CN116351381A - 一种可渗透反应墙填料及其制备方法与在锑砷复合污染地下水修复中的应用 - Google Patents

一种可渗透反应墙填料及其制备方法与在锑砷复合污染地下水修复中的应用 Download PDF

Info

Publication number
CN116351381A
CN116351381A CN202310374376.8A CN202310374376A CN116351381A CN 116351381 A CN116351381 A CN 116351381A CN 202310374376 A CN202310374376 A CN 202310374376A CN 116351381 A CN116351381 A CN 116351381A
Authority
CN
China
Prior art keywords
filler
permeable reactive
reactive barrier
antimony
arsenic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310374376.8A
Other languages
English (en)
Inventor
江钧
薛生国
朱锋
王媛媛
高文艳
梁映
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202310374376.8A priority Critical patent/CN116351381A/zh
Publication of CN116351381A publication Critical patent/CN116351381A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/165Natural alumino-silicates, e.g. zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3021Milling, crushing or grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3042Use of binding agents; addition of materials ameliorating the mechanical properties of the produced sorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3071Washing or leaching
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/103Arsenic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/06Contaminated groundwater or leachate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

本发明公开了一种可渗透反应墙填料及其制备方法与在锑砷复合污染地下水修复中的应用。所述可渗透反应墙填料分为可渗透反应墙填料A和可渗透反应墙填料B;所述可渗透反应墙填料A由羟基氧化铁、辅助材料和瓜米石按质量比(5~10):(20~30):(50~70)组成;所述可渗透反应墙填料B由还原铁粉、辅助材料和瓜米石按质量比(5~10):(20~30):(50~70)组成;所述辅助材料包括碳基材料、矿物材料和粘合剂。本发明填料能够实现对高碱度地下水中锑砷复合污染的同步、高效和深度去除。同时,填料的制备过程简单,能耗低,成本低廉,具有很大的经济效益,市场化应用优势明显。

Description

一种可渗透反应墙填料及其制备方法与在锑砷复合污染地下 水修复中的应用
技术领域
本发明属于地下水污染修复领域,特别涉及一种可渗透反应墙填料及其制备方法与在锑砷复合污染地下水修复中的应用。
背景技术
中国是世界上锑矿资源最丰富的国家,但锑矿在采、选、冶等过程会加剧锑、砷等元素释放迁移到水环境的速度,显著增加了矿区及周边区域水体中重金属的含量,带来严重的地下水锑砷复合污染问题。可渗透反应墙技术(Permeable Reactive Barrier,PRB)是地下水重金属污染修复中应用最广泛的处理技术之一,与其他修复技术相比,PRB技术不涉及地下水的抽提回灌,对修复区干扰小,同时可以根据不同类型的地下水重金属污染状态,填充反应活性高、选择性强的修复材料,可避免二次污染,具有对多数污染物的去除效果好等优势。PRB技术成功与否的关键在于墙体中活性反应介质材料的选择。针对不同场地的水文地质条件和地下水中污染组分的种类、浓度和范围,需综合考虑活性材料的反应活性、水力传导性、稳定性、环境可承载性、可获取性和成本、均匀性等参数,权衡各个方面的因素,确定最适合特定场地的填料。常见的砷锑修复材料在去除地表水或工业废水中的锑砷污染方面具有较好的效果。但在复杂的地下水水文地质条件下,锑砷的赋存形态错综复杂,同时由于吸附砷锑的最佳氧化还原条件不同,复合污染的地下水中锑砷组分存在竞争吸附行为,很难通过PRB技术实现锑砷的同步去除。基于此,我们以羟基氧化铁、还原铁粉为主要活性组分,通过活性炭、凹凸棒土等辅料的组合,研制出一种兼具沉淀和吸附功能的PRB填料,以实现其对高碱度地下水中锑砷复合污染的同步和深度去除。
发明内容
针对地下水锑砷复合污染,本发明的目的是提供一种高效经济的可渗透反应墙填料及其制备方法与在锑砷复合污染地下水修复中的应用,以实现高碱度地下水中锑砷污染的高效同步去除。
为实现上述目的,本发明提供如下技术方案:
本发明提供的这种可渗透反应墙(PRB)填料分为可渗透反应墙填料A和可渗透反应墙填料B;所述可渗透反应墙填料A由羟基氧化铁、辅助材料和瓜米石按质量比(5~10):(20~30):(50~70)组成;所述可渗透反应墙填料B由还原铁粉、辅助材料和瓜米石按质量比(5~10):(20~30):(50~70)组成;所述辅助材料包括碳基材料、矿物材料和粘合剂。
作为优选,所述辅助材料中,碳基材料、矿物材料和粘合剂的质量比为(15~25):(2~8):(2~8)。
作为优选,所述辅助材料中的碳基材料包括活性炭、生物炭中的一种或两种混合。
作为优选,所述辅助材料中的矿物材料包括凹凸棒土、沸石中的一种或两种混合。
作为优选,所述辅助材料中的粘合剂包括水泥、羧甲基纤维素钠、糊精、凹凸棒土中的至少一种。
本发明中,羟基氧化铁为PRB填料A的主要活性组分,还原铁粉为PRB填料B的主要活性组分;辅助材料的主要作用是辅助吸附目标污染物以及各类反应生成的产物;瓜米石作为支撑材料,可以使活性组分均匀分布在其表面上,同时控制填料整体的孔隙度。
本发明提供的这种可渗透反应墙填料的制备方法,包括如下步骤:
1)将羟基氧化铁、还原铁粉和辅助材料分别研磨后过筛;
2)将瓜米石水洗、烘干后过筛;
3)按配比称取过筛后的羟基氧化铁或还原铁粉和辅助材料、瓜米石,混合均匀后,制得所述填料。
作为优选,所述步骤1)中,研磨后过55目筛。
作为优选,所述步骤2)中,瓜米石80℃烘干后过5目筛。
所述可渗透反应墙填料在锑砷复合污染地下水修复中的应用。
所述可渗透反应墙填料能够同步去除锑砷复合污染地下水中的锑、砷。
需要说明的是,本发明可渗透反应墙填料A与可渗透反应墙填料B在实际应用中可根据具体情况组合使用,也可单独使用。
所述可渗透反应墙填料在锑砷复合污染地下水修复中的效果验证方法,包括如下步骤:
1)按水流方向,依次将石英砂、所述可渗透反应墙填料A和/或B、石英砂、所述可渗透反应墙填料A和/或B、石英砂填充入可渗透反应墙实验柱中;
2)以0.3~1mL/min的速度向可渗透反应墙实验柱中通入锑砷复合污染地下水,以开始出水的时刻作为初始时间0h,往后每间隔24h在出水口处取样,对样品进行测试,得到实验结果。
本发明的有益效果:
本发明以羟基氧化铁作为PRB填料A的主要活性成分,其具有高等电点,在自然环境的典型pH值4~8范围内对砷、锑都有很好的吸附效果;针对较难吸附的高价锑,PRB填料B的还原铁粉能够进一步将它还原并吸附,从而达到深度去除锑的目的。同时本发明中的活性炭具有多孔结构、比表面积大;凹凸棒土、天然沸石等矿物材料具有生态友好、成本低等优点。本发明中的填料在批实验以及室内模拟可渗透反应墙柱实验中都取得了很好的效果。填料的制备过程简单,能耗低,成本低廉,具有很大的经济效益,市场化应用优势明显。
附图说明
下面结合附图对本发明做进一步详细说明。
图1为实施例2与对比例1中不同PRB填料在批实验中对地下水样中锑的修复效果图;
图2为实施例2与对比例1中不同PRB填料在批实验中对地下水样中砷的修复效果图;
图3为实施例3中室内模拟实验装置图;
图4为实施例3与实施例4中不同PRB填料在室内模拟实验中出水锑浓度随时间变化图;
图5为实施例3与实施例4中不同PRB填料在室内模拟实验中出水砷浓度随时间变化图;
图6为实施例5中不同配方PRB填料在室内模拟实验中出水锑浓度随时间变化图;
图7为实施例5中不同配方PRB填料在室内模拟实验中出水砷浓度随时间变化图。
具体实施方式
以下结合具体实施例对本发明做进一步的详细说明。
实施例1PRB填料的制备
(1)将羟基氧化铁、还原铁粉、活性炭、凹凸棒土分别研磨成粉末后过55目筛备用;
(2)将瓜米石于80℃烘干后过5目筛备用;
(3)按质量比10:10:20:60称取羟基氧化铁、凹凸棒土、活性炭和瓜米石,混合均匀,得到PRB填料A;按质量比10:10:20:60称取还原铁粉、凹凸棒土、活性炭和瓜米石,混合均匀,得到PRB填料B。
实施例2PRB填料修复效果检测—批试验
(1)分别取0.5g实施例1制得的两种填料以及两种填料的组合与100mL模拟地下水样(As浓度为12mg/L、Sb浓度为5mg/L、pH为9)一同置于250mL锥形瓶中,并放入恒温振荡器中振荡,温度设置为25℃,转速为180rpm,反应时间24h。
(2)反应完成后,采用离心机对水样进行离心处理,离心转速为4000rpm,离心时间为10min。离心后用0.22μm滤膜过滤得到检测液,对检测液进行ICP-MS测定,结果见表1以及图1、2所示。
表1不同填料组成及其修复效果
Figure BDA0004169779580000041
注:表中填料1,PRB填料A与PRB填料B的质量比为1:1。
对比例1
本对比例与实施例2基本相同,只是填料不同,具体配方见表1填料4所示。其修复效果见表1以及图1、图2所示。
根据图1、2和表1中不同填料对锑、砷的去除率可知,相比填料4,填料1、2、3对污染水样中锑砷的综合修复效果要好得多,能够实现锑砷的同步去除。填料1对锑、砷的去除率最高,由此可知,将填料A、B组合使用的综合修复效果最佳。
实施例3PRB填料修复效果检测—室内模拟实验
1)将现场实地取回的地下水样用0.2μm膜过滤,加入10% HNO3酸化至pH<2,采用电感耦合等离子体质谱法(ICP-MS)测定水样中总锑和总砷的浓度;采用pH计测定未酸化前地下水样pH值。地下水样基本理化性质如下:As浓度为1.842mg/L;Sb浓度为0.960mg/L;pH为9.48。
2)在如图3所述装置实验柱的缓冲区、前处理区以及后处理区分别填充石英砂、实施例1制得的PRB填料A以及PRB填料B,各层填充高度及填充量详见表2所示。
3)以0.5mL/min的速度,向实验柱中通入实际污染水样,以开始出水的时刻作为初始时间0h,往后每间隔24h取样,测定出水中锑、砷浓度。结果见图4、5所示。
实施例4
本实施例与实施例3基本相同,只是将前处理区的填料改为实施例1制得的PRB填料B,其余不变,各层填充高度及填充量详见表2所示。结果见图4、5所示。
表2实验柱各层填充高度及填充量
Figure BDA0004169779580000051
Figure BDA0004169779580000061
实施例3、4室内模拟实验的设计出水水质要求为《地下水质量标准》(GB/T 14848-2017)中的Ⅳ标准,即As为0.05mg/L、Sb为0.01mg/L。以出水锑、砷均能达到标准的最长修复时间作为有效修复时间,按照图4、5所示的出水锑、砷浓度的监测结果,仅由还原铁粉作为主要活性成分的PRB填料针对砷的有效修复时间超过192h,而锑的有效修复时间也能达到48h。同时加入了羟基氧化铁和还原铁粉的填料针对锑砷的有效修复时间均超过192h且出水锑、砷浓度稳定。由此可见,本发明PRB填料在模拟地下水流场中有优异的修复效果且具有良好的稳定性和长效性。
实施例5 PRB填料的制备及修复效果检测
本实施例中通过调整粘合剂种类以及材料配比制备PRB填料,制备过程同实施例1。PRB填料的具体配方参数见表3。PRB填料修复效果检测方法同实施例3。结果见图6、7所示。
表3 PRB填料配方参数
Figure BDA0004169779580000062
Figure BDA0004169779580000071
注:表中填料4-1、4-2、4-3、4-4中,PRB填料A与PRB填料B的质量比均为1:1。
根据图6、7对出水锑、砷浓度的监测,填料4-1的有效修复时间超过144h,填料4-3的有效修复时间在120h左右,填料4-2、4-4的有效修复时间也能达到108h。

Claims (9)

1.一种可渗透反应墙填料,其特征在于,所述可渗透反应墙填料分为可渗透反应墙填料A和可渗透反应墙填料B;所述可渗透反应墙填料A由羟基氧化铁、辅助材料和瓜米石按质量比(5~10):(20~30):(50~70)组成;所述可渗透反应墙填料B由还原铁粉、辅助材料和瓜米石按质量比(5~10):(20~30):(50~70)组成;所述辅助材料包括碳基材料、矿物材料和粘合剂。
2.根据权利要求1所述的可渗透反应墙填料,其特征在于,所述辅助材料中,碳基材料、矿物材料和粘合剂的质量比为(15~25):(2~8):(2~8)。
3.根据权利要求1所述的可渗透反应墙填料,其特征在于,所述辅助材料中的碳基材料包括活性炭、生物炭中的一种或两种混合。
4.根据权利要求1所述的可渗透反应墙填料,其特征在于,所述矿物材料包括凹凸棒土、沸石中的一种或两种混合。
5.根据权利要求1所述的可渗透反应墙填料,其特征在于,所述粘合剂包括水泥、羧甲基纤维素钠、糊精、凹凸棒土中的至少一种。
6.一种根据权利要求1所述的可渗透反应墙填料的制备方法,包括如下步骤:
1)将羟基氧化铁、还原铁粉和辅助材料分别研磨后过筛;
2)将瓜米石水洗、烘干后过筛;
3)按配比称取过筛后的羟基氧化铁或还原铁粉和辅助材料、瓜米石,混合均匀后,制得所述填料。
7.一种根据权利要求1~5任一项所述的可渗透反应墙填料在锑砷复合污染地下水修复中的应用。
8.根据权利要求7所述的应用,其特征在于,所述可渗透反应墙填料能够同步去除锑砷复合污染地下水中的锑、砷。
9.一种根据权利要求1~5任一项所述的可渗透反应墙填料在锑砷复合污染地下水修复中的效果验证方法,包括如下步骤:
1)按水流方向,依次将石英砂、所述可渗透反应墙填料A和/或B、石英砂、所述可渗透反应墙填料A和/或B、石英砂填充入可渗透反应墙实验柱中;
2)以0.3~1mL/min的速度向实验柱中通入锑砷复合污染地下水,以开始出水的时刻作为初始时间0h,往后每间隔24h在出水口处取样,对样品进行测试,得到实验结果。
CN202310374376.8A 2023-04-10 2023-04-10 一种可渗透反应墙填料及其制备方法与在锑砷复合污染地下水修复中的应用 Pending CN116351381A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310374376.8A CN116351381A (zh) 2023-04-10 2023-04-10 一种可渗透反应墙填料及其制备方法与在锑砷复合污染地下水修复中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310374376.8A CN116351381A (zh) 2023-04-10 2023-04-10 一种可渗透反应墙填料及其制备方法与在锑砷复合污染地下水修复中的应用

Publications (1)

Publication Number Publication Date
CN116351381A true CN116351381A (zh) 2023-06-30

Family

ID=86907864

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310374376.8A Pending CN116351381A (zh) 2023-04-10 2023-04-10 一种可渗透反应墙填料及其制备方法与在锑砷复合污染地下水修复中的应用

Country Status (1)

Country Link
CN (1) CN116351381A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007115189A2 (en) * 2006-03-30 2007-10-11 Auburn University In situ remediation of inorganic contaminants using stabilized zero-valent iron nanopaticles
US20070256985A1 (en) * 2006-03-30 2007-11-08 Dongye Zhao In Situ Remediation of Inorganic Contaminants Using Stabilized Zero-Valent Iron Nanoparticles
CN201473400U (zh) * 2009-09-01 2010-05-19 罗娟 一种集团用除砷氟及铁锰过滤器
CN107235561A (zh) * 2017-08-04 2017-10-10 南京大学 一种用于地下水多环芳烃污染修复的可渗透性反应墙复合材料及其制备方法
CN112139507A (zh) * 2020-08-27 2020-12-29 浙江工业大学 一种硬脂酸改性零价铁复合材料的制备方法及其应用
CN215946953U (zh) * 2021-07-15 2022-03-04 长沙工研院环保有限公司 一种地下水修复多段模块化可渗透反应墙
CN115364823A (zh) * 2022-08-23 2022-11-22 中南大学 一种可修复地下水砷污染的纳米零价铁浆剂及其制备方法与应用
CN115611437A (zh) * 2022-10-28 2023-01-17 上海城市水资源开发利用国家工程中心有限公司 一种用于地下水金属锑污染的生物修复材料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007115189A2 (en) * 2006-03-30 2007-10-11 Auburn University In situ remediation of inorganic contaminants using stabilized zero-valent iron nanopaticles
US20070256985A1 (en) * 2006-03-30 2007-11-08 Dongye Zhao In Situ Remediation of Inorganic Contaminants Using Stabilized Zero-Valent Iron Nanoparticles
CN201473400U (zh) * 2009-09-01 2010-05-19 罗娟 一种集团用除砷氟及铁锰过滤器
CN107235561A (zh) * 2017-08-04 2017-10-10 南京大学 一种用于地下水多环芳烃污染修复的可渗透性反应墙复合材料及其制备方法
CN112139507A (zh) * 2020-08-27 2020-12-29 浙江工业大学 一种硬脂酸改性零价铁复合材料的制备方法及其应用
CN215946953U (zh) * 2021-07-15 2022-03-04 长沙工研院环保有限公司 一种地下水修复多段模块化可渗透反应墙
CN115364823A (zh) * 2022-08-23 2022-11-22 中南大学 一种可修复地下水砷污染的纳米零价铁浆剂及其制备方法与应用
CN115611437A (zh) * 2022-10-28 2023-01-17 上海城市水资源开发利用国家工程中心有限公司 一种用于地下水金属锑污染的生物修复材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHING YUAN ET.AL: ""The mechanisms of arsenic removal from soil by electrokinetic process coupled with iron permeable reaction barrier"", 《CHEMOSPHERE》, vol. 67, 30 January 2007 (2007-01-30) *

Similar Documents

Publication Publication Date Title
CN105131960B (zh) 一种铅污染土壤修复材料的制备方法及应用
Zhu et al. Synthesis of mesoporous bismuth-impregnated aluminum oxide for arsenic removal: Adsorption mechanism study and application to a lab-scale column
CN102430382A (zh) 一种多孔钛酸钙重金属吸附剂的制备方法
Zhang et al. Influence on Uranium (VI) migration in soil by iron and manganese salts of humic acid: mechanism and behavior
CN108178605A (zh) 一种高吸附性能给水厂残泥免烧陶粒的制备方法及用途
CN113634228B (zh) 一种用于去除水中铅和镉的污泥生物炭负载镁铁氧化物复合材料及其制备方法和应用
Song et al. Comparison for adsorption of tetracycline and cefradine using biochar derived from seaweed Sargassum sp
Koner et al. Use of surface modified silica gel factory waste for removal of 2, 4-D pesticide from agricultural wastewater: a case study
Um et al. Geochemical effects on colloid-facilitated metal transport through zeolitized tuffs from the Nevada Test Site
US20210370263A1 (en) Sonication method for making adsorbent composition
CN103241792A (zh) 一种可渗透反应墙墙体材料及其制备方法
Wu et al. Solidification and stabilization of harmful elements in antimony tailings and synergistic utilization of multiple solid wastes
Mao et al. Biosorption of cesium (I) from aqueous solution by a novel exopolymers secreted from Pseudomonas fluorescens C-2: equilibrium and kinetic studies
CN114213140A (zh) 用于磷吸附的煤矸石基陶粒及其制备方法和水处理设备
CN116351381A (zh) 一种可渗透反应墙填料及其制备方法与在锑砷复合污染地下水修复中的应用
CN110902751B (zh) 一种地下污染物迁移控制用渗透反应墙及地下污染物迁移控制治理方法
Zhan et al. A study on the competitive adsorption process of NH4+ and Zn2+ on activated carbon and zeolite
WO2019010561A1 (en) GRAPHENE-COATED GLASS MATERIAL AND USES THEREOF
Shao et al. Kinetics and controlling factors of phenanthrene adsorption on limestone
Dou et al. Occurrence of arsenic in groundwater in the suburbs of Beijing and its removal using an iron-cerium bimetal oxide adsorbent
CN111115785A (zh) 一种修复汞污染地下水的方法
CN114437728B (zh) 用于氟污染的修复剂的制备方法、制得的修复剂及其应用
Quiñones et al. Effects of simulated acid rain and carbon-rich water on mercury mobilization in soils amended with aluminum-based drinking water treatment residuals
CN115591536A (zh) 利用贝壳粉作为吸附材料吸附重金属的应用
Huang et al. Effects of different conditions on Pb 2+ adsorption from soil by irrigation of sewage in South China

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination