CN116334166A - 一种d-半乳糖醛酸聚糖同质果胶多糖及其制备方法和应用 - Google Patents

一种d-半乳糖醛酸聚糖同质果胶多糖及其制备方法和应用 Download PDF

Info

Publication number
CN116334166A
CN116334166A CN202310341844.1A CN202310341844A CN116334166A CN 116334166 A CN116334166 A CN 116334166A CN 202310341844 A CN202310341844 A CN 202310341844A CN 116334166 A CN116334166 A CN 116334166A
Authority
CN
China
Prior art keywords
polysaccharide
methyl
acetyl
tri
galacturonan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310341844.1A
Other languages
English (en)
Inventor
顾欣
刘梦雅
李迪
肖国生
高涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Three Gorges University
Original Assignee
Chongqing Three Gorges University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Three Gorges University filed Critical Chongqing Three Gorges University
Priority to CN202310341844.1A priority Critical patent/CN116334166A/zh
Publication of CN116334166A publication Critical patent/CN116334166A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P39/00Processes involving microorganisms of different genera in the same process, simultaneously
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/732Pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/225Lactobacillus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/46Streptococcus ; Enterococcus; Lactococcus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Diabetes (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Polymers & Plastics (AREA)
  • Epidemiology (AREA)
  • Materials Engineering (AREA)
  • Emergency Medicine (AREA)
  • Endocrinology (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明涉及天然产物制备技术领域,具体涉及一种D‑半乳糖醛酸聚糖同质果胶多糖及其制备方法和应用。该多糖的单糖组成包括半乳糖醛酸、半乳糖、鼠李糖、葡萄糖醛酸和葡萄糖;其骨架结构由→4)‑α‑GalpA‑(1→和→4)‑α‑GalpA‑6‑O‑甲基‑(1→组成。该多糖可通过对梁平柚的乳酸菌发酵并提取以及过柱层析纯化获得,制备方法简单、安全,适合于扩大生产。该多糖具有α‑葡萄糖苷酶抑制活性,α‑葡萄糖苷酶抑制率可达80%,IC50值可达0.128mg/mL,为进一步研究α‑葡萄糖苷酶抑制剂、治疗糖尿病的药物创造了基础,具有广阔的推广应用价值,并同时为梁平柚的资源综合利用创造了条件。

Description

一种D-半乳糖醛酸聚糖同质果胶多糖及其制备方法和应用
技术领域
本发明涉及天然产物制备技术领域,具体涉及一种D-半乳糖醛酸聚糖同质果胶多糖及其制备方法和应用。
背景技术
α-葡萄糖苷酶抑制剂通过抑制小肠黏膜刷状缘的α-葡萄糖苷酶以延缓碳水化合物的吸收,降低餐后高血糖。现有技术的α-葡萄糖苷酶抑制剂主要特点包括平稳降糖、安全性高,以及可降低心血管并发症的发生率,是少数可干预糖耐量受损的口服降糖药之一。常用的α-葡萄糖苷酶抑制剂主要是阿卡波糖、伏格列波糖。其中,阿卡波糖用于治疗糖尿病,或降低糖耐量减低者的餐后血糖,但是,有患者对阿卡波糖成分过敏,或者有明显消化和吸收障碍的慢性胃肠功能紊乱患者、有严重肾功能损害的患者等都不适合于使用阿卡波糖。伏格列波糖用于改善糖尿病饭后高血糖,但是,严重酮体症患者、尿病昏迷或昏迷前的患者、有严重感染的患者、手术前后的患者等,都不适合服用伏格列波糖。为了克服现有的α-葡萄糖苷酶抑制剂的缺陷,亟需开发一种新型的替代药物。我国的天然产物资源丰富,从天然产物中筛选分离和提纯α-葡萄糖苷酶抑制剂,其成本低廉、来源丰富、具有挑战性和开发价值,已成为新型α-葡萄糖苷酶抑制剂开发的方向。
梁平柚(Citrus maxima(Burm.)Merr.cv.Liangping pomelo)是芸香科(Rutaceae)柑橘属(Citrus)植物,是中国三大名柚之一,主产于重庆市梁平区,种植历史悠久。由于缺少有效的利用途径,柚皮利用率极其低下。柚皮中富含果胶、黄酮类、柠檬苦素类化合物和膳食纤维、柚皮苷、精油等多种活性成分。但是,现有技术中尚无对于梁平柚提取的α-葡萄糖苷酶抑制功能的报道。对柚皮提取物的组成以及功效进行充分研究,如能够从中发现天然来源的α-葡萄糖苷酶抑制剂,则可克服现有技术缺少天然来源的α-葡萄糖苷酶抑制剂的问题,也可提升梁平柚的药用价值,进一步充分利用柚皮资源,提高梁平柚原料的综合利用效率。
发明内容
本发明意在提供一种D-半乳糖醛酸聚糖同质果胶多糖,以解决现有技术中的缺少天然来源的α-葡萄糖苷酶抑制剂的技术问题。
为达到上述目的,本发明采用如下技术方案:
一种D-半乳糖醛酸聚糖同质果胶多糖,其单糖组成包括半乳糖醛酸、半乳糖、鼠李糖、葡萄糖醛酸和葡萄糖;其骨架结构由→4)-α-GalpA-(1→和→4)-α-GalpA-6-O-甲基-(1→组成。
本技术方案还提供了一种D-半乳糖醛酸聚糖同质果胶多糖的制备方法,包括以下依次进行的步骤:
S1粗多糖制备:取柚皮的白色内皮,粉碎后获得柚皮粉;然后加入水、碳源、菌种,经发酵获得粗多糖;
S2纯化:对粗多糖进行醇沉和脱蛋白处理之后,依次通过DEAE-52纤维素柱层析、G-100葡聚糖凝胶柱层析、G-75葡聚糖凝胶柱层析,获得柚皮多糖PPs-1Aa。
本技术方案还提供了一种D-半乳糖醛酸聚糖同质果胶多糖在制备α-葡萄糖苷酶抑制或者治疗糖尿病的药物中的应用。
综上所述,本技术方案的有益效果在于:
本技术方案采用微生物发酵法,提取获得梁平柚粗多糖,通过DEAE-52纤维素柱、G-100葡聚糖凝胶柱、G-75葡聚糖凝胶柱层析处理,纯化获得一种新型柚皮多糖,命名为PPs-1Aa。PPs-1Aa具有优于阿卡波糖的α-葡萄糖苷酶抑制活性,是一种潜在的可以用于替换常规用药的α-葡萄糖苷酶抑制剂,具有进一步研究和推广的价值。发明人进而对PPs-1Aa的结构组成进行了研究,发现其是一种主要由半乳糖醛酸、半乳糖、鼠李糖、葡萄糖醛酸和葡萄糖的单糖组分构成的柚皮多糖,包括由→4)-α-GalpA-(1→和→4)-α-GalpA-6-O-甲基-(1→组成的多糖的骨架结构。
现有技术中尚无关于柚皮提取物的α-葡萄糖苷酶抑制活性相关报道,本方案首次发现了柚皮中含有具有α-葡萄糖苷酶抑制活性的多糖成分,并对其进行了分离纯化以及结构鉴别。本方案采用微生物发酵法可以有效改善植物多糖的理化性质,在发酵过程中可将高分子物质分解为小分子,具有产生新的活性物质潜力,使得有效成分发挥更佳作用,减少毒副作用。本技术方案通过微生物发酵法结合传统分离纯化,获得了一种新型α-葡萄糖苷酶抑制剂,有望将其应用于治疗糖代谢相关疾病的医疗实践中。
进一步,半乳糖醛酸、半乳糖、鼠李糖、葡萄糖醛酸和葡萄糖的摩尔为86.8:3.87:4.23:1.11:0.57。
进一步,一种D-半乳糖醛酸聚糖同质果胶多糖,其甲基化分析所得残基以及摩尔百分含量为:
1,5-di-O-acetyl-2,3,4,6-tetra-O-methyl galactitol 8.04%、
1,4,5-tri-O-acetyl-2,3,6-tri-O-methyl galactitol 86.09%、
1,4,5-tri-O-acetyl-2,3,6-tri-O-methyl glucitol 1.00%、
1,5,6-tri-O-acetyl-2,3,4-tri-O-methyl galactitol 0.88%、
1,3,4,5-tetra-O-acetyl-2,6-di-O-methyl galactitol 1.91%、
1,4,5,6-tetra-O-acetyl-2,3-di-O-methyl glucitol 2.07%。
进一步,1,5-di-O-acetyl-2,3,4,6-tetra-O-methyl galactitol的键合连接结构为t-Gal(p)-UA;
1,4,5-tri-O-acetyl-2,3,6-tri-O-methyl galactitol的键合连接结构为4-Gal(p)-UA;
1,4,5-tri-O-acetyl-2,3,6-tri-O-methyl glucitol的键合连接结构为4-Glc(p);
1,5,6-tri-O-acetyl-2,3,4-tri-O-methyl galactitol的键合连接结构为6-Gal(p);
1,3,4,5-tetra-O-acetyl-2,6-di-O-methyl galactitol的键合连接结构为3,4-Gal(p);
1,4,5,6-tetra-O-acetyl-2,3-di-O-methyl glucitol的键合连接结构为4,6-Glc(p)-UA。
进一步,其分子量为42.8kDa。
进一步,其对α-葡萄糖苷酶的抑制作用的IC50值为0.128mg/mL。
进一步,在S1中,发酵条件为:料液比20.5mL/g、接种量为柚皮粉质量的10%、发酵时间62.5h、发酵温度41℃。
进一步,在S1中,碳源包括柚皮粉质量2%的脱脂乳粉和柚皮粉质量1.5%的白砂糖;所述菌种由保加利亚乳杆菌和嗜热链球菌组成。乳酸菌是一类能发酵碳水化合物,产生乳酸的革兰氏阳性菌总称,具有抗菌、维持肠道平衡、促进营养吸收,增强免疫等多种功能。在本技术方案中,通过乳酸菌的生物转化,有效改善植物多糖的理化性质,促进新的活性物质产生,减少毒副作用。
进一步,在S2中,粗多糖经除蛋白和醇沉之后,获得纯化后混合多糖;将纯化后混合多糖上样于DEAE-52离子交换柱层析,再使用氯化钠溶液以1mL/min的流速洗脱并收集洗脱液,每10min收集一管,收集第0-20管的洗脱液,获得PPs-1;将PPs-1上样于G-100葡聚糖凝胶柱,再使用水以5mL/min的流速洗脱并收集洗脱液,每10min收集一管,收集第0-15管的洗脱液,获得PPs-1A;将PPs-1 A上样于G-75葡聚糖凝胶柱,再使用水以5mL/min的流速洗脱并收集洗脱液,每10min收集一管,收集第11-20管的洗脱液,获得PPs-1Aa。
综上所述,本技术方案的有益效果在于:
(1)提供了一种具有α-葡萄糖苷酶抑制活性的D-半乳糖醛酸聚糖同质果胶多糖,有望替代现有技术传统药物,克服现有的α-葡萄糖苷酶抑制剂的缺陷。
(2)本方案的D-半乳糖醛酸聚糖同质果胶多糖的α-葡萄糖苷酶抑制率可达80%,IC50值可达0.128mg/mL,优于阳性对照阿卡波糖,为进一步研究治疗糖尿病的药物创造了基础。
(3)本方案的D-半乳糖醛酸聚糖同质果胶多糖,可以通过微生物发酵法生产获得。该方法成本较低,操作简便,安全性高。采用发酵法提取柚皮中可溶性多糖,可以改进多糖理化特性和提高其纯度。一般天然植物多糖多采用热水浸提法、化学提取法、酶法等,微生物发酵法相对于传统方法更具有优势。
(4)本技术方案提供了一种新的梁平柚天然资源的综合利用方式,提升梁平柚的药用价值,可进一步充分利用柚皮资源,提高梁平柚原料的综合利用效率。
附图说明
图1为实验例1的粗多糖的典型外观图像。
图2为实验例2的柚皮多糖PPs-1Aa的典型外观图像。
图3为实验例2的α-葡萄糖苷酶抑制活性检测实验结果(平均值±标准方差,重复3次实验,测试过程选取6个浓度梯度)。
图4为实验例3的柚皮多糖PPs-1Aa的红外光谱检测结果。
图5为实验例3的柚皮多糖PPs-1Aa的液相凝胶色谱检测结果。
图6为实验例3的柚皮多糖PPs-1Aa和混合标品的单糖组成测定分析结果。
图7为实验例3的柚皮多糖PPs-1Aa的1H-NMR(A)和13C-NMR(B)图谱。
具体实施方式
下面结合实施例对本发明做进一步详细的说明,但本发明的实施方式不限于此。若未特别指明,下述实施例以及实验例所用的技术手段为本领域技术人员所熟知的常规手段,且所用的材料、试剂等,均可从商业途径得到。
实施例1:粗多糖的提取
粗多糖的提取方法参考发明人在先发表的论文“顾欣,发酵法提取梁平柚柚皮不溶性膳食纤维及理化性质研究,食品科技,2021年,第46卷,第05期”。但是,在本技术方案中提取对象从不溶性膳食纤维变为可溶性柚皮多糖,提取方式也对应发生变化,大致过程如下:选用无腐烂虫害的梁平柚柚皮进行清洗,采用机械法除去黄色外皮。留取剩下的白色内皮切成大小为1cm3的块状,并在55℃烘箱里烘干,烘干磨粉后得到柚皮粉(80目)。准确称取100g柚皮粉于锥形瓶中,根据单因素试验条件或者正交试验条件按一定的液料比加入适当的蒸馏水,然后加入柚皮粉质量2%的脱脂乳粉和柚皮粉质量1.5%的白砂糖,混合均匀后,置于灭菌锅中进行灭菌,等到灭菌结束后取出,冷却直至室温,然后加入菌种,进行发酵。发酵完成之后,将发酵产物过滤,取液相,获得的粗多糖。
从柚皮粉中提取柚皮多糖的最佳参数工艺如下:料液比20.5mL/g、接种量10%、发酵时间62.5h、发酵温度41℃。在此条件下多糖得率为15.5%,采用优化所得参数可以有效提高柚皮多糖得率。其中,使用到的菌种为保加利亚乳杆菌、嗜热链球菌,这两种菌种均为现有技术常规菌种,直接购置于北京川秀国际贸易有限公司。使用时,直接将粉末状的菌粉按照质量比1:1的比例混合后加入发酵体系中。
发明人在之前的研究中采用酶解法进行柚皮多糖的提取,参见文献“顾欣,梁平柚柚皮多糖的提取、结构解析及抗氧化能力研究,食品与发酵工业,2021,47(7):137-145.”。由该方法获得的多糖的最佳得率在5%左右。本技术方案首次将发酵法引入到柚皮多糖的提取过程中,将柚皮粗多糖的得率提升至15.5%。微生物发酵法虽然耗费时间,相对于酶解法所需较长。但发酵法是一种无污染、温和且相对于酶解法成本更为低廉的方式,同时也可以提升多糖的得率。
实施例2:多糖组分的分离筛选
在本实施例中,通过对提取得到的粗多糖进行醇沉、脱蛋白简单的纯化处理后。以α-葡萄糖苷酶抑制能力为指标依次通过DEAE-52纤维素柱、G-100葡聚糖凝胶柱、G-75葡聚糖凝胶柱,采用三道工序对柚皮多糖进行纯化。筛选得到5个多糖组分(PPs-1、PPs-2、PPs-1A、PPs-1B、PPs-1Aa)。证明上述多糖组分均具有一定的α-葡萄糖苷酶抑制能力,其中,以PPs-1Aa的效果最佳,作用效果接近常规治疗糖尿病的药物阿卡波糖。得到PPs-1Aa多糖组分为白色絮状无定型物,参见图2。具体操作过程如下:
(1)柚皮多糖的初步纯化
取实施例1获得的粗多糖,采用现有技术常规的Savag法除去蛋白,因柚皮中蛋白质含量微高,需要除蛋白3-5次。再用三倍体积的无水乙醇进行多糖提取,静置24h后离心收集沉淀,并冷冻干燥后得到柚皮粗多糖(pomelo peel polysaccharide,命名为PPs),得初步纯化后的多糖,外观照片参见图1。对提取得到的粗多糖进行醇沉、脱蛋白纯化处理后,为检测其除杂效果。采用紫外全波床长自动检测器对其进行200nm-400nm的检测。在260nm处未发现明显峰值,证明其除杂效果较好。
(2)柱纯化
DEAE-52离子交换柱层析
称取经过乳酸菌发酵法提取到的粗多糖粉末50mg,溶解于10mL去离子水中,8000r/min离心10min,收集上清液过0.45μL水系滤膜后上样于层析柱,然后用0.05mol/L的氯化钠溶液洗脱,收集洗脱液。本步骤使用的色谱柱为DEAE-52纤维素柱(2.5×60cm),设置流速为1mL/min,每10min收集一管。利用苯酚硫酸法绘制洗脱曲线,并根据洗脱曲线收集纯化组分。对收集的洗脱液进行冷冻干燥处理,获得多糖粉末。将收集得到的纯化组分(多糖粉末)进行α-葡萄糖苷酶抑制能力的筛选,选取能力较优的多糖组分进行下一步操作。
Sephadex-G-100凝胶柱层析
将样品上样于层析柱,然后使用超纯水洗脱。色谱柱为Sephadex-G-100(2.5×60cm,G-100葡聚糖凝胶柱),流速为5ml/min,每10min收集一管。利用苯酚硫酸法绘制洗脱曲线,并根据洗脱曲线收集纯化组分。对收集的洗脱液进行冷冻干燥处理,获得多糖粉末。将收集得到的纯化组分(多糖粉末)进行α-葡萄糖苷酶抑制能力的筛选,选取能力较优的多糖组分进行下一步操作。
Sephadex-G-75凝胶柱层析
色谱柱填料换为Sephadex-G-75(2.5×60cm,G-75葡聚糖凝胶柱),其他技术参数同Sephadex-G-100层析。将上述收集得到的柚皮多糖粉末进行同上处理。
经过过柱纯化,从PPs中收集获得5个多糖组分(PPs-1、PPs-2、PPs-1A、PPs-1B、PPs-1Aa)。具体过程为:将PPs溶于去离子水,然后上样于DEAE-纤维素柱,收集第0-20管的洗脱液,获得PPs-1,再收集第75-100管的洗脱液,获得PPs-2。使用PPs-1上样于G-100葡聚糖凝胶柱,收集第0-15管的洗脱液,获得PPs-1A,再收集第25-35管的洗脱液,获得PPs-1B。使用PPs-1A上样于G-75葡聚糖凝胶柱,收集第11-20管的洗脱液,获得PPs-1Aa。
(3)α-葡萄糖苷酶抑制活性检测
采用96孔版酶标仪测定α-葡萄糖苷酶抑制活性,以PNPG作为检测底物。在96孔酶标板中先后加入240μL试剂混合物,它们分别包括120μL浓度为0.5mol/L的磷酸缓冲溶液(pH=6.7),50μL底物溶液(溶于0.5mol/L磷酸缓冲液浓度为0.9mg/mL PNPG溶液),50μL酶溶液(溶于0.5mol/L含有0.2%BSA的磷酸缓冲液中浓度为0.5μ/ml的α-葡萄糖苷酶溶液),20μL的待测样品液(收集洗脱液后冻干处理,再按照指定浓度梯度溶解以计算IC50值:0.3、0.5、0.7、3、5、7mg/mL)。然后平行震荡酶标板使溶液混匀,密封,放置37℃培养箱中反应1h。反应完成后,取出酶标板,依次加入50μL浓度为0.67mol/L Na2CO3来终止反应。该反应过程中会释放一定量的PNP,该物质在405nm处有最大吸收峰,在一定浓度范围内,该物质的吸光度与α-葡萄糖苷酶抑制率正相关,其中,空白对照组中由与样品体积相等的蒸馏水替代,背景扣除组由100μL磷酸缓冲溶液代替底物和酶溶液。
α-葡萄糖苷酶抑制率计算公式为:
AGA(%)=[1-(A1-A2)/A3]×100%
其中,AGA为α-葡萄糖苷酶抑制率,%;A1为样品组的吸光度值;A2为背景组的吸光度值;A3为空白组的吸光度值。
浓度为0.5mg/mL的PPs-1Aa多糖组分的抑制率可达80%,而PPs、PPs-1、PPs-2、PPs-1A、PPs-1B的抑制率分别为56%、62%、34%、66%、23%。
检测并计算了各种多糖的IC50值,实验结果参见图3,PPs-1Aa多糖组分的α-葡萄糖苷酶抑制效果最佳(IC50值可达0.128mg/mL),优于阳性对照。而未经柱纯化处理的PPs的α-葡萄糖苷酶抑制效果不理想,PPs-1、PPs-2、PPs-1A、PPs-1B的抑制效果也相对于PPs-1Aa有所差距。PPs-1Aa多糖组分是一种潜在的可以用于替换常规用药的α-葡萄糖苷酶抑制剂,具有进一步研究和推广的价值。
实施例3:柚皮多糖PPs-1Aa的结构鉴定
(1)柚皮多糖的红外光谱检测
通过对纯化后的样品(PPs-1Aa)进行红外光谱的扫描得到该纯化多糖具有明显多糖特征糖苷键及一些其他键合结构信息。2933cm-1的较小吸收峰是由于CH2中C-H伸缩振动引起,因此多糖类物质在这两处都会表现出相似吸收峰,1741cm-1处的吸收峰可能为乙酰基或者羧酸酯中C=O的特征峰,表明样品中可能含有糖醛酸,图谱参见图2。
(2)柚皮多糖的分子量检测
通过液相凝胶色谱法(GPC)测量多糖分子量,得到该纯化多糖的分子量为42.8kDa。GPC图谱显示,子馏分显示出对称的峰,表明组分是同质的,图谱参见图3。
(3)柚皮多糖的单糖组成测定
采用1-苯基-3-甲基-5-吡唑啉酮(PMP)柱前衍生化和HPLC测定样品中单糖组成。测得该纯化多糖的单糖组成为主要由半乳糖醛酸、半乳糖、鼠李糖、葡萄糖醛酸、葡萄糖组成。其中半乳糖醛酸占主要部分且Rha/Gal值最低,认为该多糖是一种(HG结构)D-半乳糖醛酸聚糖同质果胶多糖。混合标品和柚皮多糖的检测结果图参见图4。经计算,其所含的单糖的所占的摩尔百分比为:半乳糖醛酸86.8%:半乳糖3.87%:鼠李糖4.23%:葡萄糖醛酸1.11%:葡萄糖0.57%。
(4)柚皮多糖的键和结构分析
取样品1.00g进行甲基化分析,得到其相应的键合连接结构。GC-MS结果表明,样品多糖的主链主要是由4-Gal(p)-UA组成,如表1所示。
表1:多糖样品键合结构分析结果
键合连接结构 衍生物 分子量 摩尔百分含量
t-Gal(p)-UA 1,5-di-O-acetyl-2,3,4,6-tetra-O-methyl galactitol 325 8.04
4-Gal(p)-UA 1,4,5-tri-O-acetyl-2,3,6-tri-O-methyl galactitol 353 86.09
4-Glc(p) 1,4,5-tri-O-acetyl-2,3,6-tri-O-methyl glucitol 351 1.00
6-Gal(p) 1,5,6-tri-O-acetyl-2,3,4-tri-O-methyl galactitol 351 0.88
3,4-Gal(p) 1,3,4,5-tetra-O-acetyl-2,6-di-O-methyl galactitol 379 1.91
4,6-Glc(p)-UA 1,4,5,6-tetra-O-acetyl-2,3-di-O-methyl glucitol 381 2.07
(5)核磁共振分析
1H NMR谱图可以用来确定多糖结构中的糖苷键构型,通常α型糖苷异头碳的质子信号大于δ5.0,而β型糖苷异头碳的质子信号小于δ5.0。如图7所示,该多糖属于β-糖苷异头碳。通过NMR核磁分析,结合上述步骤得到的结果。认为该多糖是一种(HG结构)D-半乳糖醛酸聚糖同质果胶多糖。
综上所述,乳酸菌发酵法得到的柚皮多糖经过除杂后,根据红外光谱结果推测得到了一种由β-糖苷键连接,具有吡喃糖环的酸性多糖。以α-葡萄糖苷酶抑制能力为筛选目标,经过多步纯化筛选最终得到一种α-葡萄糖苷酶抑制能力优异的柚皮多糖。GPC结果显示为均一且对称的单峰,证明该多糖纯度较好。对柚皮纯化多糖进行单糖组成分析、分子量测定、NMR核磁解析,认为该多糖是一种(HG结构)D-半乳糖醛酸聚糖同质果胶多糖。根据上述实验结果综合分析可推知,该多糖是由→4)-α-GalpA-(1→和→4)-α-GalpA-6-O-甲基-(1→组成的骨架结构(如式(1)所示)。
Figure BDA0004158283810000091
以上所述的仅是本发明的实施例,方案中公知的具体技术方案和/或特性等常识在此未作过多描述。应当指出,对于本领域的技术人员来说,在不脱离本发明技术方案的前提下,还可以作出若干变形和改进,这些也应该视为本发明的保护范围,这些都不会影响本发明实施的效果和专利的实用性。本申请要求的保护范围应当以其权利要求的内容为准,说明书中的具体实施方式等记载可以用于解释权利要求的内容。

Claims (10)

1.一种D-半乳糖醛酸聚糖同质果胶多糖,其特征在于,其单糖组成主要包括半乳糖醛酸、半乳糖、鼠李糖、葡萄糖醛酸和葡萄糖;其骨架结构由→4)-α-GalpA-(1→和→4)-α-GalpA-6-O-甲基-(1→组成。
2.根据权利要求1所述的一种D-半乳糖醛酸聚糖同质果胶多糖,其特征在于,半乳糖醛酸、半乳糖、鼠李糖、葡萄糖醛酸和葡萄糖的摩尔为86.8:3.87:4.23:1.11:0.57。
3.根据权利要求2所述的一种D-半乳糖醛酸聚糖同质果胶多糖,其特征在于,其甲基化分析所得残基以及摩尔百分含量为:
1,5-di-O-acetyl-2,3,4,6-tetra-O-methyl galactitol 8.04%、
1,4,5-tri-O-acetyl-2,3,6-tri-O-methyl galactitol 86.09%、
1,4,5-tri-O-acetyl-2,3,6-tri-O-methyl glucitol 1.00%、
1,5,6-tri-O-acetyl-2,3,4-tri-O-methyl galactitol 0.88%、
1,3,4,5-tetra-O-acetyl-2,6-di-O-methyl galactitol 1.91%、
1,4,5,6-tetra-O-acetyl-2,3-di-O-methyl glucitol 2.07%。
4.根据权利要求3所述的一种D-半乳糖醛酸聚糖同质果胶多糖,其特征在于,1,5-di-O-acetyl-2,3,4,6-tetra-O-methyl galactitol的键合连接结构为t-Gal(p)-UA;1,4,5-tri-O-acetyl-2,3,6-tri-O-methyl galactitol的键合连接结构为4-Gal(p)-UA;1,4,5-tri-O-acetyl-2,3,6-tri-O-methyl glucitol的键合连接结构为4-Glc(p);
1,5,6-tri-O-acetyl-2,3,4-tri-O-methyl galactitol的键合连接结构为6-Gal(p);
1,3,4,5-tetra-O-acetyl-2,6-di-O-methyl galactitol的键合连接结构为3,4-Gal(p);1,4,5,6-tetra-O-acetyl-2,3-di-O-methyl glucitol的键合连接结构为4,6-Glc(p)-UA。
5.根据权利要求4所述的一种D-半乳糖醛酸聚糖同质果胶多糖,其特征在于,其分子量为42.8kDa。
6.根据权利要求5所述的一种D-半乳糖醛酸聚糖同质果胶多糖,其特征在于,其对α-葡萄糖苷酶的抑制作用的IC50值为0.128mg/mL。
7.根据权利要求1-6中任一项所述的一种D-半乳糖醛酸聚糖同质果胶多糖的制备方法,其特征在于,包括以下依次进行的步骤:
S1粗多糖制备:取柚皮的白色内皮,粉碎后获得柚皮粉;然后加入水、碳源、菌种,经发酵获得粗多糖;
S2纯化:对粗多糖进行醇沉和脱蛋白处理之后,依次通过DEAE-52纤维素柱层析、G-100葡聚糖凝胶柱层析、G-75葡聚糖凝胶柱层析,获得柚皮多糖PPs-1Aa。
8.根据权利要求7所述的一种D-半乳糖醛酸聚糖同质果胶多糖的制备方法,其特征在于,在S1中,发酵条件为:料液比20.5mL/g、接种量为柚皮粉质量的10%、发酵时间62.5h、发酵温度41℃;碳源包括柚皮粉质量2%的脱脂乳粉和柚皮粉质量1.5%的白砂糖;所述菌种保加利亚乳杆菌和嗜热链球菌组成。
9.根据权利要求7所述的一种D-半乳糖醛酸聚糖同质果胶多糖的制备方法,其特征在于,在S2中,粗多糖经除蛋白和醇沉之后,获得纯化后混合多糖;将纯化后混合多糖上样于DEAE-52离子交换柱层析,再使用氯化钠溶液以1mL/min的流速洗脱并收集洗脱液,每10min收集一管,收集第0-20管的洗脱液,获得PPs-1;将PPs-1上样于G-100葡聚糖凝胶柱,再使用水以5mL/min的流速洗脱并收集洗脱液,每10min收集一管,收集第0-15管的洗脱液,获得PPs-1A;将PPs-1A上样于G-75葡聚糖凝胶柱,再使用水以5mL/min的流速洗脱并收集洗脱液,每10min收集一管,收集第11-20管的洗脱液,获得PPs-1Aa。
10.根据权利要求1-5中任一项所述的一种D-半乳糖醛酸聚糖同质果胶多糖在制备α-葡萄糖苷酶抑制或者治疗糖尿病的药物中的应用。
CN202310341844.1A 2023-03-31 2023-03-31 一种d-半乳糖醛酸聚糖同质果胶多糖及其制备方法和应用 Pending CN116334166A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310341844.1A CN116334166A (zh) 2023-03-31 2023-03-31 一种d-半乳糖醛酸聚糖同质果胶多糖及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310341844.1A CN116334166A (zh) 2023-03-31 2023-03-31 一种d-半乳糖醛酸聚糖同质果胶多糖及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN116334166A true CN116334166A (zh) 2023-06-27

Family

ID=86887633

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310341844.1A Pending CN116334166A (zh) 2023-03-31 2023-03-31 一种d-半乳糖醛酸聚糖同质果胶多糖及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN116334166A (zh)

Similar Documents

Publication Publication Date Title
CN109400734B (zh) 一种刺梨多糖及其制备方法与应用
CN111978421B (zh) 一种桑树桑黄多糖及其制备和用途
CN106117389B (zh) 从青稞谷粒中提取和纯化β-葡聚糖的方法
CN114591448B (zh) 一种桑树桑黄子实体甘露半乳聚糖及其制备和用途
CN111019008B (zh) 一种抗炎活性桑黄多糖shp及其制备方法
CN115746156B (zh) 一种具有免疫调节功能的枸杞多糖及其制备方法
Gao-Sheng et al. Accumulation of biomass and four triterpenoids in two-stage cultured Poria cocos mycelia and diuretic activity in rats
CN114751997B (zh) 一种具有抗炎活性的黄大茶多糖及其制备方法和应用、抗炎药物组合物
CN109295131B (zh) 一种石斛活性寡糖的受体定位固相酶解制备方法
CN113896807A (zh) 一种鲜地黄多糖及其制备方法和应用
CN115947876B (zh) β-D-半乳葡聚糖及其制备和用途
CN116334166A (zh) 一种d-半乳糖醛酸聚糖同质果胶多糖及其制备方法和应用
CN113861303B (zh) 一种从德氏乳杆菌和嗜热链球菌发酵酸奶中分离出的胞外多糖及其应用
CN116731217B (zh) 一种藤茶酸性多糖AGP-2a及其制备方法和在制备抗炎化妆品中的用途
CN116655820B (zh) 一种藤茶酸性多糖AGP-3a及其提取分离方法和在制备抗炎化妆品中的用途
WO2014173057A1 (zh) 一种槐耳多糖蛋白及其制备方法和用途
CN116003647B (zh) 菠萝蜜果皮多糖、制备方法及应用
CN115381012B (zh) 一种富含紫玉米花青素的饮料制备方法
CN116622001B (zh) 一种百年蔗红糖多糖及其制备、鉴定方法和应用
CN115232225B (zh) 一种熟地黄均一多糖及其制备方法和应用
CN108359701A (zh) 一种用酶解法从咖啡豆中制备甘露低聚糖的方法
CN106676144A (zh) 胀果甘草低聚糖及其制备方法
CN116925251A (zh) 一种具有免疫调节活性的紫娟茶多糖ztpw及其制备方法和应用
CN117384308A (zh) 一种基于桑黄菌发酵制备的三叶青多糖及其用途
CN118271475A (zh) 铁皮石斛花中新聚糖的制备及其调节肠道菌群的新应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination