感器检测上下限、灵敏度和量程,增大传感器的适用范围,提高使用时的可控性和耐久性,同时实现压力的智能化检测。本发明还提供一种该磁流变液态金属压力传感装置的制造方法。Aiming at the problems existing in the prior art, the technical problem to be solved by the present invention is to provide a magneto-rheological liquid metal pressure sensing device, which can improve the upper and lower detection limits, sensitivity and range of the pressure sensor, increase the applicable range of the sensor, and improve Controllability and durability during use, while realizing intelligent detection of pressure. The invention also provides a manufacturing method of the magnetorheological liquid metal pressure sensing device.
为了解决上述技术问题,本发明的技术方案是:In order to solve the problems of the technologies described above, the technical solution of the present invention is:
本发明提供的一种磁流变液态金属压力传感装置,包括由上至下依次重叠的第一磁场激励装置、柔性压力感应体和第二磁场激励装置,第一磁场激励装置与第二磁场激励装置的外接供电线路上接有电流调节器,柔性压力感应体引出检测端接有电阻数据采集仪,电阻数据采集仪输出信号端连接电流调节器的控制信号输入端。将实时电阻数据传输给电流调节器。A magnetorheological liquid metal pressure sensing device provided by the present invention comprises a first magnetic field excitation device, a flexible pressure sensitive body and a second magnetic field excitation device overlapping sequentially from top to bottom, the first magnetic field excitation device and the second magnetic field excitation device The external power supply line of the excitation device is connected with a current regulator, the detection end of the flexible pressure sensing body is connected with a resistance data acquisition instrument, and the output signal end of the resistance data acquisition instrument is connected with the control signal input end of the current regulator. Transmit real-time resistance data to the current regulator.
优选地,柔性压力感应体内布设连通的双线平面螺旋微流道,微流道内填充磁流变液态金属。Preferably, a connected double-wire planar spiral micro-channel is arranged in the flexible pressure sensing body, and the micro-channel is filled with magnetorheological liquid metal.
本发明提供的一种磁流变液态金属压力传感装置制备方法,包括以下步骤:A method for preparing a magnetorheological liquid metal pressure sensing device provided by the present invention comprises the following steps:
步骤1、利用光刻技术制作磁场激励装置的注塑模具以及包含双线平面螺旋微流道的柔性压力感应体模具;Step 1, making the injection mold of the magnetic field excitation device and the flexible pressure-sensing body mold containing the double-line planar helical microfluidic channel by photolithography technology;
步骤2、选用玻纤增强聚甲醛,采用注塑工艺制作包覆铜线圈的圆形饼状磁场激励装置盘,磁场激励装置的上下两盘各项规格完全一致,与外接电路上的电流调节器相接;
步骤3、将有机硅橡胶与固化剂混合后,搅拌均匀,将液态的PDMS放到脱泡机中30分钟以上,除去内部的气泡;随后将其倒入包含双线平面螺旋微流道的柔性压力感应体模具中,放入温箱中,保持60℃-80℃,养护50分钟以上,待PDMS凝固以后,从模具中取出得到第一片层,同样的方法制作第二片层;
步骤4、将步骤3制作好的2片PDMS片层,将上述进行键合;所述键合就是将上面制作的2层粘到一块,形成一个内部含有微流道的整体;Step 4. Bond the 2 PDMS sheets prepared in
步骤5、将液态金属与羰基铁粒子混合后,搅拌均匀,得到磁流变液态金属,将磁流变液态金属放到脱泡机中30分钟以上,除去内部的气泡,再利用打孔器在预设通孔处进行打孔,随后利用注射器将磁流变液态金属注入,用胶水进行封口,得到柔性压力感应体,将柔性压力感应体的引出检测端与电阻数据采集仪相接;
步骤6、将注入磁流变液态金属的柔性压力感应体中心对其放置在磁场激励装置的上下盘中间,电阻数据采集仪与电流调节器相连。
本发明的磁流变液态金属压力传感装置的基本工作原理:The basic working principle of the magnetorheological liquid metal pressure sensing device of the present invention:
利用磁流变效应和磁流变弹性体的变刚度原理,在液态金属中加入一种高导磁率、非溶性介质,制成磁流变液态金属,利用亥姆霍兹线圈作为磁场激励装置在空间内产生匀强磁场,使得磁流变液态金属中的磁性粒子被磁化,此时磁流变液态金属的流变性质发生突变,迅速固化而失去流动性,进而导致含有磁流变液态金属的柔性压力感应体的刚度发生变化。上述过程中刚度变化是一个瞬变的过程,在毫秒内即可完成,同时又是可逆的,在撤去外加磁场后磁流变液态金属又恢复流动性。此外电阻数据采集仪与电流调节器相连,将实时电阻数据传输给电流调节器,通过设置的电阻阈值作为电流调控信号,达到电阻阈值后,电流调节器自动调控电流,以此实现压力检测的上下限智能化调节,并从电阻数据采集仪的输出信号中获得检测的压力数据。Utilizing the magnetorheological effect and the variable stiffness principle of magnetorheological elastomers, a high magnetic permeability and insoluble medium is added to the liquid metal to make magnetorheological liquid metal, and the Helmholtz coil is used as the magnetic field excitation device in the liquid metal. A uniform magnetic field is generated in the space, so that the magnetic particles in the magnetorheological liquid metal are magnetized. At this time, the rheological properties of the magnetorheological liquid metal change suddenly, and it solidifies rapidly and loses fluidity. The stiffness of the flexible pressure sensing body changes. The stiffness change in the above process is a transient process, which can be completed within milliseconds and is reversible at the same time. After the external magnetic field is removed, the magnetorheological liquid metal recovers its fluidity. In addition, the resistance data acquisition instrument is connected with the current regulator, and transmits the real-time resistance data to the current regulator. The set resistance threshold is used as the current regulation signal. After the resistance threshold is reached, the current regulator automatically regulates the current, so as to realize the pressure detection. The lower limit is intelligently adjusted, and the detected pressure data is obtained from the output signal of the resistance data acquisition instrument.
本发明的技术效果是:压力检测的上下限和灵敏度可调节和控制,通过电阻数据采集仪实时反馈电阻信号,利用电流调节器调控接入磁场激励装置的电流大小,实现压力的智能化检测。The technical effects of the invention are: the upper and lower limits and sensitivity of pressure detection can be adjusted and controlled, the resistance signal is fed back in real time through the resistance data acquisition instrument, and the current regulator is used to regulate the current size connected to the magnetic field excitation device, so as to realize the intelligent detection of pressure.
附图说明Description of drawings
本发明的附图说明如下:The accompanying drawings of the present invention are as follows:
图1为本发明的结构示意图;Fig. 1 is a structural representation of the present invention;
图2为第一、二磁场激励装置的结构示意图;Fig. 2 is the structural representation of first, second magnetic field excitation device;
图3为柔性压力感应体结构示意图;Fig. 3 is a schematic structural diagram of a flexible pressure sensing body;
图4为柔性压力感应体的检测限和灵敏度可调节原理示意图;Fig. 4 is a schematic diagram of the adjustable detection limit and sensitivity of the flexible pressure sensing body;
图5为柔性压力感应体受压变形图。Fig. 5 is a diagram of deformation of the flexible pressure sensing body under pressure.
图中,1、第一磁场激励装置;2、柔性压力感应体;3、第二磁场激励装置;4、电流调节器;5、电阻数据采集仪;6、非导磁刚性外壳;7、亥姆霍兹线圈;8、双线平面螺旋;9、磁流变液态金属;10、羰基铁粒子。In the figure, 1. first magnetic field excitation device; 2. flexible pressure sensing body; 3. second magnetic field excitation device; 4. current regulator; 5. resistance data acquisition instrument; 6. non-magnetic rigid shell; 7. Mholtz coil; 8. Two-wire planar spiral; 9. Magneto-rheological liquid metal; 10. Carbonyl iron particles.
具体实施方式Detailed ways
下面结合附图和实施例对本发明作进一步说明:Below in conjunction with accompanying drawing and embodiment the present invention will be further described:
为了清楚描述发明内容,本专利申请使用方位词“上”、“下”进行区别,所述“上”、“下”是依据以上附图的布设方位来确定的,在本发明的实际使用方向发生改变,其方位的称谓随之改变,不能视为对专利保护范围的限制。In order to clearly describe the content of the invention, this patent application uses the orientation words "upper" and "lower" to distinguish them. The "upper" and "lower" are determined according to the layout orientation of the above drawings. The name of its location changes accordingly, which cannot be regarded as a limitation on the scope of patent protection.
如图1所示,本发明包括由上至下依次重叠的第一磁场激励装置1、柔性压力感应体2和第二磁场激励装置3,第一磁场激励装置1与第二磁场激励装置3的外接供电线路上接有电流调节器4,柔性压力感应体2引出检测端接有电阻数据采集仪5,电阻数据采集仪5输出信号端连接电流调节器的控制信号输入端。电流调节器接收调控信号,按预先设定好的电阻阈值档位调节磁场激励装置的电流大小,控制磁场激励装置所产生的激励磁场强度,实现智能化的压力检测以及柔性压力感应体检测上下限和灵敏度的可调节。As shown in Figure 1, the present invention comprises the first magnetic field excitation device 1, the flexible pressure
如图2所示,上述第一磁场激励装置1和第二磁场激励装置3规格相同,组成亥姆霍兹线圈7,线圈包覆非导磁刚性外壳6。所述非导磁刚性外壳6选用玻纤增强聚甲醛,利用亥姆霍兹线圈产生匀强磁场。As shown in FIG. 2 , the above-mentioned first magnetic field excitation device 1 and the second magnetic
如图3所示,柔性压力感应体2内部刻有微流道,微流道为连通的双线平面螺旋8,微流道内部填充磁流变液态金属9。柔性压力感应体2选用聚二甲基硅氧烷(PDMS)。As shown in FIG. 3 , the inside of the flexible
所述磁流变液态金属9为镓铟合金液态金属与羰基铁粒子10的混合液。根据使用需求,羰基铁粒子10与镓铟合金液态金属按照质量比0.1~1∶2混合。The magnetorheological
通过电阻数据采集仪反馈的信号,调控电流调节器,控制亥姆霍兹线圈通入电流的大小,进而控制激励磁场的强度,调节传感装置的压力检测范围和检测灵敏度,柔性压力感应体2引出的检测端接有电阻数据采集仪,检测连通的双线平面螺旋微流道内磁流变液态金属的电阻变化,并实时反馈调控信号给电流调节器,这里的调控信号就是电阻信号,电阻数据采集仪单独通入交流电,不与磁场激励装置和电流调节器共用电源,将最后电阻数据采集仪得到的稳定的电阻值以及激励磁场通入的电流值传输到计算机处理模块,得到作用在柔性压力感应体上的压力大小。Through the signal fed back by the resistance data acquisition instrument, the current regulator is regulated to control the magnitude of the current passed through the Helmholtz coil, thereby controlling the strength of the excitation magnetic field, and adjusting the pressure detection range and detection sensitivity of the sensing device. The
本发明的工作原理是:The working principle of the present invention is:
磁流变效应:磁流变液态金属为EGaIn液态金属混合一定比例羰基铁粒子,羰基铁粒子10均匀随机的分散在镓基液态金属中,液态金属基体与羰基铁粒子之间磁导率的差异是引起本发明磁流变效应的根本原因。Magneto-rheological effect: Magneto-rheological liquid metal is EGaIn liquid metal mixed with a certain proportion of carbonyl iron particles,
如图4所示,羰基铁粒子10具有磁场极化的特性,磁流变液态金属中的羰基铁粒子10在外部磁场的作用下,液态内部原本松散排列的羰基铁粒子会沿着磁场方向形成链状结构,产生有规律的定向排列,从流体状态转变为类固态,从而引起柔性压力感应体2的刚度整体发生变化。由于羰基铁粒子是软磁材料,无固化的剩磁。并且具有高饱和磁化强度,当外加磁场撤除后,磁流变液态金属在外部弹性体的作用下,迅速复原,这是本发明能重复运行的依据。As shown in Figure 4, the
另外,液态金属可以看作正离子流体和自由电子气组成的混合物,具有高导电性,并且液态金属具有污浊性,所谓污浊性是指液态金属在流动过的路径上会留下痕迹,此痕迹连续、不断,主要成分为超薄层状的液态金属及其氧化物,即使柔性压力感应体内部的双线平面螺旋微流道被压缩至扁平,也可保证导电通路的完整,使得压力感应体有极强的导电稳定性,此外磁流变液态金属中液态金属的导电性远比羰基铁粒子的导电性强,液态金属起主要的导电作用,因此羰基铁粒子的移动,不会对整体导电通路的导电性产生影响,克服了现有磁流变液的磁阻效应以及磁流液的导电率不稳定,保证磁流变液的电阻值仅随微流道的几何形状按电阻定律变化,能够建立柔性压力感应体承受压力与液态金属电阻的变化函数式。In addition, liquid metal can be regarded as a mixture of positive ion fluid and free electron gas, which has high conductivity, and liquid metal has turbidity. The so-called turbidity means that liquid metal will leave traces on the path it flows through. This trace Continuous and uninterrupted, the main components are ultra-thin layered liquid metal and its oxides. Even if the double-wire planar spiral micro-channel inside the flexible pressure-sensing body is compressed to flat, it can also ensure the integrity of the conductive path, making the pressure-sensing body It has extremely strong conductivity stability. In addition, the conductivity of liquid metal in magnetorheological liquid metal is much stronger than that of carbonyl iron particles. Liquid metal plays a major role in conductivity, so the movement of carbonyl iron particles will not affect the overall conductivity. The conductivity of the path affects the magnetoresistance effect of the existing magnetorheological fluid and the instability of the conductivity of the magnetorheological fluid, ensuring that the resistance value of the magnetorheological fluid only changes with the geometry of the microchannel according to the law of resistance. It is possible to establish the function formula of the change of the pressure of the flexible pressure sensing body and the resistance of the liquid metal.
羰基铁粒子在均匀电磁场中的磁化强度可以根据langevin经典顺磁性理论推导,该理论中langevin方程为受电磁场作用下的磁性粒子的运动引入了随机位势,电磁场作用在羰基铁粒子上的力虽然不能被具体计算,但可以根据langevin方程引入的随机位势用随机力代替,由此可以推导出电磁场作用下的羰基铁粒子磁化强度。推导过程如下:The magnetization of carbonyl iron particles in a uniform electromagnetic field can be deduced according to Langevin's classical paramagnetic theory. In this theory, the Langevin equation introduces a random potential for the motion of magnetic particles under the action of an electromagnetic field. Although the force of the electromagnetic field on carbonyl iron particles It cannot be calculated specifically, but it can be replaced by a random force according to the random potential introduced by the Langevin equation, from which the magnetization of carbonyl iron particles under the action of an electromagnetic field can be deduced. The derivation process is as follows:
先推导磁流变液态金属中的羰基铁粒数目,整个磁流变液态金属中所含羰基铁粒子的数目受以下两个因素控制,液态金属中所含羰基铁粒子的体积分数,以及羰基铁粒子的粒径,本发明中所采用的羰基铁粒子为统一生产定制,粒子粒径相同,因此磁流变液态金属中所含的羰基铁粒子数目为:First deduce the number of carbonyl iron particles in the magnetorheological liquid metal, the number of carbonyl iron particles contained in the entire magnetorheological liquid metal is controlled by the following two factors, the volume fraction of carbonyl iron particles contained in the liquid metal, and carbonyl iron The particle diameter of particle, the carbonyl iron particle that adopts in the present invention is custom-made for unified production, and particle particle diameter is identical, so the carbonyl iron particle number contained in the magnetorheological liquid metal is:
式(1)中,Φv为羰基铁粒子在磁流变液态金属中的体积分数;d为羰基铁粒子的粒径。In formula (1), Φ v is the volume fraction of carbonyl iron particles in the magnetorheological liquid metal; d is the particle size of carbonyl iron particles.
单个羰基铁粒子的磁矩为:The magnetic moment of a single carbonyl iron particle is:
式(2)中,MS为羰基铁粒子的饱和磁化强度。In formula (2), M S is the saturation magnetization of carbonyl iron particles.
引入的langevin函数的表达式为:The expression of the introduced langevin function is:
式(3)中,coth为双曲函数中的双曲余切,α为langevin函数的参数,此参数的大小受外部环境因素和磁粒本身特性共同决定,外部环境因素包括磁场强度和磁场温度,羰基铁粒子本身特性包括真空磁导率和磁矩,因此langevin函数的参数可以表示为:In formula (3), coth is the hyperbolic cotangent in the hyperbolic function, and α is the parameter of the langevin function. The size of this parameter is determined by the external environmental factors and the characteristics of the magnetic particles themselves. The external environmental factors include magnetic field strength and magnetic field temperature , the properties of carbonyl iron particles include vacuum permeability and magnetic moment, so the parameters of the langevin function can be expressed as:
式(4)中,μ0为羰基铁粒子真空磁导率;m为单个羰基铁粒子的磁矩;H为外加的磁场强度;K为Boltzmann常数;T为绝对温度。In formula (4), μ 0 is the vacuum magnetic permeability of carbonyl iron particles; m is the magnetic moment of a single carbonyl iron particle; H is the applied magnetic field strength; K is the Boltzmann constant; T is the absolute temperature.
根据langevin理论,引入随机位势后的磁流变液态金属磁化强度关系式为:According to the Langevin theory, the relational expression of magnetization of magnetorheological liquid metal after introducing random potential is:
M=nmL(α) (5)M=nmL(α) (5)
将式(5)计算得到磁流变液态金属内羰基铁粒子的整体磁化强度为:The overall magnetization of carbonyl iron particles in the magnetorheological liquid metal is calculated by formula (5):
由式(6)整理得磁流变液态金属的磁化强度公式为:According to formula (6), the magnetization formula of magnetorheological liquid metal is as follows:
式(7)中:n为羰基铁粒子数目;In formula (7): n is the number of carbonyl iron particles;
m为单个羰基铁粒子磁矩;m is the magnetic moment of a single carbonyl iron particle;
Φv为羰基铁粒子在磁流变液态金属中的体积分数;Φ v is the volume fraction of carbonyl iron particles in the magnetorheological liquid metal;
d为羰基铁粒子的粒径;d is the particle diameter of carbonyl iron particle;
MS为羰基铁粒子饱和磁化强度;M S is the saturation magnetization of carbonyl iron particles;
α为langevin函数的参数;α is the parameter of langevin function;
μ0为羰基铁粒子真空磁导率;μ 0 is the vacuum magnetic permeability of carbonyl iron particles;
H为外加的磁场强度;H is the applied magnetic field strength;
K为Boltzmann常数;K is the Boltzmann constant;
T为绝对温度。T is the absolute temperature.
磁流变液态金属柔性压力传感装置中的磁场激励装置为玻纤增强聚甲醛包覆亥姆霍兹线圈,玻纤增强聚甲醛又称赛钢,具有强度高、不导磁、耐热耐酸、稳定性好等优点,在柔性压力感应体压力量程范围内可看做不变形的刚体,亥姆霍兹线圈可在空间内产生匀强磁场,进而保证柔性压力感应体微流道内磁流变液态金属中的羰基铁粒子被均匀磁化。The magnetic field excitation device in the magnetorheological liquid metal flexible pressure sensing device is a glass fiber reinforced polyoxymethylene coated Helmholtz coil. Glass fiber reinforced polyoxymethylene is also called Saigang, which has high strength, non-magnetic conductivity, heat and acid resistance , good stability and other advantages, the flexible pressure sensing body can be regarded as a rigid body without deformation within the pressure range, and the Helmholtz coil can generate a uniform magnetic field in the space, thereby ensuring the magnetorheological flow in the microchannel of the flexible pressure sensing body The carbonyl iron particles in the liquid metal are uniformly magnetized.
如图1所示,柔性压力感应体2引出检测端接有电阻数据采集仪5,电阻数据采集仪5输出信号端连接电流调节器的控制信号输入端,电流调节器接收调控信号,这里的调控信号就是电阻信号,根据柔性压力感应体标定实验设定不同的电阻阈值,电流调节器存储电阻阈值后,按预先设定好的阈值档位,将磁场激励装置的电流调节到预定大小,进而控制磁场激励装置所产生的激励磁场强度,这是压力传感装置能够实现智能化的控制过程。As shown in Figure 1, the detection end of the flexible
压力感应体微流道内磁流变液态金属的阻值变化可以用电阻数据采集仪测得,电阻数据采集仪可以选用高精度LCR测试仪(HG2810)。电流调节器可以选用国产品牌上海能工生产的可控硅可调直流电源控制器。The resistance change of the magnetorheological liquid metal in the microchannel of the pressure sensing body can be measured by a resistance data acquisition instrument, and the resistance data acquisition instrument can be a high-precision LCR tester (HG2810). The current regulator can choose the thyristor adjustable DC power controller produced by the domestic brand Shanghai Nenggong.
如图4所示,给磁场激励装置通大小不同的直流电,会使压力感应体微流道内的羰基铁粒子产生不同的磁化强度,进而影响压力感应体的整体刚度。磁场激励装置不通电时,此时压力感应体的刚度最小,传感装置的灵敏度最高,可以检测到微小压力,但此时压力监测的上限较低;磁场激励装置通电时,此时压力感应体的刚度增大,传感装置的检测下限逐渐提高,压力检测上限也逐步提高,可以满足更大的压力检测需求。这是压力传感装置检测限和灵敏度可调节的基本原理。As shown in Figure 4, passing DC currents of different magnitudes to the magnetic field excitation device will cause the carbonyl iron particles in the microchannel of the pressure sensing body to produce different magnetizations, thereby affecting the overall stiffness of the pressure sensing body. When the magnetic field excitation device is not energized, the stiffness of the pressure sensing body is the smallest at this time, and the sensitivity of the sensing device is the highest, and micro pressure can be detected, but the upper limit of pressure monitoring is low at this time; when the magnetic field excitation device is energized, the pressure sensing body As the stiffness increases, the detection lower limit of the sensing device gradually increases, and the pressure detection upper limit also gradually increases, which can meet greater pressure detection requirements. This is the basic principle of the adjustable detection limit and sensitivity of the pressure sensing device.
如图4所示,磁场激励装置调整到预定大小的外接电流后,磁场激励装置产生均匀分布的磁场,压力感应体微流道内的羰基铁粒子被均匀磁化。受到外部压力时,压力感应体内的微流道会被压缩,产生形变,进而影响压力感应体内部微流道的电阻值,外部压力与压力感应体的电阻值存在函数关系,通过测量电阻变化来表征外部压力的大小。这是压力传感装置能够检测压力的基本原理。As shown in Figure 4, after the magnetic field excitation device is adjusted to a predetermined external current, the magnetic field excitation device generates a uniformly distributed magnetic field, and the carbonyl iron particles in the microchannel of the pressure sensing body are uniformly magnetized. When subjected to external pressure, the micro-channel in the pressure-sensing body will be compressed and deformed, which will affect the resistance value of the micro-channel inside the pressure-sensing body. There is a functional relationship between the external pressure and the resistance value of the pressure-sensing body. By measuring the change in resistance Represents the magnitude of external pressure. This is the basic principle behind the pressure sensing device's ability to detect pressure.
如图5所示,图5(a)为本实施例未施加压力时,微流道内磁流变液态金属的填充直径为d。图5(b)为本实施例受到压力时,柔性压力感应体2变形,微流道内磁流变液态金属的填充直径为d';压力感应体内微流道直径的变化,根据本压力传感装置检测压力的原理,必然引起连通的双线平面螺旋线圈内磁流变液态金属的电阻值变化;所以,连通的双线平面螺旋线圈内磁流变液态金属的阻值变化值能反映压力P的大小。As shown in Fig. 5, Fig. 5(a) shows that when no pressure is applied in this embodiment, the filling diameter of the magnetorheological liquid metal in the microchannel is d. Figure 5(b) shows that when the embodiment is under pressure, the flexible
通过调控磁场激励装置的接入电流大小可以产生强弱不同的磁场,强弱不同的磁场会影响压力感应体中羰基铁粒子的磁化强度,磁化强度不同压力感应体的变形刚度不同,测量电阻变化、外接电流变化、压力的大小,理论上可以做到压力检测限的无极连续调节,但在实际使用时,为简化实验标定次数,可以设置不同的压力检测档位,例如设置高中低三挡,分别检测大中小三种类型的压力。确定不同的外接电流就是选定不同的检测档位,此工作可由电阻数据采集仪和电流调节器协同工作完成。通过电阻数据采集仪反馈实时阻值数据给电流调节器,达到设定好的阻值阈值后自动调整档位。根据电阻数据采集仪输出的最后稳定阻值,确定施加在柔性压力传感器上的压力,将电阻测量的电信号转换为压力值。Different strengths of magnetic fields can be generated by adjusting the access current of the magnetic field excitation device. The magnetic field with different strengths will affect the magnetization of carbonyl iron particles in the pressure sensing body. The deformation stiffness of the pressure sensing body is different with different magnetization, and the resistance change is measured. , the change of external current, and the magnitude of pressure, in theory, the infinite continuous adjustment of the pressure detection limit can be achieved, but in actual use, in order to simplify the number of experimental calibrations, different pressure detection gears can be set, such as setting high, medium and low three gears, Three types of pressure, large, medium and small, are detected respectively. To determine different external currents is to select different detection gears, and this work can be completed by the cooperation of the resistance data acquisition instrument and the current regulator. The real-time resistance data is fed back to the current regulator through the resistance data acquisition instrument, and the gear is automatically adjusted after reaching the set resistance threshold. According to the final stable resistance value output by the resistance data acquisition instrument, the pressure applied on the flexible pressure sensor is determined, and the electrical signal measured by the resistance is converted into a pressure value.
本发明提供的该压力传感装置的制造方法,包括以下步骤:The manufacturing method of the pressure sensing device provided by the present invention comprises the following steps:
步骤1、利用光刻技术制作磁场激励装置的注塑模具以及包含双线平面螺旋微流道的柔性压力感应体模具;Step 1, making the injection mold of the magnetic field excitation device and the flexible pressure-sensing body mold containing the double-line planar helical microfluidic channel by photolithography technology;
步骤2、选用玻纤增强聚甲醛,采用注塑工艺制作包覆铜线圈的圆形饼状磁场激励装置盘,磁场激励装置的上下两盘各项规格完全一致,与外接电路上的电流调节器相接;
步骤3、根据使用时PDMS硬度的需求,将有机硅橡胶与固化剂按质量比10∶1~1.2混合后,搅拌均匀,将液态的PDMS放到脱泡机中30分钟以上,除去内部的气泡;随后将其倒入包含双线平面螺旋微流道的柔性压力感应体模具中,放入温箱中,保持60℃-80℃,养护50分钟以上,待PDMS凝固以后,从模具中取出得到片层1,同样的方法制作片层2;
步骤4、将步骤3制作好的2片PDMS片层,将上述进行键合;所述键合就是将上面制作的2层粘到一块,形成一个内部含有微流道的整体;Step 4. Bond the 2 PDMS sheets prepared in
步骤5、将液态金属与羰基铁粒子混合后,搅拌均匀,得到磁流变液态金属,将磁流变液态金属放到脱泡机中30分钟以上,除去内部的气泡,再利用打孔器在预设通孔处进行打孔,随后利用注射器将磁流变液态金属注入,用胶水进行封口,得到柔性压力感应体,将柔性压力感应体的引出检测端与电阻数据采集仪相接;
步骤6、将注入磁流变液态金属的柔性压力感应体中心对其放置在磁场激励装置的上下盘中间即得,电阻数据采集仪与电流调节器相连。
实际上使用中,柔性压力感应体与磁场激励装置的上下盘之间中心叠层对齐放置即可,无需粘接,这样保证柔性压力感应体受力后可以充分变形,进而提高压力检测的灵敏度。In actual use, the flexible pressure sensing body and the upper and lower plates of the magnetic field excitation device can be aligned and placed in the center without bonding, which ensures that the flexible pressure sensing body can be fully deformed after being stressed, thereby improving the sensitivity of pressure detection.
磁场激励装置连接电流调节器,控制输入电流的大小,柔性压力感应体引出的检测端接有电阻数据采集仪,电阻数据采集仪实时反馈调控信号给电流调节器。将制作好的压力检测限和灵敏度可调节的柔性压力传感装置进行标定试验,最后将电流调节器输出的电流值和电阻数据采集仪得到的最后稳定电阻信号传输到计算处理模块,即可通过测量磁流变液态金属最后稳定电阻值,测量出外部压力的大小。The magnetic field excitation device is connected to the current regulator to control the magnitude of the input current. The detection terminal led by the flexible pressure sensing body is connected to the resistance data acquisition instrument, and the resistance data acquisition instrument feeds back the control signal to the current regulator in real time. Perform a calibration test on the manufactured flexible pressure sensing device with adjustable pressure detection limit and sensitivity, and finally transmit the current value output by the current regulator and the final stable resistance signal obtained by the resistance data acquisition instrument to the calculation and processing module, and then pass Measure the final stable resistance value of the magnetorheological liquid metal, and measure the magnitude of the external pressure.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310356277.7A CN116380305A (en) | 2023-04-06 | 2023-04-06 | Magnetorheological liquid metal pressure sensing device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310356277.7A CN116380305A (en) | 2023-04-06 | 2023-04-06 | Magnetorheological liquid metal pressure sensing device and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116380305A true CN116380305A (en) | 2023-07-04 |
Family
ID=86972742
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310356277.7A Pending CN116380305A (en) | 2023-04-06 | 2023-04-06 | Magnetorheological liquid metal pressure sensing device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116380305A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117470418A (en) * | 2023-10-30 | 2024-01-30 | 浙江大学 | A flange gasket for structural health monitoring of underground piping systems |
CN117988908A (en) * | 2024-04-03 | 2024-05-07 | 武汉大学 | A graded warning anchor rod and warning method based on liquid metal |
-
2023
- 2023-04-06 CN CN202310356277.7A patent/CN116380305A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117470418A (en) * | 2023-10-30 | 2024-01-30 | 浙江大学 | A flange gasket for structural health monitoring of underground piping systems |
CN117988908A (en) * | 2024-04-03 | 2024-05-07 | 武汉大学 | A graded warning anchor rod and warning method based on liquid metal |
CN117988908B (en) * | 2024-04-03 | 2024-06-11 | 武汉大学 | A graded warning anchor rod and warning method based on liquid metal |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN116380305A (en) | Magnetorheological liquid metal pressure sensing device and manufacturing method thereof | |
CN104697678B (en) | It is a kind of to be used to detect sensor of faint stress and preparation method thereof | |
Mietta et al. | Anisotropic magnetoresistance and piezoresistivity in structured Fe3O4-silver particles in PDMS elastomers at room temperature | |
Li et al. | Development of a force sensor working with MR elastomers | |
Mordina et al. | Magnetorheology of polydimethylsiloxane elastomer/FeCo3 nanocomposite | |
Cao et al. | 3D printing ultraflexible magnetic actuators via screw extrusion method | |
Snyder et al. | Design parameters for magneto-elastic soft actuators | |
CN111856354B (en) | Magnetic sensor with wide range and high sensitivity, and preparation method and use method thereof | |
CN109595223A (en) | A kind of control method of the asymmetric electro-hydraulic proportional system based on proportioning valve Accurate Model | |
CN111799570B (en) | A Magnetic Field Control Method for Liquid Absorbing Properties | |
CN109632633B (en) | Magneto-sensitive rubber with controllable adhesion characteristic and preparation method and testing device thereof | |
CN203551760U (en) | Magnetic characteristic testing instrument for magnetostrictive material | |
Li et al. | Investigate the effect of the magnetic field on the mechanical properties of silicone rubber-based anisotropic magnetorheological elastomer during curing process | |
CN106226376B (en) | A kind of preparation method of the nano pulp for electrode print | |
Cui et al. | Magnetic properties of Ni3Si/Fe3O4@ PVDF composites with different Fe3O4 nanoparticles content based on lamellar Ni3Si template | |
CN204575226U (en) | A kind of sensor for detecting faint stress | |
CN103671293A (en) | Hydraulic control method and device for ram piston oil cylinder of internal mixer | |
CN104184361A (en) | Micro displacement drive system design based on giant magnetostrictive materials | |
Zhang et al. | A flexible force-sensitive film with ultra-high sensitivity and wide linear range and its sensor | |
CN102539034B (en) | High-performance ceramic tension sensor | |
Cui et al. | Characterization and regulation of Ni3Si//Fe3O4@ PVDF magnetoelectric composites | |
CN204718722U (en) | A kind of pressure transducer | |
CN113335408B (en) | Self-sensing self-adaptive sandwich type magnetic-sensing rubber sole device | |
CN103257276A (en) | Device and method for measuring power-lossing resistance value of memristor | |
CN108871976A (en) | A kind of shearing performance test device of magnetic rheology elastic body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |