CN116332641A - Yb-Sn共掺杂钛酸铋基铁电薄膜及其制备方法 - Google Patents

Yb-Sn共掺杂钛酸铋基铁电薄膜及其制备方法 Download PDF

Info

Publication number
CN116332641A
CN116332641A CN202310367800.6A CN202310367800A CN116332641A CN 116332641 A CN116332641 A CN 116332641A CN 202310367800 A CN202310367800 A CN 202310367800A CN 116332641 A CN116332641 A CN 116332641A
Authority
CN
China
Prior art keywords
film
ferroelectric
sol
bismuth
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310367800.6A
Other languages
English (en)
Other versions
CN116332641B (zh
Inventor
胡明振
农永萍
林成旭
王莉莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi Huaxi Group Co ltd
Original Assignee
Guangxi Huaxi Group Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi Huaxi Group Co ltd filed Critical Guangxi Huaxi Group Co ltd
Priority to CN202310367800.6A priority Critical patent/CN116332641B/zh
Publication of CN116332641A publication Critical patent/CN116332641A/zh
Application granted granted Critical
Publication of CN116332641B publication Critical patent/CN116332641B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/475Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on bismuth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

Yb‑Sn共掺杂钛酸铋基铁电薄膜,该铁电薄膜材料的化学式为Bi4‑xYbxTi3‑ySnyO12,其中0<x≤1,0<y≤0.15。其制备方法步骤为:配制溶胶→制备前驱膜→快速热处理→铁电薄膜;该方法以水合硝酸铋、硝酸锡、水合硝酸镱和钛酸正四丁酯为前驱物,以柠檬酸为溶剂,以EDTA为螯合剂配制前驱液,经旋转涂覆后经过快速热处理制得光滑致密的Bi4‑xYbxTi3‑ySnyO12薄膜。该薄膜与Bi4Ti3O12和Bi4‑xYbxTi3O12相比,显著提高了铁电剩余极化值和抗疲劳性能,该薄膜的制备工艺简单,无须昂贵的过渡金属有机盐,从而使其在非易失性铁电存储器领域具有广阔的应用前景。

Description

Yb-Sn共掺杂钛酸铋基铁电薄膜及其制备方法
技术领域
本发明涉及铁电存储和功能薄膜制备技术领域,具体是Yb-Sn共掺杂钛酸铋铁电薄膜及其制备方法。
背景技术
铁电随机读写存储器具有非挥发性、低功率消耗、高读写速度、高密度存储、抗辐射特点,是最具发展潜力的存储器之一,在计算机、航空航天和通讯电子等领域具有广泛应用前景。铁电薄膜是具有铁电性且厚度尺寸为纳米至微米级的薄膜,因其铁电极化反转电压低、与半导体集成电路工艺兼容性好等优点,成为人们关注热点。在铁电薄膜中,锆钛酸铅(Pb(Zr,Ti)O3)薄膜具有较大的铁电剩余极化值和较低的反转电压,目前已经获得商业化应用,然而一方面其在与金属电极构成的器件中抗疲劳性能较差,并且含有害金属元素Pb,因此在很大程度上限制了其应用范围。为了发明无铅、环保的铁电薄膜,抗疲劳性能优越的钽酸铋锶(SrBi2Ta2O9)被成功研制出来,但其缺点是铁电剩余极化值低,且制备温度高,不易与现存硅集成电路(CMOS或GaAs电路)兼容。《Nature》杂志曾报道一种La3+掺杂的钛酸铋(Bi4Ti3O12)铁电薄膜,其剩余极化值与Bi4Ti3O12相比有了明显的提高,而且La3+掺杂明显地提高了其抗疲劳性,随后有很多关于稀土元素掺杂钛酸铋铁电薄膜的报道,包括Yb3+、Pr3+、Eu3+等三价稀土离子掺杂或这些稀土离子与过渡金属离子如Nb5+、W6+和Mo6+共掺杂的钛酸铋铁电薄膜,与未掺杂的钛酸铋铁电薄膜相比,铁电性能均有所提高。中国专利CN202210562469.9公布了一种钛酸铋系列铁电薄膜的制备方法,通过稀土元素和过渡金属元素共掺杂制备铁电薄膜的方法,尽管其采用的方法也为溶胶-凝胶法,采用过渡金属共掺杂,烧结温度在750-850℃之间,未给出表征材料铁电性最重要的铁电电滞回线图,在铁电疲劳测试中可逆铁电剩余极化值很低,2Pr不到10μC/cm2,因此该技术还有很大的工艺改进和提升空间。
发明内容
本发明提出一种Yb-Sn共掺杂的钛酸铋基薄膜,在国内外首次报道Sn在提高钛酸铋基铁电薄膜铁电性方面的应用。一方面,用Sn替代Nb、W和Mo等稀有金属离子在铁电材料中应用具有很好的成本优势。另一方面,以硝酸锡替代价格昂贵的过渡金属有机盐作为前驱物,更好地发挥了溶胶-凝胶法在降低铁电薄膜制备成本方面的优势。总之,通过本发明提出的Yb-Sn共掺杂的钛酸铋基薄膜及其制备方法,使钛酸铋薄膜的铁电剩余极化强度显著提高,使薄膜抗疲劳性明显增强。
本发明第一个目的在于提供一种具有优异性能的铁电薄膜,其具有很高的铁电剩余极化强度和优良的抗疲劳性能。
本发明第二个目的在于提供这种铁电薄膜的制备方法。
本发明通过如下技术方案实现上述目的:提供一种Yb-Sn共掺杂的钛酸铋基铁电薄膜,其分子式为Bi4-xYbxTi3-ySnyO12,其中0<x≤1,0<y≤0.15。
所述的Bi4-xYbxTi3-ySnyO12铁电薄膜的制备方法,该方法为化学溶液沉积法,具体制备步骤如下:
(1)溶胶的配制:根据分子式Bi4-xYbxTi3-ySnyO12,按摩尔比为五水合硝酸铋(Bi(NO3)3·5H2O):五水硝酸镱(Yb(NO3)3·5H2O):钛酸正四丁酯(C16H36O4Ti):硝酸锡(Sn(NO3)4)=4-x:x:3-y:y称取各原料组分,将称量得到的五水合硝酸铋和五水硝酸镱加入溶剂柠檬酸中,柠檬酸的加入量与配制的溶胶体积近似相等,搅拌并加热至40~60℃,保温20~40min后,降至室温;然后加入上述称量得到的钛酸正四丁酯;再加入EDTA,EDTA加入量为钛酸正四丁酯摩尔数的0.5~1倍,室温搅拌30~60min,即得到Bi4-xYbxTi3-ySnyO12溶胶;该溶胶经过酸性滤纸过滤后,放置在密封瓶中常温环境下静置12-24h,以备后序使用;
(2)将步骤(1)所得的溶胶旋转涂覆在基片上,旋转涂覆速度为3000~5000r/min,旋转涂覆时间为10~30s,每涂覆1层,烘烤1~5min,以除去膜中残余溶剂并分解部分有机物;如此重复3~5次,获得所需厚度的前驱膜;
(3)将步骤(2)所得的前驱膜进行快速热处理,所述热处理是在空气中将步骤(2)制备的前驱膜放入已升温至650~750℃的马弗炉中,再恒温5~15min,随炉冷却至室温,制得Bi4-xYbxTi3-ySnyO12铁电薄膜。
步骤(1)所述的五水合硝酸铋在化学计量摩尔比基础上过量10~15%。
步骤(1)所述按Bi4-xYbxTi3-ySnyO12的分子浓度计算,溶胶的浓度为0.06~0.2mol/L;各原料组分和混合溶剂的用量根据配制前驱液所需总量和选用的前驱液最终浓度计算。
步骤(2)所述基片为Pt/Ti/SiO2/Si(111)。
与现有技术相比,本发明的突出优点在于:
1.本发明的Bi4-xYbxTi3-ySnyO12铁电薄膜与Bi4Ti3O12或Bi4-xYbxTi3O12薄膜相比,不仅具有很高的铁电剩余极化强度,而且具有良好的抗疲劳性。
2.通过高温快速热处理获得的铁电薄膜,热处理时间短、生产效率高,产品具有优良的化学稳定性和热稳定性。
3.采用溶胶-凝胶法制备的铁电薄膜具有易于控制材料组分、操作方便、易于大规模生产的优点。
4.Bi4-xYbxTi3-ySnyO12铁电薄膜不使用过渡金属元素掺杂,原材料成本低,在非易失性存储器领域具有重要的潜在应用价值。
附图说明
图1为通过实施例1的方法制备的Bi3.25Yb0.75Ti2.9Sn0.1O12薄膜的X射线衍射图。
X轴为扫面角度(2θ),单位为度;Y轴为衍射强度,无单位。此图显示制备的Bi3.25Yb0.75Ti2.9Sn0.1O12薄膜结晶状况良好,所有衍射峰均对应Bi4Ti3O12相的衍射峰,说明Yb3+和Sn4+能够很好地进入钛酸铋晶格之中,薄膜物相结构单一,没有杂相存在。其它实施例与对比例制备的样品XRD图与此图相似,薄膜为单一的Bi4Ti3O12相。
图2为通过实施例1的方法制备的Bi3.25Yb0.75Ti2.9Sn0.1O12薄膜的极化强度(P)随电场强度(E)的变化曲线图。
X轴为电场强度,单位为kV/cm;Y轴为薄膜的极化强度,单位为μC/cm2。图中显示一条优美的铁电回线,回线与Y轴正半轴交点和负半轴下交点之间的距离为铁电剩余极化强度值(2Pr)。该薄膜具有很高的铁电剩余极化强度,2Pr高达110μC/cm2。回线与X轴交点到原点的距离为矫顽场强(Ec),其值约为228kV/cm。其它实施例制备的样品的电滞回线与此图相似,薄膜的2Pr值一般在100-110μC/cm2之间,Ec值一般在200-250kV/cm之间。
图3为通过实施例1的方法制备的Bi3.25Yb0.75Ti2.9Sn0.1O12薄膜可逆剩余极化强度与线性非可逆剩余极化强度随循环次数的变化曲线图。
X轴为循环次数,无单位;Y轴为极化强度,单位为μC/cm2;图中显示随着循环次数的增加,薄膜的可逆剩余极化强度随循环次数增加有所降低,但降低幅度很小,当循环次数达到100万次时,其可逆剩余极化强度仅降低3%;当循环次数达到1亿次时,其可逆剩余极化强度仅降低13.6%,说明薄膜的抗疲劳性能很好,在考察的循环测试范围内(~100亿次),疲劳现象不严重。由于薄膜抗疲劳性测试周期需要很长时间,因此并未对所有实施例中制备的样品进行该项测试,经抽样测试结果显示薄膜抗疲劳性能均很好,当循环次数达到1亿次时,其可逆剩余极化强度降低幅度不超过15%。
图4为通过实施对比例1和实施对比例2方法制备的Bi4Ti3O12薄膜(既未掺杂Yb元素又未掺杂Sn元素)和Bi3.25Yb0.75Ti3O12薄膜(仅掺杂Yb元素而未掺杂Sn元素)的极化强度(P)随电场强度(E)的变化曲线图。
这些薄膜除了成分与实施例2中存在差别以外,其他制备工艺与实施例2完全相同。该图X轴为电场强度,单位为kV/cm;Y轴为铁电薄膜的极化强度,单位为μC/cm2。由此图可以看出,未掺杂Yb、Sn元素的Bi4Ti3O12薄膜铁电剩余极化值很小,2Pr值仅有15μC/cm2,然而掺杂Yb元素但未掺杂Sn元素的Bi3.25Yb0.75Ti3O12薄膜的铁电剩余极化值有明显的提高,但2Pr值仍然仅有30.7μC/cm2,与图2所示的Bi3.25Yb0.75Ti2.95Sn0.05O12薄膜的2Pr值相比差异仍然很大。
图5为通过实施对比例1和实施对比例2方法制备的Bi4Ti3O12薄膜和Bi3.25Yb0.75Ti3O12薄膜的可逆剩余极化强度与线性非可逆剩余极化强度随循环次数的变化曲线图。
X轴为循环次数,无单位;Y轴为极化强度,单位为μC/cm2;由此图可以看出,未掺杂Yb、Sn元素的Bi4Ti3O12薄膜抗疲劳性能很差,经过100万次电压偏转之后,铁电剩余极化强度降低了近10%,而经过一亿次循环周期后,铁电剩余极化强度几乎完全消失。然而掺杂Yb元素的Bi3.25Yb0.75Ti3O12薄膜的抗疲劳性能有了明显的提高,在经过100万次循环周期之后,铁电剩余极化强度降低了约7.6%,而经过一亿次循环周期后,铁电剩余极化强度仍保持原来的70%以上。然而,与本申请发明的Bi3.25Yb0.75Ti2.95Sn0.05O12薄膜的抗疲劳性相比差异仍然很大。
具体实施方式
下面结合具体实例对本发明的技术方案做进一步描述,但具体实例并不对本发明做任何限定。
实施例1
本实施例为本发明所述的Bi4-xYbxTi3-ySnyO12铁电薄膜的制备方法的一个实例,以Bi3.25Yb0.75Ti2.9Sn0.1O12薄膜为例,其制备步骤如下:
(1)前驱液的配制:根据分子式Bi3.25Yb0.75Ti2.9Sn0.1O12,按摩尔比为五水合硝酸铋(Bi(NO3)3·5H2O):五水合硝酸镱(Yb(NO3)3·5H2O):硝酸锡(Sn(NO3)4):钛酸正四丁酯=3.25:0.75:2.9:0.1称取各原料组分,将称量的5.255g的五水合硝酸铋、1.123g的五水合硝酸镱、0.122g硝酸锡加入30ml柠檬酸中,搅拌并加热至50℃,保温30min后,降至室温;然后加入2.992g钛酸正四丁酯;再加入1.793ml的EDTA,室温搅拌30min,即得到摩尔浓度为0.1mol/L的Bi3.15Yb0.85Ti2.9Sn0.1O12溶胶。该溶胶经过酸性滤纸过滤后,放置在密封瓶中常温环境下静置16h后待用。
(2)将上述溶胶旋转涂覆于Pt/Ti/SiO2/Si(111)基片上,以3500r/min旋转涂覆20s,每涂覆1层,放在烤胶台上烘烤5min,以除去膜中残余溶剂并分解部分有机物;如此重复5次,得到Bi3.25Yb0.75Ti2.9Sn0.1O12前驱膜;
(3)将上述前驱膜置于电阻炉中,在空气中进行快速热处理。为防止在温度较低时生成Yb、Sn中间氧化物相,热处理时采用快速热处理,即首先将马弗炉升温到700℃后,再将前驱膜放入炉膛中央,保温10min后随炉冷却至室温,制备得到Bi3.25Yb0.75Ti2.9Sn0.1O12铁电薄膜。
该薄膜具有很高的铁电剩余极化强度,2Pr高达110μC/cm2,矫顽场强(Ec)约为150kV/cm,当循环次数达到100万次时,其可逆剩余极化强度仅降低了3%,当循环次数达到1亿次,可逆剩余极化强度仅降低了13.7%。该薄膜的物相结构、铁电电滞回线以及抗疲劳性能分别见图1至图3所示。
实施例2
本实施例为本发明所述的Bi4-xYbxTi3-ySnyO12铁电薄膜的制备方法的另一个实例以Bi3.25Yb0.75Ti2.95Sn0.05O12薄膜为例,其制备步骤如下:
(1)前驱液的配制:根据分子式Bi3.25Yb0.75Ti2.95Sn0.05O12,按摩尔比为五水合硝酸铋:五水合硝酸镱:硝酸锡:钛酸正四丁酯=3.25:0.75:2.95:0.05称取各原料组分,将称量的5.255g的五水合硝酸铋、1.123g的五水合硝酸镱、0.061g硝酸锡加入30ml柠檬酸中,搅拌并加热至50℃,保温30min后,降至室温;然后加入3.044g钛酸正四丁酯;再加入1.793ml的EDTA,室温搅拌30min,即得到摩尔浓度为0.1mol/L的Bi3.25Yb0.75Ti2.95Sn0.05O12溶胶。该溶胶经过酸性滤纸过滤后,放置在密封瓶中常温环境下静置16h后待用。
(2)将上述溶胶旋转涂覆于Pt/Ti/SiO2/Si(111)基片上,以4000r/min旋转涂覆20s,每涂覆1层,放在烤胶台上烘烤5min,以除去膜中残余溶剂并分解部分有机物;如此重复5次,得到Bi3.25Yb0.75Ti2.95Sn0.05O12前驱膜;
(3)将上述前驱膜置于电阻炉中,在空气中进行快速热处理。为防止在温度较低时生成Yb、Sn中间氧化物相,热处理时采用快速热处理,即首先将马弗炉升温到700℃后,再将前驱膜放入炉膛中央,保温15min后随炉冷却至室温,制备得到Bi3.25Yb0.75Ti2.95Sn0.05O12铁电薄膜。
该薄膜具有很高的铁电剩余极化强度,2Pr高达104μC/cm2,矫顽场强(Ec)约为105kV/cm,薄膜的抗疲劳性很好,当循环次数达到100万次时,其可逆剩余极化强度仅降低1.8%;当循环次数达到1亿次时,其可逆剩余极化强度仅降低2.3%。
实施例3
本实施例为本发明所述的Bi4-xYbxTi3-ySnyO12铁电薄膜的制备方法的再一个实例,以Bi3.25Yb0.75Ti2.98Sn0.02O12薄膜为例,其制备步骤如下:
(1)前驱液的配制:根据分子式Bi3.25Yb0.75Ti2.98Sn0.02O12,按摩尔比为五水合硝酸铋:五水合硝酸镱:硝酸锡:钛酸正四丁酯=3.25:0.75:2.98:0.02称取各原料组分,将称量的5.255g的五水合硝酸铋、1.123g的五水合硝酸镱、0.024g硝酸锡加入30ml柠檬酸中,搅拌并加热至50℃,保温30min后,降至室温;然后加入3.075g钛酸正四丁酯;再加入1.793ml的EDTA,室温搅拌30min,即得到摩尔浓度为0.1mol/L的Bi3.25Yb0.75Ti2.98Sn0.02O12溶胶。该溶胶经过酸性滤纸过滤后,放置在密封瓶中常温环境下静置16h后待用。
(2)将上述溶胶旋转涂覆于Pt/Ti/SiO2/Si(111)基片上,以4000r/min旋转涂覆20s,每涂覆1层,放在烤胶台上烘烤5min,以除去膜中残余溶剂并分解部分有机物;如此重复5次,得到Bi3.25Yb0.75Ti2.98Sn0.02O12前驱膜;
(3)将上述前驱膜置于电阻炉中,在空气中进行快速热处理。为防止在温度较低时生成Yb、Sn中间氧化物相,热处理时采用快速热处理,即首先将马弗炉升温到700℃后,再将前驱膜放入炉膛中央,保温10min后随炉冷却至室温,制备得到Bi3.25Yb0.75Ti2.98Sn0.02O12铁电薄膜。
该薄膜具有很高的铁电剩余极化强度,2Pr高达101μC/cm2,矫顽场强(Ec)约为102kV/cm,当循环次数达到100万次时,其可逆剩余极化强度仅降低2.7%。
实施例4
本实施例为本发明所述的Bi4-xYbxTi3-ySnyO12铁电薄膜的制备方法的又一个实例,以Bi3.55Yb0.45Ti2.98Sn0.02O12薄膜为例,其制备步骤如下:
(1)前驱液的配制:根据分子式Bi3.55Yb0.45Ti2.98Sn0.02O12,按摩尔比为五水合硝酸铋:五水合硝酸镱:硝酸锡:钛酸正四丁酯=3.55:0.45:2.98:0.02称取各原料组分,将称量的5.740g的五水合硝酸铋、0.674g的五水合硝酸镱、0.024g硝酸锡加入30ml柠檬酸中,搅拌并加热至50℃,保温30min后,降至室温;然后加入3.075g钛酸正四丁酯;再加入1.793ml的EDTA,室温搅拌30min,即得到摩尔浓度为0.1mol/L的Bi3.55Yb0.45Ti2.98Sn0.02O12溶胶。该溶胶经过酸性滤纸过滤后,放置在密封瓶中常温环境下静置16h后待用。
(2)将上述溶胶旋转涂覆于Pt/Ti/SiO2/Si(111)基片上,以4000r/min旋转涂覆20s,每涂覆1层,放在烤胶台上烘烤5min,以除去膜中残余溶剂并分解部分有机物;如此重复5次,得到Bi3.55Yb0.45Ti2.98Sn0.02O12前驱膜;
(3)将上述前驱膜置于电阻炉中,在空气中进行快速热处理。为防止在温度较低时生成Yb、Sn中间氧化物相,热处理时采用快速热处理,即首先将马弗炉升温到700℃后,再将前驱膜放入炉膛中央,保温10min后随炉冷却至室温,制备得到Bi3.55Yb0.45Ti2.98Sn0.02O12铁电薄膜。
该薄膜具有很高的铁电剩余极化强度,2Pr高达108μC/cm2,矫顽场强(Ec)约为124kV/cm,当循环次数达到100万次时,其可逆剩余极化强度仅降低2.9%。
实施例5
本实施例与实施例2均以Bi3.25Yb0.75Ti2.95Sn0.05O12薄膜为例,但其制备工艺存在差别,具体步骤如下:
(1)前驱液的配制:根据分子式Bi3.25Yb0.75Ti2.95Sn0.05O12,按摩尔比为五水合硝酸铋:五水合硝酸镱:硝酸锡:钛酸正四丁酯=3.25:0.75:2.95:0.05称取各原料组分,将称量的7.883g的五水合硝酸铋、1.685g的五水合硝酸镱、0.092g硝酸锡加入30ml柠檬酸中,搅拌并加热至50℃,保温30min后,降至室温;然后加入4.566g钛酸正四丁酯;再加入3.653ml的EDTA,室温搅拌30min,即得到摩尔浓度为0.15mol/L的Bi3.25Yb0.75Ti2.95Sn0.05O12溶胶。该溶胶经过酸性滤纸过滤后,放置在密封瓶中常温环境下静置16h后待用。
(2)将上述溶胶旋转涂覆于Pt/Ti/SiO2/Si(111)基片上,以4000r/min旋转涂覆20s,每涂覆1层,放在烤胶台上烘烤5min,以除去膜中残余溶剂并分解部分有机物;如此重复4次,得到Bi3.25Yb0.75Ti2.95Sn0.05O12前驱膜;
(3)将上述前驱膜置于电阻炉中,在空气中进行快速热处理。为防止在温度较低时生成Yb、Sn中间氧化物相,热处理时采用快速热处理,即首先将马弗炉升温到750℃后,再将前驱膜放入炉膛中央,保温15min后随炉冷却至室温,制备得到Bi3.25Yb0.75Ti2.95Sn0.05O12铁电薄膜。
该薄膜具有很高的铁电剩余极化强度,2Pr高达107μC/cm2,矫顽场强(Ec)约为116kV/cm,当循环次数达到100万次时,其可逆剩余极化强度仅降低2.4%。
实施例6
本实施例与实施例4相同,均以Bi3.55Yb0.45Ti2.98Sn0.02O12薄膜为例,然而制备工艺存在差别,具体制备步骤如下:
(1)前驱液的配制:根据分子式Bi3.55Yb0.45Ti2.98Sn0.02O12,按摩尔比为五水合硝酸铋:五水合硝酸镱:硝酸锡:钛酸正四丁酯=3.55:0.45:2.98:0.02称取各原料组分,将称量的8.610g的五水合硝酸铋、1.011g的五水合硝酸镱、0.036g硝酸锡加入30ml柠檬酸中,搅拌并加热至50℃,保温30min后,降至室温;然后加入4.613g钛酸正四丁酯;再加入3.653ml的EDTA,室温搅拌30min,即得到摩尔浓度为0.15mol/L的Bi3.55Yb0.45Ti2.98Sn0.02O12溶胶。该溶胶经过酸性滤纸过滤后,放置在密封瓶中常温环境下静置16h后待用。
(2)将上述溶胶旋转涂覆于Pt/Ti/SiO2/Si(111)基片上,以4000r/min旋转涂覆20s,每涂覆1层,放在烤胶台上烘烤5min,以除去膜中残余溶剂并分解部分有机物;如此重复4次,得到Bi3.55Yb0.45Ti2.98Sn0.02O12前驱膜;
(3)将上述前驱膜置于电阻炉中,在空气中进行快速热处理。为防止在温度较低时生成Yb、Sn中间氧化物相,热处理时采用快速热处理,即首先将马弗炉升温到750℃后,再将前驱膜放入炉膛中央,保温15min后随炉冷却至室温,制备得到Bi3.55Yb0.45Ti2.98Sn0.02O12铁电薄膜。
该薄膜具有很高的铁电剩余极化强度,2Pr高达104μC/cm2,矫顽场强(Ec)约为109kV/cm,当循环次数达到100万次时,其可逆剩余极化强度仅降低2.2%。
对比例1
本实施例以未掺杂Yb和Sn元素的Bi4Ti3O12薄膜为例,其制备步骤如下:
(1)前驱液的配制:根据分子式Bi4Ti3O12,按摩尔比为五水合硝酸铋:钛酸正四丁酯=4:3称取各原料组分,将称量的6.467g的五水合硝酸铋加入30ml柠檬酸中,搅拌并加热至50℃,保温30min后,降至室温;然后加入3.096g钛酸正四丁酯;再加入1.793ml的EDTA,室温搅拌30min,即得到摩尔浓度为0.1mol/L的Bi4Ti3O12溶胶。该溶胶经过酸性滤纸过滤后,放置在密封瓶中常温环境下静置16h后待用。
其余步骤与实施例1完全相同。
该薄膜具有很低的铁电剩余极化强度,2Pr仅为15μC/cm2,矫顽场强(Ec)却高达520kV/cm,薄膜的抗疲劳性差,当循环次数达到100万次时,剩余极化强度降低了16.8%,而循环次数达到1亿次时,其可逆剩余极化强度几乎完全消失该薄膜的铁电电滞回线和抗疲劳性能分别见图4、图5所示。
对比例2
本实施例以未掺杂Sn元素的Bi3.25Yb0.75Ti3O12薄膜为例,其制备步骤如下:
(1)前驱液的配制:根据分子式Bi3.25Yb0.75Ti3O12,按摩尔比为五水合硝酸铋:五水合硝酸镱:钛酸正四丁酯=3.25:0.75:3称取各原料组分,将称量的5.255g的五水合硝酸铋、1.123g的五水合硝酸镱加入30ml柠檬酸中,搅拌并加热至50℃,保温30min后,降至室温;然后加入3.044g钛酸正四丁酯;再加入1.793ml的EDTA,室温搅拌30min,即得到摩尔浓度为0.1mol/L的Bi3.25Yb0.75Ti3O12溶胶。该溶胶经过酸性滤纸过滤后,放置在密封瓶中常温环境下静置16h后待用。
其余步骤与实施例1完全相同。
该薄膜具有的铁电性能明显高于对比例1中制备的Bi4Ti3O12,但也明显低于实施例1中制备的Bi3.25Yb0.75Ti2.95Sn0.05O12薄膜。其2Pr值约为30.7μC/cm2,矫顽场强(Ec)约为150kV/cm,薄膜具有中等的抗疲劳性能,当循环次数达到100万次时,剩余极化强度降低了7.2%,循环次数达1亿次时,其可逆剩余极化强度降低幅度不超过原来的30%。该薄膜的铁电电滞回线和抗疲劳性能分别如图4和图5所示。
为了便于比较,将上述实施例和对比例中主要工艺参数和性能参数统计于表1中,具体如下:
表1.各实施例和对比例的主要工艺参数与性能参数比较
Figure BDA0004167498220000091
Figure BDA0004167498220000101
从实施例1-6可以看出,在实验考察的工艺参数范围内,Yb-Sn共掺杂的Bi4- xYbxTi3-ySnyO12(0<x≤1,0<y≤0.15)薄膜的铁电剩余极化强度(2Pr)均在100μC/cm2以上,而矫顽场强(Ec)却不超过150kV/cm,百万次循环后极化强度降低幅度不超过原来的3%,这种高剩余极化强度、低矫顽场强和优良稳定性的铁电材料显示出该系列薄膜具有优良的铁电性能。将这些实施例与对比例(R1和R2)相比较,充分说明了Yb-Sn共掺杂对钛酸铋薄膜铁电性能提高具有显著的作用。

Claims (5)

1.Yb-Sn共掺杂的钛酸铋基铁电薄膜,其特征在于,其分子式为Bi4-xYbxTi3-ySnyO12,其中0<x≤1,0<y≤0.15。
2.权利要求1所述的Yb-Sn共掺杂的钛酸铋基铁电薄膜的制备方法,该方法为化学溶液沉积法,其特征在于,具体制备步骤如下:
(1)溶胶的配制:根据分子式Bi4-xYbxTi3-ySnyO12,按摩尔比为五水合硝酸铋(Bi(NO3)3·5H2O):五水硝酸镱(Yb(NO3)3·5H2O):钛酸正四丁酯(C16H36O4Ti):硝酸锡(Sn(NO3)4)=4-x:x:3-y:y称取各原料组分,将称量得到的五水合硝酸铋和五水硝酸镱加入溶剂柠檬酸中,柠檬酸的加入量与配制的溶胶体积近似相等,搅拌并加热至40~60℃,保温20~40min后,降至室温;然后加入上述称量得到的钛酸正四丁酯;再加入EDTA,EDTA加入量为钛酸正四丁酯摩尔数的0.5~1倍,室温搅拌30~60min,即得到Bi4-xYbxTi3-ySnyO12溶胶;该溶胶经过酸性滤纸过滤后,放置在密封瓶中常温环境下静置12-24h,以备后序使用;
(2)将步骤(1)所得的溶胶旋转涂覆在基片上,旋转涂覆速度为3000~5000r/min,旋转涂覆时间为10~30s,每涂覆1层,烘烤1~5min,以除去膜中残余溶剂并分解部分有机物;如此重复3~5次,获得所需厚度的前驱膜;
(3)将步骤(2)所得的前驱膜进行快速热处理,所述热处理是在空气中将步骤(2)制备的前驱膜放入已升温至650~750℃的马弗炉中,再恒温5~15min,随炉冷却至室温,制得Bi4-xYbxTi3-ySnyO12铁电薄膜。
3.根据权利要求2所述的Yb-Sn共掺杂的钛酸铋基铁电薄膜的制备方法,其特征在于,步骤(1)所述的五水合硝酸铋在化学计量摩尔比基础上过量10~15%。
4.根据权利要求2所述的Yb-Sn共掺杂的钛酸铋基铁电薄膜的制备方法,其特征在于,步骤(1)所述按Bi4-xYbxTi3-ySnyO12的分子浓度计算,溶胶的浓度为0.06~0.2mol/L;各原料组分和混合溶剂的用量根据配制前驱液所需总量和选用的前驱液最终浓度计算。
5.根据权利要求2所述的Yb-Sn共掺杂的钛酸铋基铁电薄膜的制备方法,其特征在于,步骤(2)所述基片为Pt/Ti/SiO2/Si(111)。
CN202310367800.6A 2023-04-07 2023-04-07 Yb-Sn共掺杂钛酸铋基铁电薄膜及其制备方法 Active CN116332641B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310367800.6A CN116332641B (zh) 2023-04-07 2023-04-07 Yb-Sn共掺杂钛酸铋基铁电薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310367800.6A CN116332641B (zh) 2023-04-07 2023-04-07 Yb-Sn共掺杂钛酸铋基铁电薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN116332641A true CN116332641A (zh) 2023-06-27
CN116332641B CN116332641B (zh) 2024-04-12

Family

ID=86889326

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310367800.6A Active CN116332641B (zh) 2023-04-07 2023-04-07 Yb-Sn共掺杂钛酸铋基铁电薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN116332641B (zh)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB860019A (en) * 1956-08-14 1961-02-01 British Ceramic Res Ass Improvements relating to titanate materials suitable for dielectrics in ceramic capac
WO2001077501A2 (en) * 2000-04-11 2001-10-18 Massachusetts Institute Of Technology Electromechanical actuators
US20020153543A1 (en) * 1998-09-29 2002-10-24 Takeshi Kijima Method for manufacturing oxide ferroelectric thin film oxide ferroelectric thin film and oxide ferroelectric thin film element
KR20050009777A (ko) * 2003-07-16 2005-01-26 심일운 유로피엄을 함유한 티탄산 비스무스 강유전 물질
JP2005255468A (ja) * 2004-03-11 2005-09-22 Tokyo Ohka Kogyo Co Ltd 常誘電性あるいは強誘電性のBi系誘電体薄膜形成用塗布液、およびBi系誘電体薄膜
WO2008143160A1 (ja) * 2007-05-16 2008-11-27 National Institute Of Advanced Industrial Science And Technology 圧電セラミックス及びこれを用いた圧電・誘電・焦電素子
CN101318816A (zh) * 2008-07-10 2008-12-10 中国计量学院 钛酸铋镧(blt)铁电薄膜的低温制备方法
CN101337772A (zh) * 2008-08-15 2009-01-07 中山大学 透明稀土掺杂钛酸铋发光铁电薄膜及其制备方法
CN104538176A (zh) * 2014-12-05 2015-04-22 黑龙江省科学院高技术研究院 一种利用高压晶化钛酸铋系铁电薄膜的方法
CN106278252A (zh) * 2016-08-09 2017-01-04 陕西科技大学 一种钛酸铋Bi4‑XPrXTi3‑XCoXO12陶瓷材料及其制备方法
CN111039672A (zh) * 2020-01-08 2020-04-21 陕西科技大学 一种高功率密度的Sn掺杂高熵钙钛矿氧化物陶瓷材料及其制备方法
WO2021077006A1 (en) * 2019-10-18 2021-04-22 The University Of North Carolina At Chapel Hill Membrane-perovskite films, devices, and methods of preparation
WO2022032584A1 (zh) * 2020-08-13 2022-02-17 深圳先进技术研究院 固溶体多铁薄膜、制备方法及应用于5g存储技术的电子器件
CN114883480A (zh) * 2022-05-23 2022-08-09 北京理工大学 一种钛酸铋系列铁电薄膜的制备方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB860019A (en) * 1956-08-14 1961-02-01 British Ceramic Res Ass Improvements relating to titanate materials suitable for dielectrics in ceramic capac
US20020153543A1 (en) * 1998-09-29 2002-10-24 Takeshi Kijima Method for manufacturing oxide ferroelectric thin film oxide ferroelectric thin film and oxide ferroelectric thin film element
WO2001077501A2 (en) * 2000-04-11 2001-10-18 Massachusetts Institute Of Technology Electromechanical actuators
KR20050009777A (ko) * 2003-07-16 2005-01-26 심일운 유로피엄을 함유한 티탄산 비스무스 강유전 물질
JP2005255468A (ja) * 2004-03-11 2005-09-22 Tokyo Ohka Kogyo Co Ltd 常誘電性あるいは強誘電性のBi系誘電体薄膜形成用塗布液、およびBi系誘電体薄膜
WO2008143160A1 (ja) * 2007-05-16 2008-11-27 National Institute Of Advanced Industrial Science And Technology 圧電セラミックス及びこれを用いた圧電・誘電・焦電素子
CN101318816A (zh) * 2008-07-10 2008-12-10 中国计量学院 钛酸铋镧(blt)铁电薄膜的低温制备方法
CN101337772A (zh) * 2008-08-15 2009-01-07 中山大学 透明稀土掺杂钛酸铋发光铁电薄膜及其制备方法
CN104538176A (zh) * 2014-12-05 2015-04-22 黑龙江省科学院高技术研究院 一种利用高压晶化钛酸铋系铁电薄膜的方法
CN106278252A (zh) * 2016-08-09 2017-01-04 陕西科技大学 一种钛酸铋Bi4‑XPrXTi3‑XCoXO12陶瓷材料及其制备方法
WO2021077006A1 (en) * 2019-10-18 2021-04-22 The University Of North Carolina At Chapel Hill Membrane-perovskite films, devices, and methods of preparation
CN111039672A (zh) * 2020-01-08 2020-04-21 陕西科技大学 一种高功率密度的Sn掺杂高熵钙钛矿氧化物陶瓷材料及其制备方法
WO2022032584A1 (zh) * 2020-08-13 2022-02-17 深圳先进技术研究院 固溶体多铁薄膜、制备方法及应用于5g存储技术的电子器件
CN114883480A (zh) * 2022-05-23 2022-08-09 北京理工大学 一种钛酸铋系列铁电薄膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
袁懋: "《水和废水无机及综合指标监测分析方法》", 中国环境出版集团, pages: 409 *

Also Published As

Publication number Publication date
CN116332641B (zh) 2024-04-12

Similar Documents

Publication Publication Date Title
Luo et al. Lead‐free Ag1− 3xLaxNbO3 antiferroelectric ceramics with high‐energy storage density and efficiency
Pan et al. BiFeO 3–SrTiO 3 thin film as a new lead-free relaxor-ferroelectric capacitor with ultrahigh energy storage performance
Li et al. Review of lead-free Bi-based dielectric ceramics for energy-storage applications
Wang et al. The structure and electrical properties of Ca0. 6 (Li0. 5Bi0. 5‐xPrx) 0.4 Bi2Nb2O9 high‐temperature piezoelectric ceramics
Park et al. Structural and dielectric properties of PLZT ceramics modified with lanthanide ions
Chen et al. The effect of excess bismuth on the ferroelectric properties of SrBi2Ta2O9 thin films
Mao et al. Effect of Lu doping on the structure, electrical properties and energy storage performance of AgNbO 3 antiferroelectric ceramics
Wei et al. Chemical solution deposition of ferroelectric Sr: HfO2 film from inorganic salt precursors
Bin et al. Ultrahigh energy storage performance of flexible BMT‐Based thin film capacitors
CN108395245B (zh) 高储能密度的钛酸铋钠基电介质薄膜及其制备方法和应用
Wang et al. Influence of acceptor–donor codoping on the structure, electrical properties, and hardness of CaBi2Nb2O9-based ceramics
Luo et al. Greatly improved piezoelectricity and thermal stability of (Na, Sm) Co-doped CaBi2Nb2O9 ceramics
CN116332641B (zh) Yb-Sn共掺杂钛酸铋基铁电薄膜及其制备方法
CN116283276B (zh) La-Sn共掺杂钛酸铋基铁电薄膜及其制备方法
Choi et al. Effects of donor ion doping on the orientation and ferroelectric properties of bismuth titanate thin films
Chen et al. Insight into the ultrahigh electric performance of aurivillius CBTa-CBN solid solution
CN105870123B (zh) 一种钨钛酸铋铁电薄膜的制备方法
Kumar et al. Relaxor ferroelectric behavior and structural aspects of SrNaBi2Nb3O12 ceramics
Wang et al. Structure and ferroelectric behavior of Cu-doped PbTiO3 thin film deposited on FTO by sol-gel technique
WO2022032584A1 (zh) 固溶体多铁薄膜、制备方法及应用于5g存储技术的电子器件
CN114914087A (zh) 一种高储能特性的钛酸铋钠-锆钛酸钡电介质薄膜及其制备方法与应用
CN106517814B (zh) 一种(012)晶面择优取向的Bi1-xYbxFe0.98Mn0.02O3铁电薄膜及其制备方法
Shi et al. The effects of sintering atmospheres on piezoelectric performances of Co‐doped Ba0. 88Ca0. 12Zr0. 12Ti0. 88O3 ceramics
Kim et al. Ferroelectric Properties of Tungsten-Substituted Bi4Ti3O12 Thin Film Prepared by Sol–Gel Method
Seo et al. Hydrogen-induced degradation in ferroelectric Bi3. 25La0. 75Ti3O12

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant