CN116314335A - 一种沟槽型mosfet器件的制造方法 - Google Patents

一种沟槽型mosfet器件的制造方法 Download PDF

Info

Publication number
CN116314335A
CN116314335A CN202310359924.XA CN202310359924A CN116314335A CN 116314335 A CN116314335 A CN 116314335A CN 202310359924 A CN202310359924 A CN 202310359924A CN 116314335 A CN116314335 A CN 116314335A
Authority
CN
China
Prior art keywords
region
groove
source
insulating film
epitaxial layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310359924.XA
Other languages
English (en)
Inventor
余恒文
鈴木健之
李旻姝
郑英豪
牛连瑞
洪吉文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Cuijin Semiconductor Co ltd
Original Assignee
Zhejiang Cuijin Semiconductor Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Cuijin Semiconductor Co ltd filed Critical Zhejiang Cuijin Semiconductor Co ltd
Priority to CN202310359924.XA priority Critical patent/CN116314335A/zh
Publication of CN116314335A publication Critical patent/CN116314335A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1037Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure and non-planar channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明公开了一种沟槽型MOSFET器件的制造方法,属于半导体器件技术领域。N型半导体基底上形成低浓度N‑外延层;在外延层上形成P型区;P型区之上是源区,贯穿源区至P型区的内部形成沟槽,沟槽以及底面不到达外延层;在沟槽底面形成N型区,在沟槽侧壁以及沟槽底表面上生长绝缘薄膜,绝缘薄膜上是多晶硅膜制成的栅电极,栅电极上是层间绝缘膜;在源极区域上形成源电极;在基底的背面生长金属形成漏极电极;栅电极与栅极端子TG电连接,源电极与源极端子TS电连接,漏电极与漏极端子TD电连接。当器件在工作时从源区至P区电子流入漏区时其导通电阻会更小,沟槽底部拐角处的电场集中问题得以改善,解决开关速率降低,功率损耗升高的问题。

Description

一种沟槽型MOSFET器件的制造方法
技术领域
本发明属于半导体器件领域,具体而言是一种沟槽型的MOSFET器件。
背景技术
近年来,在进行电力变换和电力控制的场所、功率半导体装置是不可缺少的器件,但是作为一种沟槽型MOSFET半导体装置,其高速的开关优良性能备受瞩目,在电源等领域作为关键使用。
在传统的硅基底的沟槽型MOSFET器件的结构制造中,如图1所示,以N型沟槽MOSFET器件为例,其具体制造步骤如下:
在高掺杂的硅基底上生长一层轻掺杂的外延层;在外延层通过离子注入B等形成为厚度为2μm的P型区域;在P型区上通过图形化和通过离子注入形成源区;在贯穿源区和基区伸入外延层形成一个U型槽。在U型沟槽底部和侧面中生长一层绝缘薄膜和在沟槽中填入多晶硅作为栅极电极。在栅电极上生长一层绝缘层。在整个晶片面上生长一层金属形成源电极。栅极端子TG连接栅极,源极端子TS连接源电极和漏极端子TD连接高掺杂的硅基底漏极。
如果按照以上传统的设计和制造方法,所得的沟槽型MOSFET器件会出现一些对电性能有影响的现象。其中最为突出的问题就是在贯穿源区和基区并伸入外延层形成的U型槽,其超出P区的沟槽部分,器件在低电压下工作,此时会产生沟道,电流从源区经过沟道直接到达漏区.此种情况下,栅极电极和外延区的相对面积比较大,会导致栅漏之间的感生电容增大,当栅漏之间感生电容增大时,沟槽底部的拐角处产生电场集中的现象。由于电场集中会导致在需要高速开关操作的应用中,开关的速率会降低,功率损耗升高,与此同时,漏极区和基极之间的击穿电压会降低,很容易造成器件损坏。
发明内容
本发明针对以上提出的几个问题,我们对现有沟槽型MOSFET结构做了改进,即将沟槽的深度控制在P区深度以内或者与P区底面相平,并且在沟槽底面做出一个掺杂浓度等于或者大于外延层掺杂浓度的扩散区。
本发明的技术方案如下:
一种沟槽型的MOSFET器件,高掺杂N型半导体基底上生长低浓度N-外延层;外延层上是P型区;在P型区之上是源区,贯穿源区至P型区的内部形成沟槽,所述沟槽以及底面不到达外延层;在沟槽底面形成N型区,掺杂浓度等于或者大于外延层掺杂浓度,在沟槽侧壁以及沟槽底表面1生长绝缘薄膜,绝缘薄膜上是多晶硅膜制成的栅电极,栅电极上是层间绝缘膜;在包括所述层间绝缘膜上的基极区域上及源极区域上有与源极区域和基极区域电连接的源电极;在基底的背面生长金属形成漏极电极;栅电极与栅极端子TG电连接,源电极与源极端子TS电连接,漏电极与漏极端子TD电连接。
进一步的,所述低浓度外延层的厚度为3μm。
进一步的,所述P型区的深度为2μm。
进一步的,所述源区厚度为0.3μm至0.4μm。
进一步的,所述沟槽深度为1.7~1.8μm。
进一步的,所述的高掺杂,其掺杂浓度为1E18~ 1E19/㎝3。
进一步的,所述外延层的掺杂浓度为2E15/㎝3。
进一步的,所述N型区厚度约为0.5~0.3μm,掺杂浓度为2E15~3E15/㎝3。
进一步的,所述绝缘薄膜为二氧化硅薄膜,绝缘薄膜的厚度为500-1000埃。
进一步的,所述层间绝缘膜为BPSG膜或者USG膜或者SIN与BPSG的复合膜,层间绝缘膜厚度为0.6μm至1μm。
与现有技术相比,具有以下技术效果:通过这种结构方式的改变,当器件在工作时从源区至P区电子流入漏区时其导通电阻会更小,沟槽底部拐角处的电场集中问题得以改善,进一步解决在需要高速开关操作的应用中,开关的速率降低,功率损耗升高的问题。
附图说明
图1是一种新的沟槽型MOSFET器件的结构;
图2是另一种新的沟槽型MOSFET器件的结构。
其中,2是半导体基底,4是低浓度外延层,6是P型区,6a是沟道区,8是源区,10、30是沟槽,10a、30a是底面,12是n型区,14是绝缘薄膜,16是栅电极,18是层间绝缘膜,20是源电极,22是漏电极。
具体实施方式
下面结合附图对本发明的技术方案做进一步的解释。
实施例
具体步骤:如图1所示
在高掺杂N型半导体基底2上(掺杂浓度为 1E18~1E19/㎝3)生长3μm厚的低浓度外延层4(掺杂浓度为2E15/㎝3)。
在厚度为3μm的外延层(掺杂浓度为2E15/㎝3)上以注入的方式形成深度为2μm的P型区6
在P型区6上形成厚度约为0.3μm至0.4μm的源区8。
贯穿源区8至P型区6的内部形成深度为1.8μm的沟槽10。该沟槽10以及底面10a不到达外延层4。
在沟槽10以及10a底面形成n型区12,厚度约为0.5μm,掺杂浓度为(2E15/㎝3).N型区12是器件导通时作为沟道区6a和外延层4之间的电流通路。
在沟槽10以及沟槽底表面10a和n型区12上生长厚度约为(500~1000埃)的绝缘薄膜14。该绝缘薄膜14是二氧化硅薄膜。
在绝缘薄膜14上生长由多晶硅膜制成的栅电极16。
在栅电极16上生长厚度约为0.6μm至1μm的层间绝缘膜18。该薄膜是层间绝缘膜为BPSG膜或者USG膜。
在包括该层间绝缘膜18上的基极区域6上及源极区域8上形成有与源极区域8和基极区域6电连接的源电极(Al等)20。
在硅基板2的背面生长镍(Ni)、金(Au)等金属形成漏电极22。栅电极16与栅极端子TG电连接,源电极20与源极端子TS电连接,漏电极22与漏极端子TD电连接。
以上是具体实施的第一方案详细过程。对方案一条件下制成的沟槽型MOSFET的工作原理做一描述。
在栅极端子TG加正向电压,在源极端子TS加负电压或者接地,栅极16和P区6相当于以绝缘膜为介质的平板电容器,在正的栅源电压作用下,介质中产生了一个垂直于P区6的由栅极指向P区的电场。这个电场是排斥空穴而吸引电子。因此栅极附近的P型区中的空穴会被排斥,同时P型衬底中的少子(电子)被吸引到栅极的绝缘膜14附近,当正的栅源电压到达一定数值时,这些电子在绝缘膜14附近的P区形成一个N型薄层,称为反型层6a,这个反型层实际上就组成了源漏两极间的N型沟道,由于它是栅源正电压感应产生的,所以称为感生沟道。显然,当栅源电压Vgs的值越大,则作用于半导体表面的电场越强,吸引到绝缘膜14附近的电子就越多,感生沟道就越厚,沟道电阻的阻值越小。接着在漏极端子TD方施加正压,源极端子TS施加负压或者接地,此时方案一形成的功率MOSFET器件导通,电子从源极区8流过反省层N沟道和N型区12至外延层4,这种情况下产生的电流流向时从漏极端子TD流向源极端子TS。
如果在栅极端子TG与源极端子TS短接或者相对于源极端子TS向栅极端子TG施加负压时,沟道区6a的反型层会消失并且电源MOSFET关断,电流中断。
由以上所述,该沟槽型功率MOSFET具有在基极区6中形成的沟槽10和在沟槽10中形成的栅电极16,栅极绝缘膜14置于其中。沟道6a形成在基区P中,形成方式是通过在栅极端子TG施加正向偏压,源极端子TS施加负压或者接地。形成的沟槽10比基区浅,其厚度为1.8微米,形成的N区12到达并突出基区6到达于底部的外延层4.形成N区12掺杂浓度与外延层4相同。深度为1.8μm的沟槽和在沟槽底部0.5μm的扩散区为方案一的特征。
实施例
如图2所示
在高掺杂N型半导体基底2上(掺杂浓度为1E18 ~1E19/㎝3)生长3μm厚的低浓度外延层4(掺杂浓度为2E15/㎝3)。
在厚度为3μm的外延层(掺杂浓度为2E15/㎝3)上以注入的方式形成深度为2μm的P型区6
在P型区6上形成厚度约为0.3μm至0.4μm的源区8
贯穿源区8至P型区6的内部形成深度为1.7微米的沟槽30。该沟槽30以及底面30a不到达外延层4。
在沟槽10以及10a底面形成N型区32,厚度约为0.3μm,掺杂浓度为(2E15/㎝3).n型区32是器件导通时作为沟道区6a和外延层4之间的电流通路。
在沟槽30以及沟槽底表面30a和N型区12上生长厚度约为(500~1000埃)的绝缘薄膜14。
在绝缘薄膜14上生长由多晶硅膜制成的栅电极16。
在栅电极16上生长厚度约为0.6μm至1μm的层间绝缘膜18。该层间绝缘膜18是SIN与BPSG的复合膜。
在包括该层间绝缘膜18上的基极区域6上及源极区域8上形成有与源极区域8和基极区域6电连接的源电极(Al等)20。
在硅基板2的背面生长镍(Ni)、金(Au)等金属形成漏极电极22。栅电极16与栅极端子TG电连接,源电极20与源极端子TS电连接,漏电极22与漏极端子TD电连接。
以上是具体实施的第二方案详细过程。其它跟方案一基本相同,唯一区别的是沟槽的深度和扩散区的厚度,方案一的沟槽深度由1.8μm变为1.7μm,扩散区的厚度由0.5μm变为0.3μm。但两者共同之处是沟槽深度均在P区厚度以内,扩散区厚度设置大小均与沟槽相衔接 。方案二的工作原理与方案一想同,不再做详细概述。
由以上所述,该沟槽型功率MOSFET具有在基极区6中形成的沟槽30和在沟槽30中形成的栅电极16,栅极绝缘膜14置于其中。沟道形成在基区P中,形成方式是通过在栅极端子TG施加正向偏压,源极端子TS施加负压或者接地。形成的沟槽30比基区浅,其厚度为1.7μm,形成的N区32到达并突出基区6到达于底部的外延层4.形成N区32掺杂浓度与外延层4相同。沟槽的深度为1.7μm和形成在沟槽底部的扩散区是0.3μm为方案二的特征。
设计沟槽深度约为1.7μm至1.8μm之间,扩散区N的厚度约为0.3μm至0.5μm之间,扩散区的掺杂浓度为大于或高于外延层,此方案形成的沟槽型MOSFET与原来的沟槽型MOSFET的相比沟槽底部拐角处产生电场集中的现象消失,栅极与漏极的感生电容减小,电子的流向从源区经过感生沟道再经过沟槽底部的扩散区再至外延层漏区,这种电子流向使得源漏之间的导通电阻会降低。经过测试验证,原有的沟槽型MOSFET的导通电阻约为10毫欧至15毫欧之间,经过设计改进,发明新型的MOSFET导通电阻小于10毫欧。

Claims (10)

1.一种沟槽型MOSFET器件的制造方法,其特征在于,在高掺杂N型半导体基底上生长低浓度N-外延层;在低浓度N-外延层上形成P型区作为源区,贯穿源区至P型区的内部形成沟槽,所述沟槽以及底面不到达外延层;在沟槽底面形成N型区,掺杂浓度等于或者大于外延层掺杂浓度,在沟槽侧壁以及沟槽底表面生长绝缘薄膜,绝缘薄膜上是多晶硅膜制成的栅电极,栅电极上是层间绝缘膜;在包括所述层间绝缘膜上的基极区域上及源极区域上有与源极区域和基极区域电连接的源电极;在基底的背面生长金属形成漏极电极;栅电极与栅极端子TG电连接,源电极与源极端子TS电连接,漏电极与漏极端子TD电连接。
2.根据权利要求1所述沟槽型的MOSFET器件,其特征在于,所述低浓度外延层的厚度为3μm。
3.根据权利要求1所述沟槽型的MOSFET器件,其特征在于,所述P型区的深度为2μm。
4.根据权利要求1所述沟槽型的MOSFET器件,其特征在于,所述源区厚度为0.3μm至0.4μm。
5.根据权利要求1所述沟槽型的MOSFET器件,其特征在于,所述沟槽深度为1.7~1.8μm。
6.根据权利要求1所述沟槽型的MOSFET器件,其特征在于,所述的高掺杂,其掺杂浓度为1E18~1E19/㎝3
7.根据权利要求1所述沟槽型的MOSFET器件,其特征在于,所述外延层的掺杂浓度为2E15/㎝3
8.根据权利要求1所述沟槽型的MOSFET器件,其特征在于,所述N型区厚度约为0.3~0.5μm,掺杂浓度为2E15~3E15/㎝3
9.根据权利要求1所述沟槽型的MOSFET器件,其特征在于,所述绝缘薄膜为二氧化硅薄膜,厚度为500-1000埃。
10.根据权利要求1所述沟槽型的MOSFET器件,其特征在于,所述层间绝缘膜为BPSG膜或者USG膜或者SIN与BPSG的复合膜,厚度为0.6μm至1μm。
CN202310359924.XA 2023-04-06 2023-04-06 一种沟槽型mosfet器件的制造方法 Pending CN116314335A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310359924.XA CN116314335A (zh) 2023-04-06 2023-04-06 一种沟槽型mosfet器件的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310359924.XA CN116314335A (zh) 2023-04-06 2023-04-06 一种沟槽型mosfet器件的制造方法

Publications (1)

Publication Number Publication Date
CN116314335A true CN116314335A (zh) 2023-06-23

Family

ID=86801412

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310359924.XA Pending CN116314335A (zh) 2023-04-06 2023-04-06 一种沟槽型mosfet器件的制造方法

Country Status (1)

Country Link
CN (1) CN116314335A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117317026A (zh) * 2023-11-29 2023-12-29 山东大学 一种半导体器件及其制造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117317026A (zh) * 2023-11-29 2023-12-29 山东大学 一种半导体器件及其制造方法
CN117317026B (zh) * 2023-11-29 2024-03-01 山东大学 一种半导体器件及其制造方法

Similar Documents

Publication Publication Date Title
TWI383497B (zh) 具有雙閘極之絕緣閘雙極性電晶體
JP4024503B2 (ja) 半導体装置及びその製造方法
US11652166B2 (en) Power device having super junction and Schottky diode
US11728421B2 (en) Split trench gate super junction power device
KR20060111859A (ko) 스크리닝 전극을 가진 반도체 장치 및 방법
US7732862B2 (en) Power semiconductor device having improved performance and method
JP5191885B2 (ja) 半導体装置及び製造方法
KR20060111867A (ko) 개선된 성능 및 방법을 가진 전력 반도체 장치
US20220085205A1 (en) Trench bottom shielding methods and approaches for trenched semiconductor device structures
KR20000029577A (ko) 선형전류-전압특성을가지는반도체부품
JP2000269487A (ja) 半導体装置及びその製造方法
CN114664929A (zh) 一种集成异质结二极管的分离栅SiC MOSFET及其制作方法
CN114784108A (zh) 一种集成结势垒肖特基二极管的平面栅SiC MOSFET及其制作方法
CN116314335A (zh) 一种沟槽型mosfet器件的制造方法
CN114784107A (zh) 一种集成结势垒肖特基二极管的SiC MOSFET及其制作方法
US20210134989A1 (en) Semiconductor device and method of manufacturing thereof
CN108885999B (zh) 半导体装置及其制造方法
US20200357918A1 (en) Super-junction power mosfet device with improved ruggedness, and method of manufacturing
JPS58137254A (ja) 絶縁ゲ−ト半導体装置
US11721755B2 (en) Methods of forming semiconductor power devices having graded lateral doping
KR20000059529A (ko) 고전압 소자 및 그 제조방법
JPH023980A (ja) 縦型電界効果トランジスタ
KR20190124894A (ko) 반도체 소자 및 그 제조 방법
JPH09153609A (ja) 縦型絶縁ゲート電界効果トランジスタ
US6248620B1 (en) Method for fabricating a field effect-controlled semiconductor component

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination