CN116376734A - 一株香叶基香叶醇合成酿酒酵母工程菌的构建及应用 - Google Patents

一株香叶基香叶醇合成酿酒酵母工程菌的构建及应用 Download PDF

Info

Publication number
CN116376734A
CN116376734A CN202310437712.9A CN202310437712A CN116376734A CN 116376734 A CN116376734 A CN 116376734A CN 202310437712 A CN202310437712 A CN 202310437712A CN 116376734 A CN116376734 A CN 116376734A
Authority
CN
China
Prior art keywords
saccharomyces cerevisiae
geranylgeraniol
gene
plasmid
cerevisiae engineering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310437712.9A
Other languages
English (en)
Inventor
石贵阳
王均华
李由然
朱惠霖
张梁
丁重阳
徐沙
顾正华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN202310437712.9A priority Critical patent/CN116376734A/zh
Publication of CN116376734A publication Critical patent/CN116376734A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1229Phosphotransferases with a phosphate group as acceptor (2.7.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01034Hydroxymethylglutaryl-CoA reductase (NADPH) (1.1.1.34)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01088Hydroxymethylglutaryl-CoA reductase (1.1.1.88)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01009Acetyl-CoA C-acetyltransferase (2.3.1.9)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/03Acyl groups converted into alkyl on transfer (2.3.3)
    • C12Y203/0301Hydroxymethylglutaryl-CoA synthase (2.3.3.10)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
    • C12Y205/0101(2E,6E)-Farnesyl diphosphate synthase (2.5.1.10), i.e. geranyltranstransferase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
    • C12Y205/01029Geranylgeranyl diphosphate synthase (2.5.1.29)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/01036Mevalonate kinase (2.7.1.36)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/04Phosphotransferases with a phosphate group as acceptor (2.7.4)
    • C12Y207/04002Phosphomevalonate kinase (2.7.4.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01033Diphosphomevalonate decarboxylase (4.1.1.33), i.e. mevalonate-pyrophosphate decarboxylase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y503/00Intramolecular oxidoreductases (5.3)
    • C12Y503/03Intramolecular oxidoreductases (5.3) transposing C=C bonds (5.3.3)
    • C12Y503/03002Isopentenyl-diphosphate DELTA-isomerase (5.3.3.2)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一株香叶基香叶醇合成酿酒酵母工程菌的构建及应用,属于合成生物学技术领域。本发明在染色体整合表达MVA途径基因,提高了IPP和DMAPP供给能力,并回补缺陷型基因HIS3、TRP1、LYS2、LEU2和URA3提高了菌体生物量。本发明还通过表达双拷贝PaGGPPs‑ERG20和PaGGPPs‑DPP1基因促进香叶基香叶醇的积累,表达NADH依赖型spHMGR基因和弱化甾醇合成途径代谢流进一步促进香叶基香叶醇的积累。本发明构建的基因工程菌摇瓶发酵能够积累1.2g/L香叶基香叶醇,5L发酵罐能够积累5.57g/L香叶基香叶醇。

Description

一株香叶基香叶醇合成酿酒酵母工程菌的构建及应用
技术领域
本发明涉及一株香叶基香叶醇合成酿酒酵母工程菌的构建及应用,属于合成生物学领域。
背景技术
香叶基香叶醇(geranylgeraniol),C20H34O,一种直链二萜化合物,具有广泛的抗病毒和抗肿瘤等生理活性,同时也可以用作胡萝卜素、紫杉醇和维生素E等合成前体。微生物因其生长周期短、化合物合成特异性强、发酵底物容易获得且成本低等优点成为合成生物学研究热点。酿酒酵母(Saccharomyces cerevisiae)内源性甲羟戊酸途径的存在和成熟快速的基因编辑技术使酿酒酵母成成为了萜类化合物合成研究的热点之一。然而,如何利用酿酒酵母高效合成香叶基香叶醇仍然存在较多的技术难点。例如,通过染色体整合表达双拷贝tHMG1基因虽然增强了IPP和DMAPP供给,但IPP和DMAPP供给不足仍然限制了酿酒酵母高效合成香叶基香叶醇。同时,IPP和DMAPP供给增强的基础上,香叶基香叶基焦磷酸的合成效率可能也是一个关键限速步骤。
发明内容
技术问题:针对现有技术中存在的缺陷,本发明提供了一种生产香叶基香叶醇的酿酒酵母工程菌;所述酿酒酵母工程菌表达了香叶基香叶基焦磷酸合酶编码基因和NADH依赖型HMGR基因,强化了甲羟戊酸途径基因并弱化甾醇合成途径;所述甲羟戊酸途径基因包括ERG10、ERG13、tHMG1、ERG12、ERG8、ERG19、IDI1和ERG20;所述弱化甾醇合成途径是用ERG7启动子替换ERG9启动子。
在一种实施方式中,所述香叶基香叶基焦磷酸合酶编码基因为PaGGPPs-ERG20和PaGGPPs-DPP1;所述NADH依赖型HMGR基因为spHMGR。
在一种实施方式中,所述PaGGPPs的核苷酸序列如SEQ ID NO.1所示,所述PaGGPPs-DPP1的核苷酸序列如SEQ ID NO.11所示;所述PaGGPPs-ERG20的核苷酸序列如SEQID NO.12所示;所述基因spHMGR的核苷酸序列如SEQ ID NO.2所示。
在一种实施方式中,所述基因ERG10、ERG13、tHMG1、ERG12、ERG8、ERG19、IDI1和ERG20的核苷酸序列分别如SEQ ID NO.3~10所示。
在一种实施方式中,所述基因PaGGPPs-ERG20整合在gal80和adh6位点;所述基因PaGGPPs-DPP1整合在rox1和pox1位点。
在一种实施方式中,所述甲羟戊酸途径基因是在所述酿酒酵母工程菌的染色体上整合表达。
在一种实施方式中,所述甲羟戊酸途径基因以PGAL1启动子调控基因表达。
在一种实施方式中,所述甲羟戊酸途径基因的拷贝数≥2。
在一中实施方式中,所述PaGGPPs-ERG20和PaGGPPs-DPP1基因的拷贝数为2。
在一种实施方式中,所述酿酒酵母工程菌以酿酒酵母YPH499为出发菌株。
本发明还提供了所述酿酒酵母工程菌在发酵生产香叶基香叶醇中的应用。
在一种实施方式中,所述应用是将所述酿酒酵母工程菌在发酵培养基中,于28~30℃发酵至少120h。
在一种实施方式中,所述发酵培养基包括但不限于YPD或YPDD培养基。
在一种实施方式中,所述发酵过程中还进行了补料;所述补料是在初始葡萄糖消耗结束后流加葡萄糖溶液,使发酵液中葡萄糖浓度≤1g/L。
本发明还要求保护所述酿酒酵母工程菌或所述方法在生产含香叶基香叶醇或其衍生物的产品中的应用。
有益效果:本发明通过强化IPP和DMAPP供给,引入NADH依赖型HMGR和弱化甾醇合成途径,提高了香叶基香叶醇的合成能力,使构建获得的基因工程菌发酵120h的香叶基香叶醇达5.57g/L,是目前为止报道的最高产量,具有工业化应用前景。
附图说明
图1是本发明合成香叶基香叶醇的代谢途径示意图。
图2是质粒Ts-LYS2-tP10示意图。
图3是质粒Ts-TRP1-IP20示意图。
图4是质粒Ts-LEU2-8P19示意图。
图5是质粒Ts-URA3-12P13示意图。
图6是质粒Ts-HIS3示意图。
图7是质粒Ts-80PE示意图。
图8是质粒Ts-ROX1-101PD示意图。
图9是质粒Ts-ADH6-101P20示意图。
图10是质粒Ts-POX1-101PD示意图。
图11是质粒Ts-HO-101spH示意图。
图12是质粒Ts-PERG7示意图。
图13是质粒Ts-PHXT1示意图。
图14是质粒BTS-ROX1示意图。
图15是质粒BTS-ADH6示意图。
图16是质粒BTS-POX1示意图。
图17是质粒BTS-HO示意图。
图18是质粒BTS-PERG9示意图。
图19是WHtES菌株角鲨烯含量检测情况。
图20是不同基因操作对工程菌合成香叶基香叶醇的影响比较。
图21是工程菌WtG-10 5L发酵罐合成香叶基香叶醇情况。
具体实施方式
摇瓶种子培养基(YPD):10g/L酵母提取物,20g/L蛋白胨,20g/L葡萄糖,使用前115℃灭菌20min。
摇瓶发酵培养基(YPDD):10g/L酵母提取物,20g/L蛋白胨,20g/L葡萄糖,发酵时加入10%十二烷(V/V),使用前115℃灭菌20min。
发酵罐培养基:20g/L酵母提取物,40g/L蛋白胨,20g/L葡萄糖,初始葡萄糖消耗结束后流加600g/L葡萄糖溶液,发酵液中葡萄糖浓度控制在1g/L以下。
细胞膜中角鲨烯提取方法:收集4mL菌体,加入等体积玻璃珠和1mL生理盐水,高速振荡20min破碎菌体,离心弃上清。加入4mL正己烷,250rpm萃取4h。取1mL萃取液,氮吹,加入1mL甲醇溶解。
测定细胞膜中角鲨烯含量的方法:仪器:Thermo Fisher U3000高效液相系统;色谱柱:Waters C18柱;流动相:甲醇和乙腈混合物(60:40);检测条件:紫外203nm,流速0.8mL/min,柱温40℃。标准品:角鲨烯(SIGAMA)。
发酵罐发酵菌体香叶基香叶醇提取方法:每次取样10mL,加入4mL十二烷,200rpm振荡萃取12h,离心收集萃取层HPLC检测。
测定发酵液中香叶基香叶醇浓度的方法:仪器:Thermo Fisher U3000高效液相系统;色谱柱:Waters C18柱;流动相:甲醇、乙腈和水混合物(90:5:5);检测条件:紫外210nm,流速0.8mL/min,柱温40℃。标准品:香叶基香叶醇(SIGAMA)。
醋酸锂转化的方法:收集4mL菌液,离心收集菌体,用无菌水和0.1M醋酸锂溶液分别洗涤,然后依次加入240μL 50%PEG3350溶液、36μL 1M醋酸锂溶液、50μL鲑鱼精溶液和50μL转化产物,混匀,30℃培养环境静置30min。42℃热激25min,30℃,200rpm后培养1h,涂布筛选平板。
香叶基香叶醇合成工程菌株构建流程见图1。
下述实施例中所用到的菌株如表1所示。
表1菌株
Figure BDA0004192732540000031
实施例中所用到的质粒如表2所示。
表2质粒
Figure BDA0004192732540000032
实施例中所用到的引物如表3所示。
表3引物
Figure BDA0004192732540000041
Figure BDA0004192732540000051
Figure BDA0004192732540000061
实施例1:酿酒酵母角鲨烯高效合成菌株构建
(1)甲羟戊酸途径强化质粒构建
以酿酒酵母YPH499基因组为模板,用引物P37和P38、P39和P40与P41和P42分别扩增获得tHMG1、PGAL10-PGAL1和ERG10片段,用引物P37和P42进行融合PCR获得THMG1-tHMG1-PGAL10-PGAL1-ERG10-TERG10。以酿酒酵母CICC 31906(购自CICC)基因组为模板,用引物P33和P34扩增LYS2基因编码区和编码区前后区域,连接到pMD-19T simple载体上,引物P35和P36反向PCR产物与THMG1-tHMG1-PGAL10-PGAL1-ERG10-TERG10用BamHI和SalI消化后连接获得整合表达质粒Ts-LYS2-tP10(图2)。
以酿酒酵母YPH499基因组为模板,用引物P25和P26、P27和P28与P29和P30分别扩增获得IDI1、PGAL10-PGAL1和ERG20片段,用引物P25和P30进行融合PCR获得TIDI1-IDI1-PGAL10-PGAL1-ERG20-TERG20。以酿酒酵母CICC 31906基因组为模板,用引物P21和P24扩增TRP1基因编码区和编码区前后区域,连接到pMD-19T simple载体上,引物P22和P23反向PCR产物与TIDI1-IDI1-PGAL10-PGAL1-ERG20-TERG20用BamHI和BsPTI消化后连接获得整合表达质粒Ts-TRP1-IP20(图3)。
以酿酒酵母YPH499基因组为模板,用引物P15和P16、P17和P18与P19和P20分别扩增获得ERG8、PGAL10-PGAL1和ERG19,用引物P15和P20进行融合PCR获得TERG8-ERG8-PGAL10-PGAL1-ERG19-TERG19。以酿酒酵母CICC 31906基因组为模板,用引物P11和P12扩增LEU2基因编码区和编码区前后区域,连接到pMD-19T simple载体上,引物P13和P14反向PCR产物与TERG8-ERG8-PGAL10-PGAL1-ERG19-TERG19用BamHI和SalI消化后连接获得整合表达质粒Ts-LEU2-8P19(图4)。
以酿酒酵母YPH499基因组为模板,用引物P5和P6、P7和P8与P9和P10分别扩增获得ERG12、PGAL10-PGAL1和ERG13,用引物P5和P10进行融合PCR获得TERG12-ERG12-PGAL10-PGAL1-ERG13-TERG13。以酿酒酵母CICC 31906基因组为模板,用引物P1和P2扩增URA3基因编码区和编码区前后区域,连接到pMD-19T simple载体上,引物P3和P4反向PCR产物与TERG12-ERG12-PGAL10-PGAL1-ERG13-TERG13用BsPTI和SalI消化后连接获得整合表达质粒Ts-URA3-12P13(图5)。
以酿酒酵母CICC 31906基因组为模板,用引物P31和P32扩增HIS3基因编码区和编码区前后区域,连接到pMD-19T simple载体上,获得整合表达质粒Ts-HIS3(图6)。
(2)整合表达质粒线性化转化酿酒酵母
将整合表达质粒Ts-LYS2-tP10用SmaI线性化,整合表达质粒Ts-TRP1-IP20、Ts-LEU2-8P19、Ts-URA3-12P13和Ts-HIS3用SacII线性化,醋酸锂依次转化酿酒酵母至YPH499D(公开于论文《Overproduction of alpha-Farnesene in Saccharomyces cerevisiae byFarnesene Synthase Screening and Metabolic Engineering》),涂布氨基酸缺陷筛选平板,筛选获得菌株WHtES。
(3)摇瓶发酵培养及角鲨烯含量测定
YPD平板划线活化酿酒酵母菌株WHtES,接种单菌落到20mL YPD培养基活化作为种子液,按照初始OD600=0.1转接到50mL YPD培养基中,30℃,200rpm培养168h,每24h取样测定OD600和测定细胞膜中角鲨烯含量。结果如图19所示,培养144h角鲨烯含量可达26.92±1.59mg/g DCW,表明表达MVA途径基因可以有效增强IPP和DMAPP供给。
实施例2:引入外源香叶基香叶基焦磷酸合酶构建香叶基香叶醇合成工程菌
(1)香叶基香叶基焦磷酸合酶编码基因整合表达质粒构建
用BsPTI和EcoRI消化质粒Ts-URA3-101PD(公开于CN112501043B),胶回收获得PGAL1-PaGGPPs-DPP1-TDPP1。以酿酒酵母YPH499基因组为模板,用引物P43和P44扩增ROX1基因编码区和编码区前后区域,连接到pMD-19T simple载体上,引物P45和P46反向PCR扩增产物用BsPTI和EcoRI消化后于PGAL1-PaGGPPs-DPP1-TDPP1连接获得Ts-ROX1-101PD(图8)。
(2)整合表达质粒线性化转化酿酒酵母
将整合质粒Ts-80PE(公开于论文《Enhancing Geranylgeraniol Production byMetabolic Engineering and Utilization of Isoprenol as a Substrate inSaccharomyces cerevisiae》)用NcoI线性化,醋酸锂转化至实施例1构建的酿酒酵母WHtES细胞中,涂布含500μg/mL G418的YPD平板,筛选获得菌株WtG-1。将整合质粒Ts-ROX1-101PD用SacII线性化,使用质粒BTS-ROX1(公开于论文《Enhancing GeranylgeraniolProduction by Metabolic Engineering and Utilization of Isoprenol as aSubstrate in Saccharomyces cerevisiae》)醋酸锂转化酿酒酵母WtG-1菌株,涂布含100μg/mL诺尔斯菌素和500μg/mL潮霉素YPD平板,筛选获得菌株WtG-2。
(3)摇瓶发酵培养及香叶基香叶醇含量测定
YPD平板划线活化酿酒酵母菌株WtG-1和WtG-2,接种单菌落到20mL YPD液体培养基活化作为种子液,按照初始OD600=0.1转接到30mL发酵培养基中,30℃,200rpm培养168h,测定香叶基香叶醇的积累。结果如图20所示,发酵168h菌株WtG-1和WtG-2发酵液中香叶基香叶醇的浓度分别为298.99±42.77和597.12±30.91mg/L。
实施例3:增加香叶基香叶基焦磷酸合酶拷贝数提高工程菌香叶基香叶醇合成能力
(1)香叶基香叶基焦磷酸合酶编码基因整合表达质粒和BTS质粒构建
以质粒Ts-80PE为模板,用引物P51和P52扩增PGAL1-PaGGPPs-ERG20-TERG20。以酿酒酵母YPH499基因组为模板,用引物P47和P50扩增ADH6基因编码区和编码区前后区域,连接到pMD-19T simple载体上。引物P48和P49反向PCR扩增产物与PGAL1-PaGGPPs-ERG20-TERG20用BsPTI和BamHI消化后连接获得Ts-ADH6-101P20(图9)。
用BsPTI和EcoRI消化质粒Ts-URA3-101PD,胶回收获得PGAL1-PaGGPPs-DPP1-TDPP1。以酿酒酵母YPH499基因组为模板,用引物P53和P56扩增POX1基因编码区和编码区前后区域,连接到pMD-19T simple载体上,引物P54和P55反向PCR扩增产物用BsPTI和EcoRI消化后于PGAL1-PaGGPPs-DPP1-TDPP1连接获得Ts-POX1-101PD(图10)。
以302质粒(公开于论文《Enhancing Geranylgeraniol Production byMetabolic Engineering and Utilization of Isoprenol as a Substrate inSaccharomyces cerevisiae》)为模板,用引物P71和P77扩增获得gRNA-1。以149质粒(公开于论文《Enhancing Geranylgeraniol Production by Metabolic Engineering andUtilization of Isoprenol as a Substrate in Saccharomyces cerevisiae》)为模板,用引物P78和P72扩增获得gRNA-2。用引物P71和P72融合gRNA-1和gRNA-2获得gRNA。质粒BTS(公开于论文《Enhancing Geranylgeraniol Production by Metabolic Engineering andUtilization of Isoprenol as a Substrate in Saccharomyces cerevisiae》)和gRNA用BamHI和BcuI消化后连接获得质粒BTS-ADH6(图15)。
以302质粒为模板,用引物P71和P73扩增获得gRNA-1。以149质粒为模板,用引物P74和P72扩增获得gRNA-2。用引物P71和P72融合gRNA-1和gRNA-2获得gRNA。质粒BTS和gRNA用BamHI和BcuI消化后连接获得质粒BTS-POX1(图16)。
(2)整合表达质粒线性化转化酿酒酵母
将整合表达质粒Ts-POX1-101PD用SacII线性化,使用质粒BTS-POX1质粒醋酸锂转化酿酒酵母WtG-2,涂布100μg/mL诺尔斯菌素和500μg/mL潮霉素YPD平板,筛选获得菌株WtG-3。将整合表达质粒Ts-ADH6-101P20用SacII线性化,使用质粒BTS-ADH6质粒分别醋酸锂转化酿酒酵母WtG-2和WtG-3,涂布100μg/mL诺尔斯菌素和500μg/mL潮霉素YPD平板,筛选获得菌株WtG-4和WtG-5。
(3)摇瓶发酵培养及香叶基香叶醇含量测定
YPD平板划线活化酿酒酵母菌株WtG-3、WtG-4和WtG-5,接种单菌落到20mL YPD液体培养基活化作为种子液,按照初始OD600=0.1转接到30mL发酵培养基中,30℃,200rpm培养168h,测定香叶基香叶醇的积累。结果如图20所示,WtG-3、WtG-4和WtG-5发酵液中香叶基香叶醇的浓度为866.13±123.16、557.66±17.64和985.96±94.10mg/L。与WtG-2相比,增加PaGGPPs-ERG20和PaGGPPs-DPP1基因使香叶基香叶醇的积累量提高了65.12%。
实施例4:弱化甾醇合成竞争途径提高工程菌香叶基香叶醇合成能力
(1)启动子替换质粒构建
以302质粒为模板,用引物P71和P79扩增获得gRNA-1。以149质粒为模板,用引物P80和P72扩增获得gRNA-2。用引物P71和P72融合gRNA-1和gRNA-2获得gRNA。质粒BTS和gRNA用BamHI和BcuI消化后连接获得质粒BTS-PERG9(图18)。
以酿酒酵母YPH499基因组为模板,用引物P67和P68扩增HXT1基因启动子区域,连接到pMD-19T simple载体上,获得质粒Ts-PHXT1(图13)。
以酿酒酵母YPH499基因组为模板,用引物P69和P70扩增ERG7基因启动子区域,连接到pMD-19T simple载体上,获得质粒Ts-PERG7(图12)。
(2)启动子替换质粒转化酿酒酵母
以Ts-PHXT1为模板,用引物P67和P68扩增获得HXT1基因启动子区域。以Ts-PERG7为模板,用引物P69和P70扩增获得ERG7基因启动子区域。使用质粒BTS-PERG9质粒醋酸锂转化酿酒酵母WtG-5,涂布100μg/mL诺尔斯菌素和500μg/mL潮霉素YPD平板,筛选获得菌株WtG-6和WtG-7。
(3)摇瓶发酵培养及香叶基香叶醇含量测定
YPD平板划线活化酿酒酵母菌株WtG-6和WtG-7,接种单菌落到20mL YPD液体培养基活化作为种子液,按照初始OD600=0.1转接到30mL发酵培养基中,30℃,200rpm培养168h,测定香叶基香叶醇的积累。结果如图20所示,WtG-6和WtG-7发酵液中香叶基香叶醇的浓度为1095.29±63.81和1221.96±72.73mg/L,与WtG-5相比,ERG9启动子替换为HXT1和ERG7启动子使香叶基香叶醇的积累分别提高了11.09%和23.94%。
实施例5:表达NADH依赖型HMGR基因提高工程菌香叶基香叶醇合成能力
(1)表达质粒及BTS质粒构建
以YPH499基因组为模板,用引物P61和P62与P65和P66分别扩增获得PGAL1和TTPI1。以上海生工合成的携带spHMGR的质粒pUC57-spHMGR为模板,用引物P63和P64扩增获得spHMGR。以PGAL1、spHMGR和TTPI1为模板,用引物P61和P66融合扩增获得PGAL1-spHMGR-TTPI1。以YPH499基因组为模板,用引物P57和P60扩增获得HO基因编码区和编码区前后区域,连接到pMD-19T simple载体上。引物P58和P59方向扩增产物和PGAL1-spHMGR-TTPI1用BsPTI和SalI消化后连接获得Ts-HO-101spH(图11)。
以302质粒为模板,用引物P71和P75扩增获得gRNA-1。以149质粒为模板,用引物P76和P72扩增获得gRNA-2。用引物P71和P72融合gRNA-1和gRNA-2获得gRNA。质粒BTS和gRNA用BamHI和BcuI消化后连接获得质粒BTS-HO(图17)。
(2)整合表达质粒线性化转化酿酒酵母
将整合表达质粒Ts-HO-101spH用SacII线性化,使用质粒BTS-HO质粒分别醋酸锂转化酿酒酵母WtG-5、WtG-6和WtG-7,涂布100μg/mL诺尔斯菌素和500μg/mL潮霉素YPD平板,筛选获得菌株WtG-8、WtG-9和WtG-10。
(3)摇瓶发酵培养及香叶基香叶醇含量测定
YPD平板划线活化酿酒酵母菌株WtG-8、WtG-9和WtG-10,接种单菌落到20mL YPD液体培养基活化作为种子液,按照初始OD600=0.1转接到30mL发酵培养基中,30℃,200rpm培养168h,测定香叶基香叶醇的积累。结果如图20所示,WtG-8、WtG-9和WtG-10发酵液中香叶基香叶醇的浓度为1026.23±44.34、1126.96±142.41和1271.14±90.31mg/L,与WtG-8、WtG-9和WtG-10相比,spHMGR基因的表达使香叶基香叶醇的积累分别提高了4.08%、2.89%和4.02%。
实施例6:香叶基香叶醇合成工程菌5L发酵罐实验
将实施例5构建的酿酒酵母菌株WtG-10在YPD平板划线活化,接种单菌落到20mLYPD液体培养基中,活化作为一级种子液,按照1%的接种量转接到50mL YPD液体培养基活化作为二级种子液,按照5%的接种量接种5L发酵罐,30℃温度发酵168h,溶氧=40%,pH=5.5,测定发酵过程红香叶基香叶醇的产量变化。结果如图21所示,发酵120小时,菌株WtG-10可以积累5.57g/L香叶基香叶醇,这是目前为止报道的最高产量。
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。

Claims (10)

1.一种生产香叶基香叶醇的酿酒酵母工程菌,其特征在于,表达了香叶基香叶基焦磷酸合酶编码基因和NADH依赖型HMGR基因,强化了甲羟戊酸途径基因并弱化甾醇合成途径;所述甲羟戊酸途径基因包括ERG10、ERG13、tHMG1、ERG12、ERG8、ERG19、IDI1和ERG20;所述弱化甾醇合成途径是用ERG7启动子替换ERG9启动子。
2.根据权利要求1所述的酿酒酵母工程菌,其特征在于,所述香叶基香叶基焦磷酸合酶编码基因为PaGGPPs-ERG20和PaGGPPs-DPP1;所述NADH依赖型HMGR基因为spHMGR。
3.根据权利要求2所述的酿酒酵母工程菌,其特征在于,所述基因PaGGPPs-ERG20整合在gal80和adh6位点;所述基因PaGGPPs-DPP1整合在rox1和pox1位点。
4.根据权利要求1~3任一所述的酿酒酵母工程菌,其特征在于,所述甲羟戊酸途径基因是在所述酿酒酵母工程菌的染色体上整合表达。
5.根据权利要求4所述的酿酒酵母工程菌,其特征在于,所述甲羟戊酸途径基因以PGAL1启动子调控基因表达。
6.根据权利要求1~5任一所述的酿酒酵母工程菌,其特征在于,所述甲羟戊酸途径基因的拷贝数≥2。
7.根据权利要求1~6任一所述的酿酒酵母工程菌,其特征在于,所述酿酒酵母工程菌以酿酒酵母YPH499为出发菌株。
8.一种发酵生产香叶基香叶醇的方法,其特征在于,将权利要求1~7任一所述的酿酒酵母工程菌在发酵培养基中,于28~30℃发酵至少120h。
9.根据权利要求8所述的方法,其特征在于,发酵过程中还进行了补料;所述补料是在初始葡萄糖消耗结束后流加葡萄糖溶液,使发酵液中葡萄糖浓度≤1g/L。
10.权利要求1~7任一所述酿酒酵母工程菌或权利要求8~9任一所述方法在生产含香叶基香叶醇或其衍生物的产品中的应用。
CN202310437712.9A 2023-04-21 2023-04-21 一株香叶基香叶醇合成酿酒酵母工程菌的构建及应用 Pending CN116376734A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310437712.9A CN116376734A (zh) 2023-04-21 2023-04-21 一株香叶基香叶醇合成酿酒酵母工程菌的构建及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310437712.9A CN116376734A (zh) 2023-04-21 2023-04-21 一株香叶基香叶醇合成酿酒酵母工程菌的构建及应用

Publications (1)

Publication Number Publication Date
CN116376734A true CN116376734A (zh) 2023-07-04

Family

ID=86969357

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310437712.9A Pending CN116376734A (zh) 2023-04-21 2023-04-21 一株香叶基香叶醇合成酿酒酵母工程菌的构建及应用

Country Status (1)

Country Link
CN (1) CN116376734A (zh)

Similar Documents

Publication Publication Date Title
WO2017071529A1 (zh) 基于在线氧消耗速率和电导率协同控制的辅酶q10发酵生产工艺
US20240002897A1 (en) Method for increasing yield of 7-dehydrocholesterol in yeast by using compartmentalization
CN113151027B (zh) 生产7-脱氢胆固醇的重组酿酒酵母菌株及其构建方法
CN106754993A (zh) 一种基因、重组酿酒酵母菌株及其构建方法与应用
WO2023173565A1 (zh) 一种同时增强和抑制酿酒酵母7-脱氢胆固醇合成中多个关键基因的方法
CN112080440B (zh) 一种生产法尼烯的酿酒酵母工程菌及其应用
CN114317307B (zh) 一种可提高虾青素生物合成产量的基因工程菌及其构建方法与应用
CN104845893A (zh) 一株胶红酵母及其在发酵生产海红虾青素中的应用
CN102876582B (zh) 金龟子绿僵菌突变株及其在甾体化合物羟化反应中的应用
CN116376734A (zh) 一株香叶基香叶醇合成酿酒酵母工程菌的构建及应用
CN111662832A (zh) 一种高温好氧条件下产木糖醇的耐热酵母工程菌株的构建方法和应用
CN116179384A (zh) 7-dhc出胞分泌合成的酿酒酵母基因工程菌及其构建与应用
CN116144518A (zh) 一种生产视黄醇的酿酒酵母菌株及其应用
CN116042425A (zh) 一种生产广藿香醇的酵母工程菌及其应用
CN116606844A (zh) 一株α-法尼烯合成酿酒酵母工程菌的构建及应用
CN112479799B (zh) 一种从发酵液中分离提取番茄红素的方法
CN113151061B (zh) 一种葡萄糖抑制型耐氧己酸菌
CN112501043B (zh) 一种生产香叶基香叶醇酿酒酵母工程菌及其构建方法与应用
CN101906454B (zh) 从酵母菌中提取虾青素和谷胱甘肽的方法
WO2008092297A1 (fr) Nouveau procédé de préparation d'acide abscissique naturel
CN103060255B (zh) 一种产s-3-羟基丁酮基因工程菌及其构建方法与应用
CN115976093B (zh) 一种利用米曲霉制备苔色酸的方法
CN114317296B (zh) 一种贝第高林的制备方法
CN115505537B (zh) 一种高活性11α-羟基化赭曲霉及其应用
CN117904168A (zh) 一种通过代谢工程改造提高β-胡萝卜素生物合成的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination