CN116360016A - 一种实现宽色域、高饱和度结构色的富硅氮化硅材料体系超构表面及其制备方法 - Google Patents

一种实现宽色域、高饱和度结构色的富硅氮化硅材料体系超构表面及其制备方法 Download PDF

Info

Publication number
CN116360016A
CN116360016A CN202310252161.9A CN202310252161A CN116360016A CN 116360016 A CN116360016 A CN 116360016A CN 202310252161 A CN202310252161 A CN 202310252161A CN 116360016 A CN116360016 A CN 116360016A
Authority
CN
China
Prior art keywords
silicon nitride
silicon
super
structured surface
rich
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310252161.9A
Other languages
English (en)
Inventor
陈钰杰
顾欣
朱照祥
李嘉麒
余思远
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University filed Critical Sun Yat Sen University
Priority to CN202310252161.9A priority Critical patent/CN116360016A/zh
Publication of CN116360016A publication Critical patent/CN116360016A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/002Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/006Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterized by the colour of the layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明涉及结构色领域,具体涉及一种实现宽色域、高饱和度结构色的富硅氮化硅材料体系超构表面及其制备方法。本发明提供了一种实现宽色域、高饱和度结构色的富硅氮化硅材料体系超构表面,包括石英基底和由叠层介质组成的超构表面,所述叠层介质从下至上依次包括氮化硅、富硅氮化硅和二氧化硅。本发明的超构表面由同位生长制得,该设计生长简单、方便,且同位生长能提供更好的过渡界面。本发明的超构表面设计维度多,通过引入可调折射率的富硅氮化硅材料,可调整变量进行超构表面结构色设计,进而调制高阶共振的分布,实现高亮度的结构色。

Description

一种实现宽色域、高饱和度结构色的富硅氮化硅材料体系超 构表面及其制备方法
技术领域
本发明涉及结构色领域,具体涉及一种实现宽色域、高饱和度结构色的富硅氮化硅材料体系超构表面及其制备方法。
背景技术
为了满足人类视觉体验和传递再现真实的色彩信息,追求高性能和多功能的色彩显示成为了显示领域的目标之一。结构色相比于传统颜色,所形成的颜色是纯物理来源的,主要基于薄层干涉、衍射光栅、光散射、光子晶体等基本光学过程。目前结构色在许多与视觉相关的领域得到迅速的发展,因而引起了人们的极大兴趣。特别是基于超构表面的结构色领域,得益于受到自然界物种结构的启发,通过对微观结构的设计,可以实现任意波长和功能的结构色,这些引人注目的优点激发了基于金属纳米结构、介质超构表面、光子晶体和法布里-珀罗共振等各种结构显色方案的深入研究。
随着微纳米加工技术的飞速发展,亚波长尺度的色相调制结构色已由表面等离激元超构表面和介质超构表面广泛实现,可以通过改变其结构单元的形状、尺寸等几何参数来实现超构表面的颜色调控。由于金属制成的等离子超构表面固有的欧姆损耗,会限制结构色彩的饱和度和色域,同时也会增加器件的制作成本。介质材料Si则具有更高的折射率,利用Si材料的设计可以实现和金属一样具有超高分辨率的结构色,但无定型硅或多晶硅的光学损耗较大,在亮度和色域范围又无法进一步取得突破。氮化硅因其光学波段高透和CMOS兼容的材料特性被广泛应用于可见光超构表面中,但目前氮化硅材料折射率固定、单一的限制,无法实现宽色域、高饱和度结构色。Mie共振会由于其高阶共振峰分布影响介质超构表面的颜色像素高效地生成高度饱和的颜色。为了解决高度饱和色彩的问题,迫切需要一种能够深度调制Mie共振的四极模的可行策略。
发明内容
为克服上述现有技术的不足,本发明的目的是提供一种实现宽色域、高饱和度结构色的富硅氮化硅材料体系超构表面,超构表面包括氮化硅、可调折射率富硅氮化硅和二氧化硅,通过加入以及优化设计高折射富硅氮化硅材料调制高阶共振的分布,实现高亮度的结构色。
为实现上述目的,本发明所采用的技术方案是:
本发明提供一种实现宽色域、高饱和度结构色的富硅氮化硅材料体系超构表面,其特征在于,包括石英基底和由叠层介质组成的超构表面,所述叠层介质从下至上依次为氮化硅、富硅氮化硅和二氧化硅。
优选地,所述氮化硅、富硅氮化硅、二氧化硅的厚度分别为50~250nm、100~500nm、50~250nm。
本发明还提供上述实现宽色域、高饱和度结构色的富硅氮化硅材料体系超构表面的制备方法,包括以下步骤:
S1、通过电感耦合等离子体化学气相沉积技术在石英基底上依次沉积氮化硅薄膜、富硅氮化硅薄膜和二氧化硅薄膜;
S2、在二氧化硅薄膜表面涂覆光刻胶,再采用溅射技术在光刻胶上做导电性处理;
S3、通过电子束曝光将设计好的超构表面图案转移到光刻胶上
S4、去除导电层暴露出需要显影的光刻胶层,再进行显影;
S5、用反应离子束刻蚀技术对样品进行刻蚀;
S6、用电感耦合等离子体技术去除残胶,得到实现宽色域、高饱和度结构色的叠层介质超构表面。
优选地,步骤S1中,通过电感耦合等离子体化学气相沉积技术在石英基底上依次沉积氮化硅薄膜、富硅氮化硅薄膜和二氧化硅薄膜,生长过程所使用生长温度均为300℃,所述氮化硅、富硅氮化硅材料生长气体为SiH4和N2,所述二氧化硅生长气体为SiH4和N2O。
更优选地,所述富硅氮化硅通过调节反应气体N2和SiH4的比例实现,N2与SiH4的气体比为6:8~6:13,气体总流量小于40sccm。
优选地,步骤S2中,所述导电性处理为在光刻胶上镀铝做导电层。
优选地,步骤S3中,所述电子束曝光的工艺参数:电压为100kV,使用电流为0.1mA,电流剂量为240mJ/cm2,电子束曝光步距为5nm。
优选地,步骤S4中,用磷酸稀溶液去除铝导电层,暴露出需要显影的光刻胶层,再浸入二甲苯显影液显影80s使得光刻胶上具有超构表面设计图案。
优选地,所述反应离子束刻蚀的工艺参数:射频功率为200W;压力为30mTorr;刻蚀气体采用CHF3,气流量为12sccm;保护气体为保护气体Ar,气流量为38sccm;刻蚀速率为58nm/min。
与现有技术相比,本发明的有益效果是:
本发明提供了一种实现宽色域、高饱和度结构色的富硅氮化硅材料体系超构表面,包括石英基底和基底上的叠层介质超构表面,所述叠层介质的结构包括氮化硅、富硅氮化硅和二氧化硅,所述富硅氮化硅的折射率可调。本发明的超构表面由同位生长制得,相比于其他叠层系统,该设计生长简单、方便,且同位生长能提供更好的过渡界面。本发明的超构表面设计维度多,通过引入可调折射率的富硅氮化硅材料,可调整除大小、周期等几何尺寸以外的其它变量进行超构表面结构色设计,利用氮化硅、可调折射率富硅氮化硅和二氧化硅结构实现折射率匹配,进而调制高阶共振的分布,实现高亮度的结构色。
附图说明
图1是可调折射率富硅氮化硅光学特性曲线;
图2是实现宽色域、高饱和度结构色的叠层介质超构表面的三维示意图;
图3是实现宽色域、高饱和度结构色的叠层介质超构表面的横截面示意图;
图2、3中,1-石英衬底、2-氮化硅层、3-富硅氮化硅层、4-二氧化硅层;
图4是实现宽色域、高饱和度结构色的叠层介质超构表面的电子显微镜照片;
图5是各叠层介质超构表面的仿真结果,其中(a)低折射率单一介质的氮化硅超构表面;(b)低折射率单一介质的氮化硅超构表面的反射光谱;(c)低折射率单一介质的氮化硅超构表面的散射截面的多级分解;(d)高折射率单一介质富硅氮化硅超构表面;(e)高折射率单一介质富硅氮化硅超构表面的反射光谱;(f)高折射率单一介质富硅氮化硅超构表面的散射截面的多级分解;(g)叠层介质超构表面;(h)叠层介质超构表面的反射光谱;(i)叠层介质超构表面的散射截面的多级分解;
图6是叠层介质富硅氮化硅材料体系结构色超构表面的色域性能图。
具体实施方式
下面对本发明的具体实施方式作进一步说明。在此需要说明的是,对于这些实施方式的说明用于帮助理解本发明,但并不构成对本发明的限定。此外,下面所描述的本发明各个实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互组合。
下述实施例中的实验方法,如无特殊说明,均为常规方法,下述实施例中所用的试验材料,如无特殊说明,均为可通过常规的商业途径购买得到的。
实施例1实现宽色域、高饱和度结构色的叠层介质超构表面的制备
普通氮化硅薄膜可通过电感耦合等离子体化学气相沉积(ICP-CVD)方法工艺获得,在300℃下加入SiH4和N2作为反应气体,最终形成所需的氮化硅薄膜。而在沉积过程中,还可以通过调节生长工艺参数对氮化硅的折射率进行调控,例如通过改变SiH4和N2的比率,可以改变氮化硅薄膜中硅原子的含量,当反应气体中SiH4比例增加时,最终得到的氮化硅薄膜中硅原子的比例也将增加,氮化硅薄膜的折射率也随之增大,从而形成比普通氮化硅折射率要高的富硅氮化硅薄膜,而其他光学参数,如消光系数以及高阶非线性系数也会随着气体比例的改变而改变。通入不同N2/SiH4的气体浓度比例获得的富硅氮化硅薄膜的光学参数(n,k)如图1所示,富硅氮化硅的折射率可通过调整生长时氮气和硅烷比例进行选择设计,其在可见光波段折射率高、损耗低,符合高性能结构色的设计要求。
实现宽色域、高饱和度结构色的叠层介质超构表面的制备步骤如下:
S1、通过电感耦合等离子体化学气相沉积技术在石英基底上依次沉积50nm的氮化硅薄膜、100nm的富硅氮化硅薄膜和50nm的二氧化硅薄膜,生长过程所使用生长温度均为300℃,生长程序为同一程序,生长过程中不取片、不清腔,为同位生长叠层材料;具体生长步骤以及参数为:氮化硅与富硅氮化硅材料的生长气体为SiH4和N2,其中生长氮化硅的SiH4和N2的气体流量体积比为10.5:14,生长富硅氮化硅材料的SiH4和N2的气体流量体积比为12:18;二氧化硅生长气体为SiH4和N2O,气体流量体积比为4:13;反应腔体气压不高于10mTorr;生长氮化硅和富硅氮化硅电感耦合功率500W;生长二氧化硅电感耦合功率1000W使用电感耦合功率;
S2、在叠层介质薄膜上旋涂光刻胶AR-P 6200.13,转速3000r/s,维持60s,光刻胶厚度为450nm,然后在180℃烘胶10分钟;用金属溅射仪在光刻胶表面镀一层铝作为导电层,镀膜时真空度保持在5×10-5Torr,当厚度达到40nm时停止镀膜,观察样品表面镜面反射明显;
S3、将上述样品置入电子束光刻机中,用绘制好的微纳米图案进行电子束曝光,将超构表面图案转移在光刻胶上,电子束曝光的工艺参数:电压为100kV,使用电流为0.1mA,电流剂量为240mJ/cm2,电子束曝光步距为5nm;
S4、光刻结束后接着使用稀释的10%磷酸稀释溶液对样品进行2分钟水浴,去除铝导电层,将光刻胶再次暴露出来;随后经过二甲苯显影80s后光刻胶上具有设计的超构表面结构图案;
S5、用反应离子束刻蚀法对样品进行刻蚀,对于氮化硅薄膜、富硅氮化硅薄膜、二氧化硅薄膜和光刻胶层分别过刻,反应离子束刻蚀的工艺参数:射频功率为200W;压力为30mTorr;刻蚀气体采用CHF3,气流量为12sccm;保护气体为Ar,气流量为38sccm;刻蚀速率为58nm/min;
S6、刻蚀结束后得到表面有残胶的叠层介质超构表面,用氧等离子处理3分钟去除残胶,得到实现宽色域、高饱和度结构色的叠层介质超构表面,其示意图如图2和图3所示,衬底为石英衬底1,叠层介质为圆柱形结构,叠层介质从下至上依次包括氮化硅2、富硅氮化硅3和二氧化硅4;该超构表面的SEM俯视图如图4所示,各叠层介质呈阵列状排布组成超构表面。
对比例1低折射率的单一介质的氮化硅超构表面的制备
超构表面的制备方法同实施例1,不同在于,对比例1只沉积200nm的氮化硅薄膜,制得低折射率的单一介质的氮化硅超构表面。
对比例2高折射率的单一介质的氮化硅超构表面的制备
超构表面的制备方法同实施例1,不同在于,对比例1只沉积200nm的富硅氮化硅薄膜,制得高折射率的单一介质的氮化硅超构表面。
实验例1实现宽色域、高饱和度结构色的叠层介质超构表面的表征
1、反射光谱和散射截面的多级分解
各超构表面的仿真结果如图5所示,为了更清楚的看到多极子的变化,采用多极子分解的方法研究了改善颜色性能的机理,将超构表面的总散射能量扩展为电偶极子(ED)、磁偶极子(MD)、电四极子(EQ)和磁四极子(MQ)。
对于低折射率的单一介质的氮化硅纳米结构,其散射截面峰位集中,因此表现为反射谱尖锐,单色性好,但反射率比较低;而对于高折射率单一介质富硅氮化硅纳米结构,在大约480nm处有一个较小的峰,这严重影响了可见光谱的单色性;对于实现宽色域、高饱和度结构色的叠层介质超构表面,480nm处的反射峰在叠层介质纳米结构中消失了,高折射率单一介质富硅氮化硅纳米结构在次要反射峰处的磁场激发比叠层介质纳米结构具有更强的磁场激发,480nm波长处的磁场抑制表明叠层介质纳米结构可以控制Mie共振的激发,从而调节反射光谱的半高宽。表明实施例1的方法利用折射率匹配层实现了高折射率富硅氮化硅材料对于衬底和空气的良好过渡,叠层介质纳米结构可以通过抑制多极性模式(尤其是电四极子)在较短波长下的激发来增强单色性。
2、结构色色域的表征
叠层介质富硅氮化硅材料体系结构色超构表面的色域性能如图6所示,由于深度调制的叠层介质纳米结构极大地增强了光谱的单色性,整个反射光谱中超过85%的能量可以限制在反射峰中。模拟结果显示,叠层介质纳米结构的实施可以显著增加饱和度和色域空间。
综上,本发明提供了一种实现宽色域、高饱和度结构色的富硅氮化硅材料体系超构表面,该超构表面由同位生长制得,相比于其他叠层系统,该设计生长简单、方便,且同位生长能提供更好的过渡界面。本发明的超构表面设计维度多,通过引入可调折射率的富硅氮化硅材料,可调整除大小、周期等几何尺寸以外的其它变量进行超构表面结构色设计,利用氮化硅、可调折射率富硅氮化硅和二氧化硅结构实现折射率匹配,进而调制高阶共振的分布,实现高亮度的结构色。
以上对本发明的实施方式作详细说明,但本发明不限于所描述的实施方式。对于本领域的技术人员而言,在不脱离本发明原理和精神的情况下,对这些实施方式进行多种变化、修改、替换和变型,仍落入本发明的保护范围内。

Claims (8)

1.一种实现宽色域、高饱和度结构色的富硅氮化硅材料体系超构表面,其特征在于,包括石英基底和由叠层介质组成的超构表面,所述叠层介质从下至上依次为氮化硅、富硅氮化硅和二氧化硅。
2.根据权利要求1所述的实现宽色域、高饱和度结构色的富硅氮化硅材料体系超构表面,其特征在于,所述氮化硅、富硅氮化硅、二氧化硅的厚度分别为50~250nm、100~500nm、50~250nm。
3.权利要求1或2所述的实现宽色域、高饱和度结构色的富硅氮化硅材料体系超构表面的制备方法,其特征在于,包括以下步骤:
S1、通过电感耦合等离子体化学气相沉积技术在石英基底上依次沉积氮化硅薄膜、富硅氮化硅薄膜和二氧化硅薄膜;
S2、在二氧化硅薄膜表面表面涂覆光刻胶,再采用溅射技术在光刻胶上做导电性处理;
S3、通过电子束曝光将设计好的超构表面图案转移到光刻胶上;
S4、去除导电层暴露出需要显影的光刻胶层,再进行显影;
S5、用反应离子束刻蚀技术对样品进行刻蚀;
S6、用电感耦合等离子体技术去除残胶,得到实现宽色域、高饱和度结构色的叠层介质超构表面。
4.根据权利要求3所述的实现宽色域、高饱和度结构色的富硅氮化硅材料体系超构表面的制备方法,其特征在于,步骤S1中,通过电感耦合等离子体化学气相沉积技术在石英基底上依次沉积氮化硅薄膜、富硅氮化硅薄膜和二氧化硅薄膜,生长过程所使用生长温度均为300℃,所述氮化硅、富硅氮化硅材料生长气体为SiH4和N2,所述二氧化硅生长气体为SiH4和N2O。
5.根据权利要求4所述的实现宽色域、高饱和度结构色的富硅氮化硅材料体系超构表面的制备方法,其特征在于,所述富硅氮化硅通过调节反应气体N2和SiH4的比例实现,N2与SiH4的气体比为12:18~12:26。
6.根据权利要求3所述的实现宽色域、高饱和度结构色的富硅氮化硅材料体系超构表面的制备方法,其特征在于,步骤S2中,所述导电性处理为在光刻胶上镀铝做导电层。
7.根据权利要求3所述的实现宽色域、高饱和度结构色的富硅氮化硅材料体系超构表面的制备方法,其特征在于,步骤S4中,用磷酸稀溶液去除导电层,暴露出需要显影的光刻胶层,再浸入二甲苯显影液显影80s使得光刻胶上具有超构表面设计图案。
8.根据权利要求3所述的实现宽色域、高饱和度结构色的富硅氮化硅材料体系超构表面的制备方法,其特征在于,步骤S6中,使用氧等离子处理技术去除残胶。
CN202310252161.9A 2023-03-16 2023-03-16 一种实现宽色域、高饱和度结构色的富硅氮化硅材料体系超构表面及其制备方法 Pending CN116360016A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310252161.9A CN116360016A (zh) 2023-03-16 2023-03-16 一种实现宽色域、高饱和度结构色的富硅氮化硅材料体系超构表面及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310252161.9A CN116360016A (zh) 2023-03-16 2023-03-16 一种实现宽色域、高饱和度结构色的富硅氮化硅材料体系超构表面及其制备方法

Publications (1)

Publication Number Publication Date
CN116360016A true CN116360016A (zh) 2023-06-30

Family

ID=86939816

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310252161.9A Pending CN116360016A (zh) 2023-03-16 2023-03-16 一种实现宽色域、高饱和度结构色的富硅氮化硅材料体系超构表面及其制备方法

Country Status (1)

Country Link
CN (1) CN116360016A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117031757A (zh) * 2023-08-16 2023-11-10 天津大学四川创新研究院 一种用于增强现实显示的超透镜光机装置及其运行方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117031757A (zh) * 2023-08-16 2023-11-10 天津大学四川创新研究院 一种用于增强现实显示的超透镜光机装置及其运行方法

Similar Documents

Publication Publication Date Title
US6328865B2 (en) Method for forming a thin film of a composite metal compound and apparatus for carrying out the method
CN116360016A (zh) 一种实现宽色域、高饱和度结构色的富硅氮化硅材料体系超构表面及其制备方法
Riley et al. Plasmonic tuning of aluminum doped zinc oxide nanostructures by atomic layer deposition
CN109830886A (zh) 一种多腔耦合增强的纳米等离子体激光器阵列及其制备方法
CN111235527B (zh) 制作光学薄膜的方法、膜系结构、镀膜方法、激光反射镜
Ding et al. A Platform for Complementary Metal‐Oxide‐Semiconductor Compatible Plasmonics: High Plasmonic Quality Titanium Nitride Thin Films on Si (001) with a MgO Interlayer
Yan et al. Structural and optical properties of yttrium trioxide thin films prepared by RF magnetron sputtering
Kim et al. MoS 2 monolayers on Si and SiO 2 nanocone arrays: influences of 3D dielectric material refractive index on 2D MoS 2 optical absorption
CN113235049A (zh) 一种过渡金属硫化物薄膜及其制备方法和应用
Kumar et al. Effect of power on the growth of nanocrystalline silicon films
Li et al. Splitting of X-ray diffraction peak in (Ge: SiO2)/SiO2 multilayers
CN111847432B (zh) 大面积多层石墨烯及其制备方法
Huang et al. Effects of chemical stoichiometry on the structural properties of Si-rich oxide thin films
Liu et al. Fabrication of amorphous silicon films for arrayed waveguide grating application
CN112563881B (zh) 基于ZnO/Al核壳纳米线的等离激元激光器及其制备方法
Kim et al. Uniform color coating of multilayered TiO 2/Al 2 O 3 films by atomic layer deposition
CN115181953B (zh) 表面等离激元薄膜的制备方法和制备多层膜超材料的方法
KR102641870B1 (ko) 가시광에서 투명한 저손실 수소화 비정질 실리콘의 제조방법, 가시광에서 투명한 저손실 수소화 비정질 질화실리콘의 제조방법 및 가시광에서 투명한 저손실 수소화 비정질 산화실리콘의 제조방법
CN114775054B (zh) 一种大面积少层/单层极化激元晶体及其制备方法
Quan et al. Dielectric metalens by multilayer nanoimprint lithography and solution phase epitaxy
Lu et al. Enhanced Performance of Transfer‐Free Graphene Transparent Conductive Films on Insulating Substrates by Introducing Array Nanostructure
Sakata High-transmittance surface textures formed by plasma etching of metallophthalocyanine films
JP2003262750A (ja) SiON薄膜の製造方法
CN115323483B (zh) 基于分子束外延的二维层状过渡金属硫化物的制备方法
JP2001011605A (ja) 複合金属の化合物薄膜形成方法及びその薄膜形成装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination