CN116314150A - 电容器及其制造方法、工作方法 - Google Patents

电容器及其制造方法、工作方法 Download PDF

Info

Publication number
CN116314150A
CN116314150A CN202310160161.6A CN202310160161A CN116314150A CN 116314150 A CN116314150 A CN 116314150A CN 202310160161 A CN202310160161 A CN 202310160161A CN 116314150 A CN116314150 A CN 116314150A
Authority
CN
China
Prior art keywords
dielectric layer
capacitor
polar plate
layer
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310160161.6A
Other languages
English (en)
Inventor
徐瑞璋
鲁林芝
常冰岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Xinxin Semiconductor Manufacturing Co Ltd
Original Assignee
Wuhan Xinxin Semiconductor Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Xinxin Semiconductor Manufacturing Co Ltd filed Critical Wuhan Xinxin Semiconductor Manufacturing Co Ltd
Priority to CN202310160161.6A priority Critical patent/CN116314150A/zh
Publication of CN116314150A publication Critical patent/CN116314150A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/642Capacitive arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

本发明提供了一种电容器及其制造方法、工作方法,所述电容器包括:基底;自下向上形成于所述基底上的下极板、第一介质层和上极板,所述下极板包括金属层,所述上极板包括N型掺杂多晶硅层;或者,所述下极板包括N型掺杂多晶硅层,所述上极板包括金属层;或者,所述下极板和所述上极板均包括N型掺杂多晶硅层。本发明的技术方案使得电容器具有可变的多种电容值的同时,还能避免增加工艺的复杂性、提升成本以及造成芯片面积的浪费。

Description

电容器及其制造方法、工作方法
技术领域
本发明涉及半导体集成电路制造领域,特别涉及一种电容器及其制造方法、工作方法。
背景技术
现有的MIM(Metal Insulator Metal)电容是通过堆叠金属层-介质层-金属层来制造的,由于MIM电容的结构固定,使得该种电容只有一种电容值。如果需要多种电容值的MIM电容,则需要制备具有不同介质层厚度的电容。但是,在同一膜层中制备具有不同厚度的介质层会增加工艺的复杂性,同时也会提升成本,且造成芯片面积的浪费。
因此,如何在制备具有多种电容值的MIM电容的同时,还能避免导致增加工艺的复杂性、提升成本以及造成芯片面积的浪费是亟需解决的问题。
发明内容
本发明的目的在于提供一种电容器及其制造方法、工作方法,使得电容器具有可变的多种电容值的同时,还能避免增加工艺的复杂性、提升成本以及造成芯片面积的浪费。
为实现上述目的,本发明提供了一种电容器,包括:
基底;
自下向上形成于所述基底上的下极板、第一介质层和上极板,所述下极板包括金属层,所述上极板包括N型掺杂多晶硅层;或者,所述下极板包括N型掺杂多晶硅层,所述上极板包括金属层;或者,所述下极板和所述上极板均包括N型掺杂多晶硅层。
可选地,所述电容器还包括:
第二介质层,形成于所述上极板上。
可选地,所述下极板和所述第一介质层延伸至所述上极板的外围;所述电容器还包括:
第三介质层,形成于所述基底上,且所述第三介质层覆盖所述第二介质层、所述上极板、所述第一介质层和所述下极板;
第一导电插塞和第二导电插塞,所述第一导电插塞贯穿所述第三介质层和所述第二介质层后与所述上极板电连接,所述第二导电插塞贯穿所述上极板外围的所述第三介质层和所述第一介质层后与所述下极板电连接;
第一焊盘和第二焊盘,形成于所述第三介质层上,所述第一焊盘与所述第一导电插塞电连接,所述第二焊盘与所述第二导电插塞电连接。
可选地,所述金属层的材质包括金属和/或金属氮化物。
可选地,所述基底包括衬底以及位于所述衬底上的第四介质层。
本发明还提供一种电容器的制造方法,包括:
提供一基底;
形成自下向上的下极板、第一介质层和上极板于所述基底上,所述下极板包括金属层,所述上极板包括N型掺杂多晶硅层;或者,所述下极板包括N型掺杂多晶硅层,所述上极板包括金属层;或者,所述下极板和所述上极板均包括N型掺杂多晶硅层。
可选地,掺杂N型离子的能量范围为50KeV~200KeV,剂量范围为5*1011cm-2~5*1014cm-2
本发明还提供一种电容器的工作方法,所述电容器包括自下向上形成于基底上的下极板、第一介质层和上极板;
其中,所述下极板包括金属层,所述上极板包括N型掺杂多晶硅层,所述电容器的工作方法包括:
将所述下极板接正电压,以使得所述第一介质层作为所述电容器的介质层;将所述上极板接正电压,以使得所述上极板靠近所述第一介质层的部分厚度形成为等效介质层,所述第一介质层和所述等效介质层共同作为所述电容器的介质层;
或者,所述下极板包括N型掺杂多晶硅层,所述上极板包括金属层,所述电容器的工作方法包括:
将所述上极板接正电压,以使得所述第一介质层作为所述电容器的介质层;将所述下极板接正电压,以使得所述下极板靠近所述第一介质层的部分厚度形成为等效介质层,所述第一介质层和所述等效介质层共同作为所述电容器的介质层;
或者,所述下极板和所述上极板均包括N型掺杂多晶硅层,所述电容器的工作方法包括:
将所述下极板接正电压,以使得所述下极板靠近所述第一介质层的部分厚度形成为等效介质层,所述第一介质层和所述等效介质层共同作为所述电容器的介质层;将所述上极板接正电压,以使得所述上极板靠近所述第一介质层的部分厚度形成为等效介质层,所述第一介质层和所述等效介质层共同作为所述电容器的介质层。
可选地,所述电容器还包括:
第二介质层,形成于所述上极板上。
可选地,所述下极板和所述第一介质层延伸至所述上极板的外围;所述电容器还包括:
第三介质层,形成于所述基底上,且所述第三介质层覆盖所述第二介质层、所述上极板、所述第一介质层和所述下极板;
第一导电插塞和第二导电插塞,所述第一导电插塞贯穿所述第三介质层和所述第二介质层后与所述上极板电连接,所述第二导电插塞贯穿所述上极板外围的所述第三介质层和所述第一介质层后与所述下极板电连接;
第一焊盘和第二焊盘,形成于所述第三介质层上,所述第一焊盘与所述第一导电插塞电连接,所述第二焊盘与所述第二导电插塞电连接。
可选地,所述金属层的材质包括金属和/或金属氮化物。
可选地,所述基底包括衬底以及位于所述衬底上的第四介质层。
与现有技术相比,本发明的技术方案具有以下有益效果:
1、本发明的电容器,由于包括自下向上形成于基底上的下极板、第一介质层和上极板,所述金属层作为电容器的下极板,所述下极板包括金属层,所述上极板包括N型掺杂多晶硅层;或者,所述下极板包括N型掺杂多晶硅层,所述上极板包括金属层;或者,所述下极板和所述上极板均包括N型掺杂多晶硅层,使得电容器具有可变的多种电容值的同时,还能避免增加工艺的复杂性、提升成本以及造成芯片面积的浪费。
2、本发明的电容器的制造方法,通过形成自下向上的下极板、第一介质层和上极板于基底上,所述下极板包括金属层,所述上极板包括N型掺杂多晶硅层;或者,所述下极板包括N型掺杂多晶硅层,所述上极板包括金属层;或者,所述下极板和所述上极板均包括N型掺杂多晶硅层,使得电容器具有可变的多种电容值的同时,还能避免增加工艺的复杂性、提升成本以及造成芯片面积的浪费。
3、本发明的电容器的工作方法,当下极板包括金属层,上极板包括N型掺杂多晶硅层时,通过将所述下极板接正电压,以使得所述第一介质层作为所述电容器的介质层;将所述上极板接正电压,以使得所述上极板靠近所述第一介质层的部分厚度形成为等效介质层,所述第一介质层和所述等效介质层共同作为所述电容器的介质层;或者,当所述下极板包括N型掺杂多晶硅层,所述上极板包括金属层时,通过将所述上极板接正电压,以使得所述第一介质层作为所述电容器的介质层;将所述下极板接正电压,以使得所述下极板靠近所述第一介质层的部分厚度形成为等效介质层,所述第一介质层和所述等效介质层共同作为所述电容器的介质层;或者,当所述下极板和所述上极板均包括N型掺杂多晶硅层时,通过将所述下极板接正电压,以使得所述下极板靠近所述第一介质层的部分厚度形成为等效介质层,所述第一介质层和所述等效介质层共同作为所述电容器的介质层;将所述上极板接正电压,以使得所述上极板靠近所述第一介质层的部分厚度形成为等效介质层,所述第一介质层和所述等效介质层共同作为所述电容器的介质层,使得电容器具有可变的多种电容值的同时,还能避免增加工艺的复杂性、提升成本以及造成芯片面积的浪费。
附图说明
图1是本发明一实施例的电容器的结构示意图;
图2a~图2b是本发明一实施例的电容器具有可变电容值的原理示意图;
图3是本发明一实施例的电容器的制造方法的流程图;
图4a~图4c是图3所示的电容器的制造方法中的器件示意图。
其中,附图1~图4c的附图标记说明如下:
11-金属互连线;12-第四介质层;13-下极板;131-下极板材料层;14-第一介质层;141-第一介质材料层;15-上极板;151-上极板材料层;16-第二介质层;161-第二介质材料层;17-第三介质层;181-第一导电插塞;182-第二导电插塞;191-第一焊盘;192-第二焊盘;20-等效介质层。
具体实施方式
为使本发明的目的、优点和特征更加清楚,以下对本发明提出的电容器及其制造方法、工作方法作进一步详细说明。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。
本发明一实施例提供了一种电容器,包括:基底;自下向上形成于所述基底上的下极板、第一介质层和上极板,所述下极板包括金属层,所述上极板包括N型掺杂多晶硅层;或者,所述下极板包括N型掺杂多晶硅层,所述上极板包括金属层;或者,所述下极板和所述上极板均包括N型掺杂多晶硅层。
下面参阅图1~图2b详细描述本实施例提供的电容器。
在一实施例中,所述基底包括衬底以及位于衬底上的第四介质层。
在另一实施例中,所述基底包括自下向上的衬底(未图示)、第四介质层12以及形成于所述第四介质层12中的金属互连线11。
需要说明的是,所述第四介质层12为多层堆叠的结构,图1中仅示意出覆盖在所述金属互连线11上的部分所述第四介质层12;并且,所述第四介质层12中还可形成有与所述金属互连线11电连接的导电插塞等结构。
所述衬底的材质可以为本领域技术人员熟知的任意合适的底材,例如可以是以下所提到的材料中的至少一种:硅、锗、锗硅、碳硅、碳锗硅、砷化铟、砷化镓、磷化铟或绝缘体上半导体(SOI,如绝缘体上硅)等。
自下向上形成于所述第四介质层12上的下极板13、第一介质层14和上极板15,所述下极板13包括金属层,所述上极板15包括N型掺杂多晶硅层;或者,所述下极板13包括N型掺杂多晶硅层,所述上极板15包括金属层;或者,所述下极板13和所述上极板15均包括N型掺杂多晶硅层。
所述金属层的材质可以包括金属或金属氮化物,或者同时包含金属和金属氮化物。所述金属层的材质为铝、铜、钽、氮化钽、钛、氮化钛或钨等金属特性的金属或金属化合物。
所述第一介质层14的材质优选为高K(相对介电常数)介质,例如氧化锌、氧化铪、氧化钛和氧化锆等中的至少一种。需要说明的是,所述第一介质层14的材质也可以为氧化硅、氮氧化硅、氮化硅和ONO(氧化硅-氮化硅-氧化硅)等中的至少一种。
所述N型掺杂多晶硅层的材质为掺杂N型离子的多晶硅,使得所述N型掺杂多晶硅层中的多子为电子。所述N型离子包括磷、砷或锑。
所述电容器还包括:第二介质层16,形成于所述上极板15上。
所述下极板13和所述第一介质层14形成于部分所述第四介质层12上,所述上极板15和所述第二介质层16形成于部分所述第一介质层14上,即所述下极板13和所述第一介质层14延伸至所述上极板15的外围。
所述电容器还可包括:
第三介质层17,形成于所述基底上,且所述第三介质层17覆盖所述第二介质层16、所述上极板15、所述第一介质层14和所述下极板13;
第一导电插塞181和第二导电插塞182,所述第一导电插塞181贯穿所述第三介质层17和所述第二介质层16后与所述上极板15电连接,所述第二导电插塞182贯穿所述上极板15外围的所述第三介质层17和所述第一介质层14后与所述下极板13电连接;
第一焊盘191和第二焊盘192,形成于所述第三介质层17上,所述第一焊盘191与所述第一导电插塞181电连接,所述第二焊盘192与所述第二导电插塞182电连接,以使得能够通过所述第一焊盘191和所述第二焊盘192向所述上极板15和所述下极板13接电压。
所述第二介质层16和所述第三介质层17的材质可以为氧化硅、氮氧化硅、氮化硅和ONO(氧化硅-氮化硅-氧化硅)等。
以所述下极板13包括金属层,且所述上极板15包括N型掺杂多晶硅层为例,对实现所述电容器具有可变的多种电容值的原理说明如下:
如图2a所示,在所述下极板13(即所述金属层)接正电压且所述上极板15(即所述N型掺杂多晶硅层)接地或接负压时,所述N型掺杂多晶硅层中的电子向靠近所述第一介质层14的方向运动,电子聚集在所述N型掺杂多晶硅层靠近所述第一介质层14的一侧,此时,是所述第一介质层14作为电容器的介质层(即位于所述上极板15与所述下极板13之间的介质层),所述电容器的介质层厚度始终保持为所述第一介质层14的厚度h1,不会随着所述下极板13与所述上极板15之间压差的变化而变化,使得所述电容器的电容值固定不变。
而如图2b所示,在所述上极板15(即所述N型掺杂多晶硅层)接正电压且所述下极板13(即所述金属层)接地或接负压时,所述N型掺杂多晶硅层中的电子向远离所述第一介质层14的方向运动并顺着外接电路中的导线流走,使得所述N型掺杂多晶硅层与电源的电势相同,且所述金属层中的电子感应到电势差而聚集在所述金属层靠近所述第一介质层14的一侧,使得所述N型掺杂多晶硅层靠近所述第一介质层14的一侧没有载流子而形成耗尽层,此耗尽层能够作为等效介质层20,即所述上极板15靠近所述第一介质层14的部分厚度形成为等效介质层20,此时,所述第一介质层14和所述等效介质层20共同作为电容器的介质层,从而使得所述电容器的介质层厚度从图2a中的所述第一介质层14的厚度h1增大为所述第一介质层14的厚度h1与所述等效介质层20的厚度h2之和,进而使得与图2a相比所述电容器的电容值降低;并且,所述等效介质层20的厚度h2还会随着所述上极板15与所述下极板13之间压差的变化而变化,从而使得所述电容器的电容值能够随着所述上极板15与所述下极板13之间压差的变化而变化。其中,所述等效介质层20的厚度h2随着所述上极板15与所述下极板13之间压差的升高而增大,使得所述电容器的电容值随着所述上极板15与所述下极板13之间压差的升高而减小。
因此,所述电容器的电容值随着所述上极板15和所述下极板13接正电压的方式的不同而变化,且所述电容器的电容值随着所述上极板15与所述下极板13之间压差的变化而变化,使得所述电容器具有可变的多种电容值。
同理,当所述下极板13包括N型掺杂多晶硅层,且所述上极板15包括金属层时,若将所述上极板15接正电压且所述下极板13接地或接负压,则使得所述第一介质层14作为所述电容器的介质层;若将所述下极板13接正电压且所述上极板15接地或接负压,则使得所述下极板13靠近所述第一介质层14的部分厚度形成为等效介质层,所述第一介质层14和所述等效介质层共同作为所述电容器的介质层。
或者,当所述下极板13和所述上极板15均包括N型掺杂多晶硅层时,若将所述下极板13接正电压且所述上极板15接地或接负压,则使得所述下极板13靠近所述第一介质层14的部分厚度形成为等效介质层,所述第一介质层14和所述等效介质层共同作为所述电容器的介质层;若将所述上极板15接正电压且所述下极板13接地或接负压,则使得所述上极板15靠近所述第一介质层14的部分厚度形成为等效介质层,所述第一介质层14和所述等效介质层共同作为所述电容器的介质层。
并且,由于所述等效介质层20的存在使得所述电容器的介质层厚度增大,进而使得所述电容器更难击穿,进而提高了所述电容器使用的稳定性。
并且,与现有通过制备具有不同介质层厚度的电容器来使得电容器具有多种电容值相比,本发明的电容器中通过采用所述N型掺杂多晶硅层替代现有的金属层作为所述电容器的上极板15和/或下极板13,使得仅需改变所述上极板15和所述下极板13接正电压的方式以及改变所述上极板15与所述下极板13之间压差的大小即可实现所述电容器具有可变的多种电容值,避免增加工艺的复杂性、提升成本以及造成芯片面积的浪费。
并且,当所述下极板13包括金属层且所述上极板15包括N型掺杂多晶硅层时,由于与所述上极板15电连接的多个所述第一导电插塞181能够均匀地分布在所述上极板15上,使得在所述上极板15接正电压且所述下极板13接地或接负压时产生的耗尽层能够在所述上极板15靠近所述第一介质层14的一侧分布的更加均匀,即形成的所述等效介质层20的厚度更加均匀,进而能够避免产生漏电问题,且能够提高所述电容器的使用寿命。
综上所述,本发明提供一种电容器,包括:基底;自下向上形成于所述基底上的下极板、第一介质层和上极板,所述下极板包括金属层,所述上极板包括N型掺杂多晶硅层;或者,所述下极板包括N型掺杂多晶硅层,所述上极板包括金属层;或者,所述下极板和所述上极板均包括N型掺杂多晶硅层。本发明提供的电容器使得电容器具有可变的多种电容值的同时,还能避免增加工艺的复杂性、提升成本以及造成芯片面积的浪费。
基于同一发明构思,本发明一实施例提供了一种电容器的制造方法,参阅图3,从图3中可看出,所述电容器的制造方法包括:
步骤S1,提供一基底;
步骤S2,形成自下向上的下极板、第一介质层和上极板于所述基底上,所述下极板包括金属层,所述上极板包括N型掺杂多晶硅层;或者,所述下极板包括N型掺杂多晶硅层,所述上极板包括金属层;或者,所述下极板和所述上极板均包括N型掺杂多晶硅层。
下面参阅图2a~图2b、图4a~图4c对本实施例提供的电容器的制造方法进行详细说明。
按照步骤S1,提供一基底。
在一实施例中,所述基底包括衬底以及位于衬底上的第四介质层。
在另一实施例中,所述基底包括自下向上的衬底(未图示)、第四介质层12以及形成于所述第四介质层12中的金属互连线11。
需要说明的是,所述第四介质层12为多层堆叠的结构,图4a~图4c中仅示意出覆盖在所述金属互连线11上的部分所述第四介质层12;并且,所述第四介质层12中还可形成有与所述金属互连线11电连接的导电插塞等结构。
所述衬底的材质可以为本领域技术人员熟知的任意合适的底材,例如可以是以下所提到的材料中的至少一种:硅、锗、锗硅、碳硅、碳锗硅、砷化铟、砷化镓、磷化铟或绝缘体上半导体(SOI,如绝缘体上硅)等。
按照步骤S2,形成自下向上的下极板13、第一介质层14和上极板15于所述基底上,所述下极板13包括金属层,所述上极板15包括N型掺杂多晶硅层;或者,所述下极板13包括N型掺杂多晶硅层,所述上极板15包括金属层;或者,所述下极板13和所述上极板15均包括N型掺杂多晶硅层。
所述金属层的材质可以包括金属或金属氮化物,或者同时包含金属和金属氮化物。所述金属层的材质为铝、铜、钽、氮化钽、钛、氮化钛或钨等金属特性的金属或金属化合物。
所述第一介质层14的材质优选为高K(相对介电常数)介质,例如氧化锌、氧化铪、氧化钛和氧化锆等中的至少一种。需要说明的是,所述第一介质层14的材质也可以为氧化硅、氮氧化硅、氮化硅和ONO(氧化硅-氮化硅-氧化硅)等中的至少一种。
所述电容器的制造方法还可包括:形成第二介质层16于所述上极板15上。
形成所述下极板13、所述第一介质层14、所述上极板15和所述第二介质层16的步骤可以包括:首先,如图4a所示,依次形成下极板材料层131、第一介质材料层141、上极板材料层151和第二介质材料层161覆盖于所述基底中的第四介质层12上;然后,如图4b所示,依次刻蚀去除部分所述第二介质材料层161和部分所述上极板材料层151,以暴露出所述第一介质材料层141,且剩余的所述第二介质材料层161作为第二介质层16,剩余的所述上极板材料层151作为上极板15;然后,如图4b所示,依次刻蚀去除部分暴露出的所述第一介质材料层141和所述下极板材料层131,以暴露出所述基底中的第四介质层12,且剩余的所述第一介质材料层141作为第一介质层14,剩余的所述下极板材料层131作为下极板13,所述下极板13和所述第一介质层14延伸至所述上极板15的外围。
其中,当所述下极板13和/或所述上极板15均包括N型掺杂多晶硅层时,形成所述N型掺杂多晶硅层的步骤可以包括:同时沉积多晶硅以及掺杂N型离子于所述多晶硅中,其中,可以采用低温化学气相沉积工艺在380℃~420℃的条件下实现;或者,可以先沉积多晶硅,再通过离子注入工艺来实现掺杂N型离子于所述多晶硅中。
在掺杂N型离子于所述多晶硅中时,可以选择合适量的所述N型离子,以避免过多的掺杂而导致多晶硅耗尽效应的降低,以及避免较少的掺杂而导致所述N型掺杂多晶硅层的电阻较大。
其中,掺杂所述N型离子的能量范围优选为50KeV~200KeV,剂量范围优选为5*1011cm-2~5*1014cm-2。并且,当所述N型离子为磷时,能量范围优选为50KeV~150KeV;当所述N型离子为砷时,能量范围优选为50KeV~170KeV;当所述N型离子为锑时,能量范围优选为70KeV~200KeV。
在形成掺杂有N型离子的多晶硅之后,可以执行激光退火工艺,以激活所述N型离子。所述激光退火工艺采用的温度范围优选为350℃~450℃,所述激光退火工艺采用的时间范围优选为30s~60s。
如图4c所示,所述电容器的制造方法还可包括:
首先,形成第三介质层17于所述基底上,且所述第三介质层17覆盖所述第二介质层16、所述上极板15、所述第一介质层14和所述下极板13;
然后,形成第一导电插塞181和第二导电插塞182,所述第一导电插塞181贯穿所述第三介质层17和所述第二介质层16后与所述上极板15电连接,所述第二导电插塞182贯穿所述N型掺杂多晶硅层15外围的所述第三介质层17和所述第一介质层14后与所述下极板13电连接;
然后,形成第一焊盘191和第二焊盘192于所述第三介质层17上,所述第一焊盘191与所述第一导电插塞181电连接,所述第二焊盘192与所述第二导电插塞182电连接,以使得能够通过所述第一焊盘191和所述第二焊盘192向所述上极板15和所述下极板13接电压。
所述第二介质层16和所述第三介质层17的材质可以为氧化硅、氮氧化硅、氮化硅和ONO(氧化硅-氮化硅-氧化硅)等。
以所述下极板13包括金属层,且所述上极板15包括N型掺杂多晶硅层为例,对实现所述电容器具有可变的多种电容值的原理说明如下:
如图2a所示,在所述下极板13(即所述金属层)接正电压且所述上极板15(即所述N型掺杂多晶硅层)接地或接负压时,所述N型掺杂多晶硅层中的电子向靠近所述第一介质层14的方向运动,电子聚集在所述N型掺杂多晶硅层靠近所述第一介质层14的一侧,此时,是所述第一介质层14作为电容器的介质层(即位于所述上极板15与所述下极板13之间的介质层),所述电容器的介质层厚度始终保持为所述第一介质层14的厚度h1,不会随着所述下极板13与所述上极板15之间压差的变化而变化,使得所述电容器的电容值固定不变。
而如图2b所示,在所述上极板15(即所述N型掺杂多晶硅层)接正电压且所述下极板13(即所述金属层)接地或接负压时,所述N型掺杂多晶硅层中的电子向远离所述第一介质层14的方向运动并顺着外接电路中的导线流走,使得所述N型掺杂多晶硅层与电源的电势相同,且所述金属层中的电子感应到电势差而聚集在所述金属层靠近所述第一介质层14的一侧,使得所述N型掺杂多晶硅层靠近所述第一介质层14的一侧没有载流子而形成耗尽层,此耗尽层能够作为等效介质层20,即所述上极板15靠近所述第一介质层14的部分厚度形成为等效介质层20,此时,所述第一介质层14和所述等效介质层20共同作为电容器的介质层,从而使得所述电容器的介质层厚度从图2a中的所述第一介质层14的厚度h1增大为所述第一介质层14的厚度h1与所述等效介质层20的厚度h2之和,进而使得与图2a相比所述电容器的电容值降低;并且,所述等效介质层20的厚度h2还会随着所述上极板15与所述下极板13之间压差的变化而变化,从而使得所述电容器的电容值能够随着所述上极板15与所述下极板13之间压差的变化而变化。其中,所述等效介质层20的厚度h2随着所述上极板15与所述下极板13之间压差的升高而增大,使得所述电容器的电容值随着所述上极板15与所述下极板13之间压差的升高而减小。
因此,所述电容器的电容值随着所述上极板15和所述下极板13接正电压的方式的不同而变化,且所述电容器的电容值随着所述上极板15与所述下极板13之间压差的变化而变化,使得所述电容器具有可变的多种电容值。
同理,当所述下极板13包括N型掺杂多晶硅层,且所述上极板15包括金属层时,若将所述上极板15接正电压且所述下极板13接地或接负压,则使得所述第一介质层14作为所述电容器的介质层;若将所述下极板13接正电压且所述上极板15接地或接负压,则使得所述下极板13靠近所述第一介质层14的部分厚度形成为等效介质层,所述第一介质层14和所述等效介质层共同作为所述电容器的介质层。
或者,当所述下极板13和所述上极板15均包括N型掺杂多晶硅层时,若将所述下极板13接正电压且所述上极板15接地或接负压,则使得所述下极板13靠近所述第一介质层14的部分厚度形成为等效介质层,所述第一介质层14和所述等效介质层共同作为所述电容器的介质层;若将所述上极板15接正电压且所述下极板13接地或接负压,则使得所述上极板15靠近所述第一介质层14的部分厚度形成为等效介质层,所述第一介质层14和所述等效介质层共同作为所述电容器的介质层。
并且,由于所述等效介质层20的存在使得所述电容器的介质层厚度增大,进而使得所述电容器更难击穿,进而提高了所述电容器使用的稳定性。
并且,与现有通过制备具有不同介质层厚度的电容器来使得电容器具有多种电容值相比,本发明的电容器的制造方法通过采用所述N型掺杂多晶硅层替代现有的金属层作为所述电容器的上极板15和/或下极板13,使得仅需改变所述上极板15和所述下极板13接正电压的方式以及改变所述上极板15与所述下极板13之间压差的大小即可实现所述电容器具有可变的多种电容值,避免增加工艺的复杂性、提升成本以及造成芯片面积的浪费。
并且,当所述下极板13包括金属层且所述上极板15包括N型掺杂多晶硅层时,由于与所述上极板15电连接的多个所述第一导电插塞181能够均匀地分布在所述上极板15上,使得在所述上极板15接正电压且所述下极板13接地或接负压时产生的耗尽层能够在所述上极板15靠近所述第一介质层14的一侧分布的更加均匀,即形成的所述等效介质层20的厚度更加均匀,进而能够避免产生漏电问题,且能够提高所述电容器的使用寿命。
综上所述,本发明提供一种电容器的制造方法,包括:提供一基底;形成自下向上的下极板、第一介质层和上极板于所述基底上,所述下极板包括金属层,所述上极板包括N型掺杂多晶硅层;或者,所述下极板包括N型掺杂多晶硅层,所述上极板包括金属层;或者,所述下极板和所述上极板均包括N型掺杂多晶硅层。本发明提供的电容器的制造方法使得电容器具有可变的多种电容值的同时,还能避免增加工艺的复杂性、提升成本以及造成芯片面积的浪费。
基于同一发明构思,本发明一实施例提供了一种电容器的工作方法,所述电容器包括自下向上形成于基底上的下极板13、第一介质层14和上极板15。
所述电容器的具体结构参见上述说明,在此不再赘述。
当所述下极板13包括金属层,所述上极板15包括N型掺杂多晶硅层时,所述电容器的工作方法包括:
如图2a所示,将所述下极板13(即所述金属层)接正电压且所述上极板15(即所述N型掺杂多晶硅层)接地或接负压,以使得所述N型掺杂多晶硅层中的电子向靠近所述第一介质层14的方向运动,电子聚集在所述N型掺杂多晶硅层靠近所述第一介质层14的一侧,进而使得所述第一介质层14作为电容器的介质层(即位于所述上极板15与所述下极板13之间的介质层),所述电容器的介质层厚度始终保持为所述第一介质层14的厚度h1,不会随着所述下极板13与所述上极板15之间压差的变化而变化,从而使得所述电容器的电容值固定不变。
如图2b所示,将所述上极板15(即所述N型掺杂多晶硅层)接正电压且所述下极板13(即所述金属层)接地或接负压,以使得所述N型掺杂多晶硅层中的电子向远离所述第一介质层14的方向运动并顺着外接电路中的导线流走,使得所述N型掺杂多晶硅层与电源的电势相同,且所述金属层中的电子感应到电势差而聚集在所述金属层靠近所述第一介质层14的一侧,使得所述N型掺杂多晶硅层靠近所述第一介质层14的一侧没有载流子而形成耗尽层,此耗尽层能够作为等效介质层20,即所述上极板15靠近所述第一介质层14的部分厚度形成为等效介质层20,进而使得所述第一介质层14和所述等效介质层20共同作为电容器的介质层,从而使得所述电容器的介质层厚度从图2a中的所述第一介质层14的厚度h1增大为所述第一介质层14的厚度h1与所述等效介质层20的厚度h2之和,进而使得与图2a相比所述电容器的电容值降低;并且,所述等效介质层20的厚度h2还会随着所述上极板15与所述下极板13之间压差的变化而变化,从而使得所述电容器的电容值能够随着所述上极板15与所述下极板13之间压差的变化而变化。其中,所述等效介质层20的厚度h2随着所述上极板15与所述下极板13之间压差的升高而增大,使得所述电容器的电容值随着所述上极板15与所述下极板13之间压差的升高而减小。
或者,当所述下极板13包括N型掺杂多晶硅层,所述上极板15包括金属层时,所述电容器的工作方法包括:
将所述上极板15接正电压且所述下极板13接地或接负压,以使得所述第一介质层14作为所述电容器的介质层;将所述下极板13接正电压且所述上极板15接地或接负压,以使得所述下极板13靠近所述第一介质层14的部分厚度形成为等效介质层,所述第一介质层14和所述等效介质层共同作为所述电容器的介质层。
或者,当所述下极板13和所述上极板15均包括N型掺杂多晶硅层时,所述电容器的工作方法包括:
将所述下极板13接正电压且所述上极板15接地或接负压,以使得所述下极板13靠近所述第一介质层14的部分厚度形成为等效介质层,所述第一介质层14和所述等效介质层共同作为所述电容器的介质层;将所述上极板15接正电压且所述下极板13接地或接负压,以使得所述上极板15靠近所述第一介质层14的部分厚度形成为等效介质层,所述第一介质层14和所述等效介质层共同作为所述电容器的介质层。
并且,由于所述等效介质层的存在使得所述电容器的介质层厚度增大,进而使得所述电容器更难击穿,进而提高了所述电容器使用的稳定性。
并且,与现有通过制备具有不同介质层厚度的电容器来使得电容器具有多种电容值相比,本发明的电容器中通过采用所述N型掺杂多晶硅层替代现有的金属层作为所述电容器的上极板15和/或下极板13,使得仅需改变所述上极板15和所述下极板13接正电压的方式以及改变所述上极板15与所述下极板13之间压差的大小即可实现所述电容器具有可变的多种电容值,避免增加工艺的复杂性、提升成本以及造成芯片面积的浪费。
并且,当所述下极板13包括金属层且所述上极板15包括N型掺杂多晶硅层时,由于与所述上极板15电连接的多个所述第一导电插塞181能够均匀地分布在所述上极板15上,使得在所述上极板15接正电压且所述下极板13接地或接负压时产生的耗尽层能够在所述上极板15靠近所述第一介质层14的一侧分布的更加均匀,即形成的所述等效介质层20的厚度更加均匀,进而能够避免产生漏电问题,且能够提高所述电容器的使用寿命。
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。

Claims (12)

1.一种电容器,其特征在于,包括:
基底;
自下向上形成于所述基底上的下极板、第一介质层和上极板,所述下极板包括金属层,所述上极板包括N型掺杂多晶硅层;或者,所述下极板包括N型掺杂多晶硅层,所述上极板包括金属层;或者,所述下极板和所述上极板均包括N型掺杂多晶硅层。
2.如权利要求1所述的电容器,其特征在于,所述电容器还包括:
第二介质层,形成于所述上极板上。
3.如权利要求2所述的电容器,其特征在于,所述下极板和所述第一介质层延伸至所述上极板的外围;所述电容器还包括:
第三介质层,形成于所述基底上,且所述第三介质层覆盖所述第二介质层、所述上极板、所述第一介质层和所述下极板;
第一导电插塞和第二导电插塞,所述第一导电插塞贯穿所述第三介质层和所述第二介质层后与所述上极板电连接,所述第二导电插塞贯穿所述上极板外围的所述第三介质层和所述第一介质层后与所述下极板电连接;
第一焊盘和第二焊盘,形成于所述第三介质层上,所述第一焊盘与所述第一导电插塞电连接,所述第二焊盘与所述第二导电插塞电连接。
4.如权利要求1所述的电容器,其特征在于,所述金属层的材质包括金属和/或金属氮化物。
5.如权利要求1所述的电容器,其特征在于,所述基底包括衬底以及位于所述衬底上的第四介质层。
6.一种电容器的制造方法,其特征在于,包括:
提供一基底;
形成自下向上的下极板、第一介质层和上极板于所述基底上,所述下极板包括金属层,所述上极板包括N型掺杂多晶硅层;或者,所述下极板包括N型掺杂多晶硅层,所述上极板包括金属层;或者,所述下极板和所述上极板均包括N型掺杂多晶硅层。
7.如权利要求6所述的电容器的制造方法,其特征在于,掺杂N型离子的能量范围为50KeV~200KeV,剂量范围为5*1011cm-2~5*1014cm-2
8.一种电容器的工作方法,其特征在于,所述电容器包括自下向上形成于基底上的下极板、第一介质层和上极板;
其中,所述下极板包括金属层,所述上极板包括N型掺杂多晶硅层,所述电容器的工作方法包括:
将所述下极板接正电压,以使得所述第一介质层作为所述电容器的介质层;将所述上极板接正电压,以使得所述上极板靠近所述第一介质层的部分厚度形成为等效介质层,所述第一介质层和所述等效介质层共同作为所述电容器的介质层;
或者,所述下极板包括N型掺杂多晶硅层,所述上极板包括金属层,所述电容器的工作方法包括:
将所述上极板接正电压,以使得所述第一介质层作为所述电容器的介质层;将所述下极板接正电压,以使得所述下极板靠近所述第一介质层的部分厚度形成为等效介质层,所述第一介质层和所述等效介质层共同作为所述电容器的介质层;
或者,所述下极板和所述上极板均包括N型掺杂多晶硅层,所述电容器的工作方法包括:
将所述下极板接正电压,以使得所述下极板靠近所述第一介质层的部分厚度形成为等效介质层,所述第一介质层和所述等效介质层共同作为所述电容器的介质层;将所述上极板接正电压,以使得所述上极板靠近所述第一介质层的部分厚度形成为等效介质层,所述第一介质层和所述等效介质层共同作为所述电容器的介质层。
9.如权利要求8所述的电容器的工作方法,其特征在于,所述电容器还包括:
第二介质层,形成于所述上极板上。
10.如权利要求9所述的电容器的工作方法,其特征在于,所述下极板和所述第一介质层延伸至所述上极板的外围;所述电容器还包括:
第三介质层,形成于所述基底上,且所述第三介质层覆盖所述第二介质层、所述上极板、所述第一介质层和所述下极板;
第一导电插塞和第二导电插塞,所述第一导电插塞贯穿所述第三介质层和所述第二介质层后与所述上极板电连接,所述第二导电插塞贯穿所述上极板外围的所述第三介质层和所述第一介质层后与所述下极板电连接;
第一焊盘和第二焊盘,形成于所述第三介质层上,所述第一焊盘与所述第一导电插塞电连接,所述第二焊盘与所述第二导电插塞电连接。
11.如权利要求8所述的电容器的工作方法,其特征在于,所述金属层的材质包括金属和/或金属氮化物。
12.如权利要求8所述的电容器的工作方法,其特征在于,所述基底包括衬底以及位于所述衬底上的第四介质层。
CN202310160161.6A 2023-02-23 2023-02-23 电容器及其制造方法、工作方法 Pending CN116314150A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310160161.6A CN116314150A (zh) 2023-02-23 2023-02-23 电容器及其制造方法、工作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310160161.6A CN116314150A (zh) 2023-02-23 2023-02-23 电容器及其制造方法、工作方法

Publications (1)

Publication Number Publication Date
CN116314150A true CN116314150A (zh) 2023-06-23

Family

ID=86795391

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310160161.6A Pending CN116314150A (zh) 2023-02-23 2023-02-23 电容器及其制造方法、工作方法

Country Status (1)

Country Link
CN (1) CN116314150A (zh)

Similar Documents

Publication Publication Date Title
US9911730B2 (en) Transient voltage suppressor and manufacture method thereof
US8722503B2 (en) Capacitors and methods of forming
TWI373913B (en) Applying trenched transient voltage suppressor (tvs) technology for distributed low pass filters
US8431982B2 (en) Semiconductor devices and methods of fabricating the same
US20050017286A1 (en) Capacitor with improved capacitance density and method of manufacture
US7589392B2 (en) Filter having integrated floating capacitor and transient voltage suppression structure and method of manufacture
US10644132B2 (en) Method and apparatus for MOS device with doped region
US20120261804A1 (en) Vertical substrate diode, method of manufacture and design structure
US5574621A (en) Integrated circuit capacitor having a conductive trench
US20150348776A1 (en) Method of Manufacturing a Semiconductor Device with a Continuous Silicate Glass Structure
CN110854072A (zh) 低电磁干扰功率器件终端结构的制造工艺
CN110808245B (zh) 一种低电磁干扰功率器件终端结构
US9640445B1 (en) Methods of fabricating switched-capacitor DC-to-DC converters
CN112289927A (zh) 开关器件及其制造方法,相变随机存储器
JP2009009984A (ja) 半導体装置及びその製造方法
CN116314150A (zh) 电容器及其制造方法、工作方法
US7130182B2 (en) Stacked capacitor and method for fabricating same
CN107527907B (zh) 瞬态电压抑制器及其制造方法
US6489196B1 (en) Method of forming a capacitor with high capacitance and low voltage coefficient
US6309925B1 (en) Method for manufacturing capacitor
CN108198811B (zh) 瞬态电压抑制器及其制造方法
US6798641B1 (en) Low cost, high density diffusion diode-capacitor
CN110970559A (zh) 金属-绝缘体-金属电容结构的制造方法
US6392285B1 (en) Method for fabricating a capacitor device with BiCMOS process and the capacitor device formed thereby
US20230107575A1 (en) Semiconductor device having capacitor and manufacturing method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Country or region after: China

Address after: 430205 No.18, Gaoxin 4th Road, Donghu Development Zone, Wuhan City, Hubei Province

Applicant after: Wuhan Xinxin Integrated Circuit Co.,Ltd.

Address before: 430205 No.18, Gaoxin 4th Road, Donghu Development Zone, Wuhan City, Hubei Province

Applicant before: Wuhan Xinxin Semiconductor Manufacturing Co.,Ltd.

Country or region before: China