CN116377328A - 一种x60钢板及其制造方法 - Google Patents

一种x60钢板及其制造方法 Download PDF

Info

Publication number
CN116377328A
CN116377328A CN202310345490.8A CN202310345490A CN116377328A CN 116377328 A CN116377328 A CN 116377328A CN 202310345490 A CN202310345490 A CN 202310345490A CN 116377328 A CN116377328 A CN 116377328A
Authority
CN
China
Prior art keywords
percent
steel
equal
steel plate
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310345490.8A
Other languages
English (en)
Other versions
CN116377328B (zh
Inventor
林涛铸
丁旭艳
聂文金
李冉
范娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Shagang Group Co Ltd
Zhangjiagang Hongchang Steel Plate Co Ltd
Jiangsu Shagang Iron and Steel Research Institute Co Ltd
Original Assignee
Jiangsu Shagang Group Co Ltd
Zhangjiagang Hongchang Steel Plate Co Ltd
Jiangsu Shagang Iron and Steel Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Shagang Group Co Ltd, Zhangjiagang Hongchang Steel Plate Co Ltd, Jiangsu Shagang Iron and Steel Research Institute Co Ltd filed Critical Jiangsu Shagang Group Co Ltd
Priority to CN202310345490.8A priority Critical patent/CN116377328B/zh
Publication of CN116377328A publication Critical patent/CN116377328A/zh
Application granted granted Critical
Publication of CN116377328B publication Critical patent/CN116377328B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/02Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/02Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing
    • B21B2001/028Slabs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

本发明公开了一种X60钢板及其制造方法,其化学成分及质量百分比为:C:0.03~0.06%,Si:0.150~0.20%,Mn:1.50~1.60%,Al:0.020~0.060%,Nb:0.06~0.07%,Ti:0.010~0.020%,Cr:0.25~0.30%,NI:0.15~0.25%,P:≤0.014%,S:≤0.004%,N:≤0.060%,其余为铁及不可避免的杂质元素;其中碳当量Ceq≤0.41%,焊接裂纹敏感性指数CEpcm≤0.20%。制造方法为按照成分及对应的质量百分数,配置钢种,炼成铁水;脱硫、转炉炼钢、脱氢脱氧去氮;精炼并轧制出扁平板,连铸机使用320mm断面的连铸板坯;将板坯加热,后经过粗轧、中间坯待温冷却、精轧、钢板冷却、矫直工序、超声探伤,将钢板下线。本发明针对厚度范围≥33mm的特厚高韧性X60钢板,DWTT韧性的控制能力强,且制造过程中不需要添加Mo元素,成分的经济型良好。

Description

一种X60钢板及其制造方法
技术领域
本发明涉及钢铁冶金技术领域,具体地说是一种X60钢板及其制造方法。
背景技术
油气管线的输送容量不断提升,推动管线钢的钢级和壁厚不断的提升,但随着壁厚的不断升高,对管线钢的韧性控制提出更高的要求,特别是壁厚超过33mm以上,DWTT韧性的控制非常困难,是制约大壁厚管线钢生产和推广的一大难题。
目前如CN201910554483.2、CN201210492187.2、CN202110406133.9、CN201910561044.5等专利介绍的内容主要涉及到X65级别以上钢级,基本上都添加采取较高的碳当量和较多的合金来保证DWTT落锤性能,总体成本较高,大面积推广及应用受到限制。
发明内容
本发明要解决的技术问题是针对上述现有技术的不足,而提供一种特厚高韧性X60钢板及其制造方法,对于降低厚规格管线钢的制造成本,保证DWTT落锤性能,提升合格率,具有重要作用。
为解决上述技术问题,本发明采用的技术方案是:一种X60钢板,钢板厚度≥33mm,其化学成分及对应的质量百分比为:
C:0.03~0.06%,Si:0.150~0.20%,Mn:1.50~1.60%,Al:0.020~0.060%,Nb:0.06~0.07%,Ti:0.010~0.020%,Cr:0.25~0.30%,NI:0.15~0.25%,P:≤0.014%,S:≤0.004%,N:≤0.060%,其余为铁及不可避免的杂质元素。
其中,该钢种成分按质量百分比符合以下公式:
碳当量Ceq=[C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15],且Ceq≤0.39%;
焊接裂纹敏感性指数CEpcm=[C+Si/30+(Mn+Cu+Cr)/20+Ni/60+Mo/15+V/10+5B],且CEpcm≤0.17%。
一种X60钢板的制造方法,具体步骤如下:
步骤1、按照成分及对应的质量百分数,配置钢种,炼成铁水,并脱去铁水中的硫;
步骤2、将铁水送入转炉中,炼铁成钢;使用LF还原精炼技术,经过RH真空处理,脱氢脱氧去氮;对钢水进行精炼,最后通过板坯连铸机轧制出扁平板;连铸机使用320mm断面的连铸板坯;
步骤3、将板坯加热,后经过粗轧、中间坯待温冷却、精轧、钢板冷却和矫直工序,将钢板下线;
步骤4、对钢板进行超声探伤,剔除其中有暗伤不合格的钢板。
进一步优选地,步骤3中,板坯加热阶段,加热温度控制为1100~1150℃,在炉时间为1.2~1.5min/mm。
进一步优选地,步骤3中,粗轧阶段,粗轧温度控制为950~1050℃,粗轧道次设为≤8道次;粗轧后中间坯厚度为4倍~5倍成品钢板厚度。
进一步优选地,步骤3中,粗轧阶段钢板展宽结束后进行展长阶段进行3道次不少于35mm的压下量。
进一步优选地,待温厚度为钢板最终厚度的3.5~4倍。
进一步优选地,精轧的前5道次轧制力大于或者等于6000吨,精轧的最后2道次的轧制力小于或者等于5000吨;终轧温度控制在730~760℃。
进一步优选地,步骤3中,钢板冷却阶段,冷却速率控制在16~20℃/s,终冷返红温度控制在300~380℃;钢板冷却后,进行热矫直,改善冷却后的板形;热矫直结束后钢板上冷床进行自然冷却。
本发明具有如下有益效果:
1.本发明针对厚度范围≥33mm的钢板,能够制造出特厚高韧性X60钢板,DWTT韧性的控制能力强,且制造过程中不需要添加Mo元素,成分的经济型良好。
2.本发明通过严格加热温度及加热时间来控制原始奥氏体晶粒的长大。
3.本发明通过严格控制粗轧阶段的大压下轧制来提升粗轧阶段的轧制效果,要求粗轧阶段有3道次的压下量不低于35mm。
4.本发明的通过控制精轧开始的前5道次的轧制力来获得扁平化奥氏体;控制精轧阶段最后2道次的轧制力不超过5000吨来改善最终的轧后板型,为提升冷却的均匀性创造良好的条件。
附图说明
图1是本发明的钢板金相结构示意图一。
图2是本发明的钢板金相结构示意图二。
具体实施方式
本发明的描述中,需要理解的是,术语“左侧”、“右侧”、“上部”、“下部”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,“第一”、“第二”等并不表示零部件的重要程度,因此不能理解为对本发明的限制。本实施例中采用的具体尺寸只是为了举例说明技术方案,并不限制本发明的保护范围。
下面结合附图和具体较佳实施方式对本发明作进一步详细的说明。
一种X60钢板,钢板厚度≥33mm,其化学成分及对应的质量百分比为:
C:0.03~0.06%,Si:0.150~0.20%,Mn:1.50~1.60%,Al:0.020~0.060%,Nb:0.06~0.07%,Ti:0.010~0.020%,Cr:0.25~0.30%,NI:0.15~0.25%,P:≤0.014%,S:≤0.004%,N:≤0.060%,其余为铁及不可避免的杂质元素。
其中,该钢种成分按质量百分比符合以下公式:
碳当量Ceq=[C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15],且Ceq≤0.39%;
焊接裂纹敏感性指数CEpcm=[C+Si/30+(Mn+Cu+Cr)/20+Ni/60+Mo/15+V/10+5B],且CEpcm≤0.17%。
本发明为达到上述目的而进行的化学成分设计思路如下:
碳(C):碳是影响强度、韧性、硬度及焊接性能的主要元素,可以与Nb、Ti、Cr、Mo、Fe形成碳化物,起到析出强化和晶粒细化韧化材料的作用。碳含量的增加,对提高钢的强度和硬度有明显作用,但碳含量的增加会对钢的延性、韧性及焊接性能有负面影响。所以,本发明选择的碳含量为0.03~0.06%,重点保证钢板的韧性及优良的焊接性能。
锰(Mn):锰是固溶强化元素,既可以提高钢的强度和硬度,也能够改善钢的韧性。适度提高钢的淬透性,扩大γ相区,降低钢的γ→α相变温度,有助于获得细小的相变产物。此外,锰还能提高微合金元素铌(Nb)在钢中的溶解度,抑制碳氮化铌的析出。但过多的Mn会导致铸坯中心Mn偏析,对厚板的强韧性有较大伤害。因此,本发明钢采用的锰含量为1.5~1.6%。
铌(Nb):铌是有效的晶粒细化元素,能够明显的抑制奥氏体晶粒长大,延迟γ→α转变,从而获得更加细小的组织。在热轧过程中,析出的碳氮化铌可以延迟再结晶及晶粒的长大过程,碳氮化铌通过钉扎位错,使得基体中可以保留更多的位错密度,提高钢的强度和韧性。固溶状态的铌可以延迟γ→α转变,细化铁素体晶粒,提高钢的韧性,在冷却过程中固溶的铌可以继续以Nb(CN)析出,进一步提高钢的强度。本发明通过添加较多的铌来保证钢板强韧性,采用的铌为0.06~0.07%。
钛(Ti):钛是强的固氮元素,可以形成弥散分布的TiN颗粒,从而可以在坯料加热过程和轧制过程中抑制奥氏体晶粒粗化,起到细化晶粒的作用,提高钢的低温韧性。本发明钢中钛的加入量为0.010~0.020%。
铬(Cr):铬是碳化物形成元素,能够提高钢板硬度,起到沉淀强化的作用;铬作为铁素体形成元素,在高Nb钢中可以得到更多的针状铁素体组织;铬还能够提高钢的抗腐蚀及耐氢致开裂性能。本发明钢中通过添加较高的铬元素来提升厚规格钢板的淬透性,铬的加入量为0.25~0.30%。
铝(Al):Al为强固N元素,形成细小的AlN颗粒析出,可抑制板坯加热、轧制、淬火加热及焊接过程中的晶粒长大,达到细化晶粒、提高钢板的低温韧性及改善焊接性能。本发明选择的铝含量为0.02~0.05%。
一种X60钢板的制造方法,具体步骤如下:
步骤1、按照成分及对应的质量百分数,配置钢种,炼成铁水,并脱去铁水中的硫;
步骤2、将铁水送入转炉中,炼铁成钢;使用LF还原精炼技术,经过RH真空处理,脱氢脱氧去氮;对钢水进行精炼,最后通过板坯连铸机轧制出扁平板;连铸机使用320mm断面的连铸板坯;
步骤3、将板坯加热,加热温度控制为1100~1150℃,在炉时间为1.2~1.5min/mm;粗轧阶段,粗轧温度控制为950~1050℃,粗轧道次设为≤8道次;粗轧后中间坯厚度为4倍~5倍成品钢板厚度;粗轧阶段钢板展宽结束后进行展长阶段进行3道次不少于35mm的压下量。
对中间坯待温冷却,待温厚度为钢板最终厚度的3.5~4倍。
精轧的前5道次轧制力大于或者等于6000吨,精轧的最后2道次的轧制力小于或者等于5000吨;终轧温度控制在730~760℃。
钢板冷却阶段,冷却速率控制在16~20℃/s,终冷返红温度控制在300~380℃;钢板冷却后,进行热矫直,改善冷却后的板形;热矫直结束后钢板上冷床进行自然冷却。
步骤4、对钢板进行超声探伤,剔除其中有暗伤不合格的钢板。
按照上述的管线钢的成分和制造方法,制造出成品的管线钢,并组合参数,优选其中三种做详细研究论述。
优选实施例的母板轧制工艺过程控制参数、冶炼炉次熔炼成分如表1和表2所示:
表1.实施例冶炼炉次及母板轧制工艺过程控制参数
Figure BDA0004159533030000041
Figure BDA0004159533030000051
表2.实施例冶炼炉次熔炼成分
Figure BDA0004159533030000052
表3.实施例热轧母板的力学性能
Figure BDA0004159533030000053
如图1和图2所示,由上实施例数据可以得出结论,通过严格加热温度及加热时间来控制原始奥氏体晶粒的长大。通过严格控制粗轧阶段的大压下轧制来提升粗轧阶段的轧制效果,要求粗轧阶段有3道次的压下量不低于35mm。通过控制精轧开始的前5道次的轧制力来获得扁平化奥氏体;控制精轧阶段最后2道次的轧制力不超过5000吨来改善最终的轧后板型,为提升冷却的均匀性创造良好的条件。
本发明实施例的金相组织的晶粒度均达到11级以上,针对厚度范围≥33mm的钢板,能够制造出特厚高韧性X60钢板,DWTT韧性的控制能力强,且制造过程中不需要添加Mo元素,成分的经济型良好。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种等同变换,这些等同变换均属于本发明的保护范围。

Claims (8)

1.一种X60钢板,其特征在于:钢板厚度≥33mm,其化学成分及对应的质量百分比为:
C:0.03~0.06%,Si:0.150~0.20%,Mn:1.50~1.60%,Al:0.020~0.060%,Nb:0.06~0.07%,Ti:0.010~0.020%,Cr:0.25~0.30%,NI:0.15~0.25%,P:≤0.014%,S:≤0.004%,N:≤0.060%,其余为铁及不可避免的杂质元素;
其中,该钢种成分按质量百分比符合以下公式:
碳当量Ceq=[C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15],且Ceq≤0.39%;
焊接裂纹敏感性指数CEpcm=[C+Si/30+(Mn+Cu+Cr)/20+Ni/60+Mo/15+V/10+5B],且CEpcm≤0.17%。
2.一种X60钢板的制造方法,其特征在于,具体步骤如下:
步骤1、按照成分及对应的质量百分数,配置钢种,炼成铁水,并脱去铁水中的硫;
步骤2、将铁水送入转炉中,炼铁成钢;使用LF还原精炼技术,经过RH真空处理,脱氢脱氧去氮;对钢水进行精炼,最后通过板坯连铸机轧制出扁平板;连铸机使用320mm断面的连铸板坯;
步骤3、将板坯加热,后经过粗轧、中间坯待温冷却、精轧、钢板冷却和矫直工序,将钢板下线;
步骤4、对钢板进行超声探伤,剔除其中有暗伤不合格的钢板。
3.根据权利要求2所述的一种厚规格X80M管线钢的制造方法,其特征在于:步骤3中,板坯加热阶段,加热温度控制为1100~1150℃,在炉时间为1.2~1.5min/mm。
4.根据权利要求2所述的一种厚规格X80M管线钢的制造方法,其特征在于:步骤3中,粗轧阶段,粗轧温度控制为950~1050℃,粗轧道次设为≤8道次;粗轧后中间坯厚度为4倍~5倍成品钢板厚度。
5.根据权利要求2所述的一种厚规格X80M管线钢的制造方法,其特征在于:步骤3中,粗轧阶段钢板展宽结束后进行展长阶段进行3道次不少于35mm的压下量。
6.根据权利要求2所述的一种厚规格X80M管线钢的制造方法,其特征在于:待温厚度为钢板最终厚度的3.5~4倍。
7.根据权利要求2所述的一种厚规格X80M管线钢的制造方法,其特征在于:精轧的前5道次轧制力大于或者等于6000吨,精轧的最后2道次的轧制力小于或者等于5000吨;终轧温度控制在730~760℃。
8.根据权利要求2所述的一种厚规格X80M管线钢的制造方法,其特征在于:步骤3中,钢板冷却阶段,冷却速率控制在16~20℃/s,终冷返红温度控制在300~380℃;钢板冷却后,进行热矫直,改善冷却后的板形;热矫直结束后钢板上冷床进行自然冷却。
CN202310345490.8A 2023-04-03 2023-04-03 一种x60钢板及其制造方法 Active CN116377328B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310345490.8A CN116377328B (zh) 2023-04-03 2023-04-03 一种x60钢板及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310345490.8A CN116377328B (zh) 2023-04-03 2023-04-03 一种x60钢板及其制造方法

Publications (2)

Publication Number Publication Date
CN116377328A true CN116377328A (zh) 2023-07-04
CN116377328B CN116377328B (zh) 2024-03-12

Family

ID=86962896

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310345490.8A Active CN116377328B (zh) 2023-04-03 2023-04-03 一种x60钢板及其制造方法

Country Status (1)

Country Link
CN (1) CN116377328B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004124113A (ja) * 2002-09-30 2004-04-22 Nippon Steel Corp 非水冷型薄手低降伏比高張力鋼およびその製造方法
CN101397626A (zh) * 2007-12-07 2009-04-01 江苏沙钢集团有限公司 高强度高韧性热轧钢板及其生产方法
CN110629001A (zh) * 2019-09-25 2019-12-31 江苏沙钢集团有限公司 一种特厚管线钢用钢板的制造方法
CN110656288A (zh) * 2019-09-30 2020-01-07 鞍钢股份有限公司 超宽特厚高韧性x80直缝焊管用钢及其生产方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004124113A (ja) * 2002-09-30 2004-04-22 Nippon Steel Corp 非水冷型薄手低降伏比高張力鋼およびその製造方法
CN101397626A (zh) * 2007-12-07 2009-04-01 江苏沙钢集团有限公司 高强度高韧性热轧钢板及其生产方法
CN110629001A (zh) * 2019-09-25 2019-12-31 江苏沙钢集团有限公司 一种特厚管线钢用钢板的制造方法
CN110656288A (zh) * 2019-09-30 2020-01-07 鞍钢股份有限公司 超宽特厚高韧性x80直缝焊管用钢及其生产方法

Also Published As

Publication number Publication date
CN116377328B (zh) 2024-03-12

Similar Documents

Publication Publication Date Title
CN111363973B (zh) 一种心部低温冲击韧性优良的特厚容器钢板及其制造方法
WO2022011936A1 (zh) 一种具有优良低温韧性的高强度容器板及制造方法
CN111979481B (zh) 一种薄规格低屈强比高强度桥梁钢及其生产方法
CN110306111A (zh) 一种厚规格钢板及其制造方法
WO2022022066A1 (zh) 一种极地海洋工程用钢板及其制备方法
CN109385576A (zh) 一种基于镁处理的低成本x65管线钢及其制造方法
CN110735085A (zh) 一种薄规格Q345qE、Q370qE钢板的制造方法
CN111979483A (zh) 一种利用常规热轧生产线生产q345r钢板的方法
CN109338215A (zh) 一种8~25mm厚低屈强比罐车用高强钢板及其制造方法
CN112813344A (zh) 一种屈服强度620MPa级高强高韧易焊接结构钢板及其制备方法
CN107937807A (zh) 770MPa级低焊接裂纹敏感性压力容器钢及其制造方法
CN110284066B (zh) 一种薄规格低屈强比管线钢及其制造方法
CN113403543B (zh) 一种60公斤级低硅易焊接冷轧低合金高强钢板及生产方法
CN111270169A (zh) 一种具有优异低温韧性的含Ni合金钢板及其生产方法
CN111235460B (zh) 一种适用于感应加热的桥壳钢及其生产方法
CN111979499A (zh) 一种低成本q460c厚规格钢板生产方法
CN112680652A (zh) 一种Cr-Mo低合金压力容器用钢板及其制备方法
CN111996462A (zh) 一种纵向变厚度超高强船板及生产方法
CN115261746B (zh) 特厚Q420qE桥梁钢板及其生产方法
CN110629002A (zh) 一种基于tmcp生产低压缩比抗层状撕裂特厚板的方法
CN110629001A (zh) 一种特厚管线钢用钢板的制造方法
CN113604736B (zh) 一种屈服强度800MPa级高强度中厚板及其制备方法
CN116377328B (zh) 一种x60钢板及其制造方法
CN113151740B (zh) 低温韧性良好的vl4-4l船舶用钢板及其制造方法
CN112981240B (zh) 一种q550md低合金高强钢板及其生产方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant