CN116299724A - Full-section overlying strata structure and separation layer frequency modulation periodic pulse type electromagnetic device and method - Google Patents
Full-section overlying strata structure and separation layer frequency modulation periodic pulse type electromagnetic device and method Download PDFInfo
- Publication number
- CN116299724A CN116299724A CN202310572037.0A CN202310572037A CN116299724A CN 116299724 A CN116299724 A CN 116299724A CN 202310572037 A CN202310572037 A CN 202310572037A CN 116299724 A CN116299724 A CN 116299724A
- Authority
- CN
- China
- Prior art keywords
- frequency
- full
- electromagnetic
- separation layer
- receiving unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/12—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with electromagnetic waves
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/30—Assessment of water resources
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Life Sciences & Earth Sciences (AREA)
- Electromagnetism (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
Description
技术领域technical field
本发明属于矿山安全监测技术领域,尤其涉及全断面覆岩结构与离层调频周期脉冲式电磁装置及方法。The invention belongs to the technical field of mine safety monitoring, and in particular relates to a full-section overlying rock structure and a separation layer frequency-modulated periodic pulse electromagnetic device and method.
背景技术Background technique
矿山压力与控制理论指出,随着煤层开采中工作面的推进,采空区周围岩体的应力平衡被破坏,覆岩发生移动、变形、破断并形成大量的裂痕,沿岩层间或层内顺层方向拉开的裂隙产生离层。随着覆岩运动发育到地表,地面产生塌陷,进而严重破坏地面建筑物、农田,造成人员伤亡的重大事故。The theory of mine pressure and control points out that with the advancement of the working face in coal seam mining, the stress balance of the rock mass around the goaf is destroyed, and the overlying rock moves, deforms, breaks and forms a large number of cracks, along the inter-layer or intra-layer bedding The cracks that are pulled apart in the direction produce a detachment layer. As the overlying rock movement develops to the surface, the ground will subside, which will seriously damage the ground buildings and farmland, causing major accidents of casualties.
当前,对于全断面覆岩结构与离层空间的分析大多是基于矿压及力学理论计算、相似材料模拟及计算机仿真模拟等方法确定,或根据采场及巷道的矿压显现监测参数进行力学反演分析。由于离层产生的位置一般位于采空区上方覆岩中断裂带上方、整体弯曲带下部位范围内,人员和设备难以直接进入测量。At present, the analysis of the full-section overlying rock structure and separated layer space is mostly determined based on mine pressure and mechanical theory calculations, similar material simulations, and computer simulations; performance analysis. Since the location of the separation layer is generally located above the fault zone in the overlying strata above the goaf and within the lower part of the overall bending zone, it is difficult for personnel and equipment to directly enter the measurement.
通过上述分析,现有技术存在的问题及缺陷为:传统的离层仪监测范围小,监测精度低,操作复杂且监测结果缺乏直观性,目前尚未有很好的方法能够对全断面覆岩结构与离层空间进行大范围、高精准直接监测。Through the above analysis, the existing problems and defects of the existing technology are: the traditional layer separation instrument has a small monitoring range, low monitoring accuracy, complicated operation and lack of intuitive monitoring results. Carry out large-scale, high-precision direct monitoring with the separation space.
发明内容Contents of the invention
为克服相关技术中存在的问题,本发明公开实施例提供了全断面覆岩结构与离层调频周期脉冲式电磁装置及方法,其目的是为了精确测量全断面覆岩结构与离层空间等,为下一步进行控制地表沉陷、离层注浆技术、矿区安全生产等工作提供技术支持。In order to overcome the problems existing in the related technologies, the disclosed embodiments of the present invention provide a full-section overlying rock structure and a layer-separation frequency-modulated periodic pulse electromagnetic device and method, the purpose of which is to accurately measure the full-section overlying rock structure and abscission space, etc. Provide technical support for the next step of controlling surface subsidence, separation layer grouting technology, and safe production in mining areas.
所述技术方案如下:一种全断面覆岩结构与离层调频周期脉冲式电磁装置,包括监测装置,所述监测装置包括发射单元,接收单元,处理单元;The technical solution is as follows: a full-section overlying rock structure and a separation-layer frequency-modulated periodic pulse electromagnetic device, including a monitoring device, and the monitoring device includes a transmitting unit, a receiving unit, and a processing unit;
所述发射单元通过集成的圆弧凸型线圈将调频处理后的周期脉冲式电磁波发送接收单元;The transmitting unit transmits the frequency-modulated periodic pulsed electromagnetic wave to the receiving unit through the integrated arc convex coil;
所述接收单元接收所述发射单元发送的调频处理后的周期脉冲式电磁波,通过集成的电磁波接收器经三点定位法处理后,获取电磁场形态,并将所述电磁场形态发送所述处理单元;所述电磁场形态包括监测半径、电磁场的总场强度、振幅、相位、方向,电磁场随空间变化的规律;The receiving unit receives the frequency-modulated periodic pulsed electromagnetic wave sent by the transmitting unit, obtains the electromagnetic field form after being processed by the integrated electromagnetic wave receiver through the three-point positioning method, and sends the electromagnetic field form to the processing unit; The electromagnetic field form includes the monitoring radius, the total field strength, amplitude, phase, and direction of the electromagnetic field, and the law of the electromagnetic field changing with space;
所述处理单元接收所述接收单元发送的信号,并进行信号处理,获得上覆岩层整个全断面的运动状态模型,所述运动状态模型包括各分层结构、裂隙以及离层空间形态几何模型等。The processing unit receives the signal sent by the receiving unit, and performs signal processing to obtain a motion state model of the entire cross-section of the overlying rock stratum, and the motion state model includes various layered structures, cracks, and spatial geometric models of abscission layers, etc. .
在一个实施例中,所述发射单元包括调频式波束仪,在监测时,通过第一电动滑轮送入钻孔中;In one embodiment, the transmitting unit includes a frequency-modulated beam instrument, which is sent into the borehole through the first electric pulley during monitoring;
所述调频式波束仪包括供电系统、频率转换装置、发射线圈以及第一固定机构,在调频式波束仪的左侧设置有第一电动液压伸缩杆将第一固定机构锚固在钻孔孔壁上,在调频式波束仪的右侧设置有第一电动滑轮控制发射单元的升降,该调频式波束仪的中部留有用于穿过第一预留孔用于连接导线通过,与接收单元连接。The frequency modulation beam meter includes a power supply system, a frequency conversion device, a transmitting coil and a first fixing mechanism, and a first electro-hydraulic telescopic rod is arranged on the left side of the frequency modulation beam meter to anchor the first fixing mechanism on the wall of the borehole , On the right side of the FM beam meter, there is a first electric pulley to control the lifting of the transmitting unit, and the middle part of the FM beam meter is used to pass through the first reserved hole for connecting wires to pass through and connect to the receiving unit.
在一个实施例中,所述供电系统设置在调频式波束仪内部的左上方,由振荡器、传输线、偶极子天线组成,用于产生周期脉冲式电磁波,通过导线与频率转换装置连接在一起;In one embodiment, the power supply system is arranged at the upper left inside the FM beam meter, and is composed of an oscillator, a transmission line, and a dipole antenna, used to generate periodic pulsed electromagnetic waves, and is connected to the frequency conversion device through wires ;
所述频率转换装置设置在调频式波束仪内部的右上方,通过导线与发射线圈连接在一起,所述频率转换装置用于通过改变振荡电流的频率而调制发射信号的强弱,针对不同岩石类型发射不同强弱的电磁波;The frequency conversion device is arranged on the upper right inside the FM beam instrument, and is connected with the transmitting coil through wires. The frequency conversion device is used to modulate the strength of the transmission signal by changing the frequency of the oscillating current, and it is suitable for different rock types Emit electromagnetic waves of different strengths;
所述发射线圈设置于调频式波束仪的内部下方,由圆弧凸型线圈、隔磁板、连接线构成,用于发射周期脉冲式电磁波;所述圆弧凸型线圈用于通过增大原始线圈缠绕匝数增强发射信号强度。The transmitting coil is arranged under the inside of the FM beam meter, and is composed of a circular arc convex coil, a magnetic isolation plate, and a connecting wire, and is used for transmitting periodic pulsed electromagnetic waves; the circular arc convex coil is used to increase the original The number of coil winding turns enhances the strength of the transmitted signal.
在一个实施例中,所述发射单元外设置防爆防水外壳,用于防爆、防水、防止仪器锈蚀。In one embodiment, an explosion-proof and waterproof casing is provided outside the transmitting unit for explosion-proof, waterproof and instrument rust prevention.
在一个实施例中,所述接收单元包括三点式接收器,在监测时,通过第二电动滑轮送入钻孔中,三点式接收器由电磁波接收器和第二固定机构组成;在三点式接收器左侧设置的第二电动液压伸缩杆,将第二固定机构锚固在钻孔孔壁上。In one embodiment, the receiving unit includes a three-point receiver, which is sent into the borehole through the second electric pulley during monitoring, and the three-point receiver is composed of an electromagnetic wave receiver and a second fixing mechanism; on the left side of the three-point receiver The second electro-hydraulic telescopic rod is provided to anchor the second fixing mechanism on the wall of the borehole.
在一个实施例中,所述电磁波接收器用于接收所述调频式波束仪发射的电磁波数据。In one embodiment, the electromagnetic wave receiver is used to receive electromagnetic wave data emitted by the FM beam meter.
在一个实施例中,所述接收单元外设置防爆防水外壳,用于防爆、防水、防止仪器锈蚀;所述接收单元的中部留有用于穿过第二预留孔,使连接导线通过,与处理单元连接。In one embodiment, the receiving unit is provided with an explosion-proof and waterproof casing for explosion-proof, waterproof, and instrument corrosion prevention; the middle part of the receiving unit is reserved for passing through the second reserved hole, so that the connecting wires can pass through, and the processing unit connection.
在一个实施例中,所述处理单元包括主机及防爆防水外壳,在监测时,安装在地表,所述主机由开关、驱动模块、控制模块、滤波器、处理模块、温度传感模块、自动报警模块、显示仪成像系统、电动液压伸缩杆启动开关、电动滑轮控制升降开关组成;驱动模块、控制模块用于控制发射单元的开闭,通过导线共同与滤波器连接;所述滤波器用于从复杂的频率成分中分离出所需要的频率成分,通过导线与处理模块连接;所述处理模块是从主机软件外部收集数据并将数据输入到主机软件内部的一个插口,进行数据处理、地形校正以及初步确定各分层结构、裂隙、离层预处理,并通过导线与温度传感模块连接;所述温度传感模块用于监测矿井及仪器温度并转换成信号输出到主机,并通过导线与自动报警模块连接,所述自动报警模块用于自动监测离层大小以及安全防爆,所述自动报警模块通过导线与显示仪成像系统连接,所述显示仪成像系统接收处理模块传输的数据,绘制出岩层电阻率随深度变化的信息,同时,对监测数据进行整理分析,形成视电阻率等值线图,通过视电阻率曲线反映地层的岩性特征,采用电阻率层析成像技术进行数据采集和计算机处理,通过所采集的数据进行层析成像处理,按一定的图形图像形式输出结果,建立全断面覆岩结构与离层空间几何模型,得到上覆岩层全断面运动状态图;所述上覆岩层全断面运动状态图包括各个分层的结构、裂隙、空间分布的离层等;所述电动液压伸缩杆启动开关位于显示仪成像系统下方,用于控制第一电动液压伸缩杆、第二电动液压伸缩杆的拉伸;电动滑轮控制升降开关位于显示仪成像系统下方,用于控制第一电动滑轮、第二电动滑轮的升降。In one embodiment, the processing unit includes a host and an explosion-proof and waterproof casing, and is installed on the surface during monitoring. The host is composed of a switch, a drive module, a control module, a filter, a processing module, a temperature sensing module, and an automatic alarm. Module, display instrument imaging system, electro-hydraulic telescopic rod start switch, electric pulley control lift switch; the drive module and control module are used to control the opening and closing of the transmitting unit, and are connected to the filter through wires; The required frequency components are separated from the frequency components, and connected to the processing module through wires; the processing module collects data from the outside of the host software and inputs the data into a socket inside the host software for data processing, terrain correction and preliminary determination Each layered structure, fissure, and separation layer are pretreated, and connected to the temperature sensing module through wires; the temperature sensing module is used to monitor the temperature of the mine and the instrument and convert it into a signal output to the host computer, and connect to the automatic alarm module through wires connected, the automatic alarm module is used to automatically monitor the size of the separation layer and safety explosion-proof, the automatic alarm module is connected to the imaging system of the display instrument through a wire, and the imaging system of the display instrument receives the data transmitted by the processing module, and draws the resistivity of the rock formation At the same time, the monitoring data is sorted out and analyzed to form an apparent resistivity contour map, which reflects the lithological characteristics of the formation through the apparent resistivity curve, and the resistivity tomography technology is used for data collection and computer processing. Through the tomography processing of the collected data, the results are output in a certain graphic image form, and the full-section overlying rock structure and abscission layer space geometric model are established to obtain the full-section motion state map of the overlying rock layer; the full-section overlying rock layer The motion state diagram includes various layered structures, cracks, and separation layers in spatial distribution; The stretching of the electric pulley; the electric pulley control lift switch is located under the imaging system of the display instrument, and is used to control the lifting of the first electric pulley and the second electric pulley.
本发明的另一目的在于提供一种全断面覆岩结构与离层调频周期脉冲式电磁装置的监测方法,选取地表作为参考平面,根据矿压及力学理论计算,预测出现离层的位置,具体包括以下步骤:Another object of the present invention is to provide a monitoring method for a full-section overlying rock structure and a layer-separated frequency-modulated periodic pulse electromagnetic device. The ground surface is selected as a reference plane, and the location of the layer-separated layer is predicted according to mine pressure and mechanical theory calculations. Include the following steps:
S1,利用圆弧凸型线圈将调频处理后的周期脉冲式电磁波发送接收单元;S1, using the arc convex coil to send and receive the periodic pulsed electromagnetic wave after frequency modulation;
S2,接收单元通过集成的电磁波接收器经三点定位法处理后,获取电磁场形态,并将所述电磁场形态发送所述处理单元;所述电磁场形态包括监测半径、电磁场的总场强度、振幅、相位、方向,电磁场随空间变化的规律;S2, the receiving unit obtains the electromagnetic field form after being processed by the three-point positioning method through the integrated electromagnetic wave receiver, and sends the electromagnetic field form to the processing unit; the electromagnetic field form includes the monitoring radius, the total field strength of the electromagnetic field, the amplitude, Phase, direction, and the law of electromagnetic fields changing with space;
S3,处理单元接收所述接收单元发送的信号,并进行信号处理,获得上覆岩层整个全断面的运动状态模型,所述运动状态模型包括各分层结构、裂隙以及离层空间形态几何模型等。S3, the processing unit receives the signal sent by the receiving unit, and performs signal processing to obtain the motion state model of the entire cross-section of the overlying rock stratum, the motion state model includes various layered structures, cracks, and spatial geometric models of abscission layers, etc. .
在一个实施例中,在步骤S2中三点定位法包括:通过电磁波接收器设置三点定位装置接收通道,当电磁波接收器检测到多个无序电磁波信号时,根据电磁波信号的强度进行区域分类,选取三个位置作为参考点,在各个参考点进行测试,确定各参考点的来波方向,汇聚三个参考点的来波方向。再次,通过测量终端和起点的距离,作为这三个参考点圆的半径,三个参考点绘制出三个圆,三个圆弧相交于一点,该点为终端位置。最终确定接收点,接收多个所述调频式波束仪发射的电磁波数据。In one embodiment, the three-point positioning method in step S2 includes: setting the receiving channel of the three-point positioning device through the electromagnetic wave receiver, and performing area classification according to the strength of the electromagnetic wave signal when the electromagnetic wave receiver detects multiple disordered electromagnetic wave signals , select three locations as reference points, test at each reference point, determine the incoming wave direction of each reference point, and gather the incoming wave directions of the three reference points. Again, by measuring the distance between the terminal and the starting point as the radius of the three reference point circles, the three reference points draw three circles, and the three arcs intersect at one point, which is the terminal position. The receiving point is finally determined to receive the electromagnetic wave data emitted by a plurality of FM beam instruments.
结合上述的所有技术方案,本发明所具备的优点及积极效果为:本发明采用的监测装置操作简便,监测范围大,监测结果精确,且能实时传输数据并迅速成像,使监测结果更为直观,克服了传统离层仪监测范围小、监测点少、监测效果不够确切以及难以安装等的缺点,最终解决了全断面覆岩结构与离层空间难以直接测量的难题。Combining all the above-mentioned technical solutions, the advantages and positive effects of the present invention are: the monitoring device adopted in the present invention is easy to operate, has a large monitoring range, accurate monitoring results, and can transmit data in real time and image rapidly, making the monitoring results more intuitive , overcoming the shortcomings of the traditional abscission instrument such as small monitoring range, few monitoring points, inaccurate monitoring effect, and difficult installation, etc., and finally solved the difficult problem of direct measurement of the full-section overlying rock structure and abscission space.
附图说明Description of drawings
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理;The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments consistent with the disclosure and together with the description serve to explain the principles of the disclosure;
图1是本发明实施例提供的全断面覆岩结构与离层调频周期脉冲式电磁装置示意图;Fig. 1 is a schematic diagram of a full-section overlying rock structure and a layer-separated frequency-modulated periodic pulse electromagnetic device provided by an embodiment of the present invention;
图2是本发明实施例提供的发射线圈的结构示意图;FIG. 2 is a schematic structural diagram of a transmitting coil provided by an embodiment of the present invention;
图3是本发明实施例提供的电磁波接收器的结构示意图;Fig. 3 is a schematic structural diagram of an electromagnetic wave receiver provided by an embodiment of the present invention;
图4是本发明实施例提供的为三点定位法原理图;Fig. 4 is the schematic diagram of the three-point positioning method provided by the embodiment of the present invention;
图5是本发明实施例提供的为主机结构示意图;Fig. 5 is a schematic diagram of the host structure provided by the embodiment of the present invention;
图6是本发明实施例提供的监测方法的测点布置俯视图;Fig. 6 is a top view of the arrangement of measuring points of the monitoring method provided by the embodiment of the present invention;
图7是本发明实施例提供的监测方法的测点布置剖面图;Fig. 7 is a cross-sectional view of the arrangement of measuring points of the monitoring method provided by the embodiment of the present invention;
图8是本发明实施例提供的监测方法运行原理图;Fig. 8 is a schematic diagram of the operation principle of the monitoring method provided by the embodiment of the present invention;
图9是本发明实施例提供的全断面覆岩结构与离层调频周期脉冲式电磁装置的监测方法流程图;Fig. 9 is a flow chart of the monitoring method of the full-section overlying rock structure and the separation layer frequency modulation periodic pulse electromagnetic device provided by the embodiment of the present invention;
图中:1、发射单元;2、接收单元;3、处理单元;4、第一电动滑轮;5、钻孔;6、供电系统;7、频率转换装置;8、发射线圈;9、第一固定机构;10、第一电动液压伸缩杆;11、监测装置;12、第一预留孔;13、连接导线;14、离层;15、圆弧凸型线圈;16、隔磁板;17、连接线;18、原始线圈;19、防爆防水外壳;20、电磁波接收器;21、三点定位装置;22、参考点;23、接收点;24、主机;25、地表;26、开关;27、驱动模块;28、控制模块;29、滤波器;30、处理模块;31、温度传感模块;32、自动报警模块;33、显示仪成像系统;34、电动液压伸缩杆启动开关;35、电动滑轮控制升降开关;36、切眼;37、停采线;38、回风顺槽;39、中间位置点;40、轨道顺槽;41、钻孔位态分布结构;42、电磁场;43、第二电动滑轮;44、第二固定机构;45、第二电动液压伸缩杆;46、第二预留孔。In the figure: 1. Transmitting unit; 2. Receiving unit; 3. Processing unit; 4. The first electric pulley; 5. Drilling; 6. Power supply system; 7. Frequency conversion device; 8. Transmitting coil; 9. The first Fixing mechanism; 10. The first electro-hydraulic telescopic rod; 11. Monitoring device; 12. The first reserved hole; 13. Connecting wire; 14. Separation layer; 15. Arc convex coil; 16. Magnetic isolation plate; 17 , connecting line; 18, original coil; 19, explosion-proof and waterproof shell; 20, electromagnetic wave receiver; 21, three-point positioning device; 22, reference point; 23, receiving point; 24, host computer; 25, ground surface; 26, switch; 27. Drive module; 28. Control module; 29. Filter; 30. Processing module; 31. Temperature sensing module; 32. Automatic alarm module; 33. Display imaging system; 34. Electrohydraulic telescopic rod start switch; 35 , electric pulley control lifting switch; 36, eye cutting; 37, stop production line; 38, return air trough; 39, middle position point; 40, track trough; 41, drilling position distribution structure; 42, electromagnetic field; 43. The second electric pulley; 44. The second fixing mechanism; 45. The second electro-hydraulic telescopic rod; 46. The second reserved hole.
具体实施方式Detailed ways
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其他方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施的限制。In order to make the above objects, features and advantages of the present invention more comprehensible, specific implementations of the present invention will be described in detail below in conjunction with the accompanying drawings. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, the present invention can be implemented in many other ways different from those described here, and those skilled in the art can make similar improvements without departing from the connotation of the present invention, so the present invention is not limited by the specific implementation disclosed below.
本发明主要创新点在于首次将周期脉冲式电磁波应用于离层14,并首次提出圆弧凸型发射线圈8,首次将三点定位法应用于离层14监测。可应用于一切可以钻孔的地下空间。The main innovation of the present invention is that the periodic pulsed electromagnetic wave is applied to the
可以理解,本发明首次提出针对不同的岩石性质调制不同的周期脉冲式电磁波频率。较坚硬岩石采用低频电磁波,软弱岩石采用高频电磁波。频率由频率转换装置7的振荡器产生,通过选频网络进行选频,根据岩石性质选取特定频率的信号,更加精准的勘探位上覆岩层全断面的运动状态。It can be understood that the present invention proposes for the first time to modulate different periodic pulsed electromagnetic wave frequencies for different rock properties. Harder rocks use low-frequency electromagnetic waves, and softer rocks use high-frequency electromagnetic waves. The frequency is generated by the oscillator of the
可以理解,本发明首次提出三点定位法:当接收单元2接收到发射单元1发射出来的多个无序电磁波信号时,根据电磁波信号的强度进行区域分类,随机选取三个位置作为参考点22,在各个参考点22开展测试,确定各参考点22的来波方向,汇聚三个参考点22的来波方向。再次,通过测量终端和起点的距离,将其作为这三个参考点22圆的半径,三个参考点22绘制出三个圆,三个圆弧相交于一点,该点即为终端位置;最终确定接收点23。It can be understood that the present invention proposes a three-point positioning method for the first time: when the receiving
示例性的,本发明提供的全断面覆岩结构与离层14调频周期脉冲式电磁装置包括发射单元1、接收单元2及处理单元3,发射单元1为一调频式波束仪,实际监测时,调频式波速仪安装在钻孔5内,其包括供电系统6、频率转换装置7、发射线圈8以及第一固定机构9,调频式波速仪通过第一电动液压伸缩杆10锚固在钻孔5孔壁上,用于发射调频周期脉冲式电磁波。接收单元2为三点式接收器,实际监测时,三点式接收器安装在钻孔5内,其包括电磁波接收器20和固定机构,三点式接收器通过三点定位法接收来自于发射单元1传输的调频周期脉冲式电磁波,并传输至处理单元3。处理单元3包括开关、驱动模块、控制模块、滤波器、处理模块、自动报警模块、温度传感模块、显示仪成像系统、电动液压伸缩杆启动开关、电动滑轮控制升降开关,对接收单元传输的数据进行处理并自动成像,建立全断面覆岩结构与离层空间几何结构模型,如若存在危险区域将启用自动报警模块。本发明可以为控制地表25沉陷、离层14注浆技术、矿区安全生产等工作提供技术支持。Exemplarily, the full-section overlying rock structure and the
本发明采用调频周期脉冲式电磁波,即电磁波采用脉冲式电磁波,周期性的发射脉冲式电磁波,用于提高勘探信号强度与针对性,提升勘探结果准确性,并根据离层14周围不同岩石性质,通过改变振荡电流的频率而调制发射信号的强弱,有针对性的进行调频,针对较坚硬岩石采用低频电磁波,针对软弱岩石采用高频电磁波,更加确切的勘探全断面覆岩结构与离层空间等,达到探测距离最远,精度最高的目的,解决了传统离层仪监测范围小、监测结果不够精确等的难点,用于更加精准、直观、快速地反应全断面覆岩结构与离层空间等。The present invention adopts frequency-modulated periodic pulsed electromagnetic waves, that is, the electromagnetic waves adopt pulsed electromagnetic waves, and periodically emit pulsed electromagnetic waves to improve the strength and pertinence of exploration signals and improve the accuracy of exploration results. According to the different rock properties around the
本发明的电磁波接收器20设置三点定位式接收通道,可同时接收多个无序电磁波信号,同时进行多点监测,多个测点同时进行实时数据传输,用于实时、高效、精准的接收多个所述调频式波束仪发射的电磁波数据;本发明采用温度传感模块及自动报警模块,用于自动监测离层14规模大小,离层14宽度超过10cm、温度低于10摄氏度、高于50摄氏度满足三者之一即启动自动报警模块,降低矿井灾害发生的概率,保障人民生命、财产安全。The
本发明方法以视电阻率等值线图为依据,通过视电阻率曲线反映地层的岩性特征,采用电阻率层析成像技术进行数据采集和计算机处理,通过所采集的数据进行层析成像处理,按一定的图形图像形式输出结果,建立全断面覆岩结构与离层空间几何模型,可以得到上覆岩层全断面运动状态图,包括各个分层的结构、裂隙、空间离层等,解决了全断面覆岩结构与离层空间无法现场测量的技术难题,同时对控制地表25沉陷、离层注浆技术、矿区安全生产等极具参考价值。The method of the present invention is based on the apparent resistivity contour map, reflects the lithological characteristics of the formation through the apparent resistivity curve, adopts resistivity tomography technology for data collection and computer processing, and performs tomography processing through the collected data , output the results in a certain graphic image form, establish the full-section overlying rock structure and the spatial geometric model of the abscission layer, and obtain the full-section motion state diagram of the overlying rock layer, including the structure of each layer, cracks, space abscission, etc., to solve the problem The technical problem that the full-section overlying rock structure and separation layer space cannot be measured on site is of great reference value for the control of
本发明可大规模应用在现场工程实践中;本发明提出的通过调频周期脉冲式电磁波勘探全断面覆岩结构与离层空间,解决了可调频式周期式脉冲电磁法勘探离层的问题,以及解决了全断面覆岩结构与离层空间无法现场测量的问题。本发明的技术方案进一步解决了传统离层仪监测范围小、监测结果不够精确、安装过程繁琐、观测结果不直观、不能实时传输数据并迅速成像等技术难点,同时对控制地表25沉陷、离层注浆技术、矿区安全生产等极具参考价值。The present invention can be applied on a large scale in on-site engineering practice; the exploration of the full-section overlying rock structure and abscission space through the frequency-modulated periodic pulse electromagnetic wave proposed by the present invention solves the problem of the frequency-adjustable periodic pulse electromagnetic method in the exploration of the abscission layer, and It solves the problem that the full-section overlying rock structure and abscission space cannot be measured on site. The technical scheme of the present invention further solves the technical difficulties such as the small monitoring range of the traditional delamination instrument, the monitoring results are not accurate enough, the installation process is cumbersome, the observation results are not intuitive, and the data cannot be transmitted in real time and can be imaged quickly. Grouting technology, mine safety production, etc. are of great reference value.
如图1所示,本发明实施例提供一种全断面覆岩结构与离层调频周期脉冲式电磁装置,包括监测装置11,所述监测装置11包括发射单元1,接收单元2,处理单元3;As shown in Figure 1, the embodiment of the present invention provides a full-section overburden structure and a layer-separated frequency-modulated periodic pulse electromagnetic device, including a
所述发射单元1通过集成的圆弧凸型线圈15将调频处理后的周期脉冲式电磁波发送接收单元2;The transmitting
所述接收单元2接收所述发射单元1发送的调频处理后的周期脉冲式电磁波,通过集成的电磁波接收器20经三点定位法处理后,获取电磁场42形态,并将所述电磁场42形态发送所述处理单元3;所述电磁场42形态包括监测半径、电磁场的总场强度、振幅、相位、方向,电磁场随空间变化的规律;The receiving
所述处理单元3接收所述接收单元2发送的信号,并进行信号处理,获得上覆岩层整个全断面的运动状态模型,所述运动状态模型包括各分层结构、裂隙以及离层14空间形态几何模型等。The
本发明实施例还提供一种全断面覆岩结构与离层14调频周期脉冲式电磁装置的监测方法,选取地表25作为参考平面,根据矿压及力学理论计算,预测出现离层14的位置,具体包括以下步骤:The embodiment of the present invention also provides a monitoring method for the full-section overlying rock structure and the frequency-modulated periodic pulse electromagnetic device of the
S1,利用圆弧凸型线圈15将调频处理后的周期脉冲式电磁波发送接收单元2;S1, using the arc-shaped
S2,接收单元2通过集成的电磁波接收器20经三点定位法处理后,获取电磁场42形态,并将所述电磁场42形态发送所述处理单元3;所述电磁场42形态包括监测半径、电磁场的总场强度、振幅、相位、方向,电磁场随空间变化的规律;S2, the receiving
S3,处理单元3接收所述接收单元2发送的信号,并进行信号处理,获得上覆岩层整个全断面的运动状态模型,所述运动状态模型包括各分层结构、裂隙以及离层14空间形态几何模型等。S3, the
实施例1,本发明实施例提供一种全断面覆岩结构与离层调频周期脉冲式电磁装置包括监测装置11,所述监测装置11包括发射单元1,接收单元2,处理单元3。其中,主要改进点发射单元1包括调频式波束仪,在监测时,将其通过第一电动滑轮4送入钻孔5中。
调频式波束仪具体包括供电系统6、频率转换装置7、发射线圈8以及第一固定机构9,其中,第一固定机构9在这些部件中起一个固定连接作用,其具体结构优先选为长方体,在调频式波束仪的左侧设置有第一电动液压伸缩杆10,该第一电动液压伸缩杆10的设置目的是为了将第一固定机构9牢固地锚固在孔壁上,以便于该调频式波束仪在钻孔5内的安装。在调频式波束仪的右侧设置有第一电动滑轮4,该第一电动滑轮4设置目的是为了控制发射单元1的升降。另外。该调频式波束仪的中部留有用于穿过第一预留孔12,具体该孔的大小根据现场实际需求进行设计,目的是使得连接导线13通过。The frequency modulation beam meter specifically includes a
所述供电系统6设置在调频式波束仪内部的左上方,由振荡器、传输线、偶极子天线等组成,用于产生周期脉冲式电磁波,通过导线与频率转换装置7连接在一起。The
所述频率转换装置7设置在调频式波束仪内部的右上方,通过导线与发射线圈8连接在一起,该频率转换装置7的设置目的是为了通过改变振荡电流的频率而调制发射信号的强弱,针对不同岩石类型发射不同强弱的电磁波,更有针对性的监测全断面覆岩结构与离层14周围岩石性质,更加准确的反应全断面覆岩结构与离层14空间等。The
所述发射线圈8设置于调频式波束仪的内部下方,如图2所示,由圆弧凸型线圈15、隔磁板16、连接线17构成,用于发射周期脉冲式电磁波。其中,圆弧凸型线圈15的设置目的是为了通过增大原始线圈18缠绕匝数,用于提高发射线圈8产生的磁场强度的面积,增强发射信号强度。当进行实际监测时,第一固定机构9与第一电动液压伸缩杆10牢牢抓住钻孔岩壁防止调频式波束仪与所在岩层发生滑动,使调频式波束仪与岩层结成一个整体。发射单元1外设置防爆防水外壳19,用于防爆、防水、防止仪器锈蚀。The transmitting
所述接收单元2包括三点式接收器,在监测时,将其通过第二电动滑轮43送入钻孔5中,三点式接收器由电磁波接收器20和第二固定机构44组成;在三点式接收器左侧设置的第二电动液压伸缩杆45,将第二固定机构44锚固在钻孔孔壁上。The receiving
如图3、图4所示,该电磁波接收器20设置三点定位装置21接收通道,当电磁波接收器20检测到多个无序电磁波信号时,根据电磁波信号的强度进行区域分类,选取三个位置作为参考点22,在各个参考点22开展测试,确定各参考点22的来波方向,汇聚三个参考点22的来波方向。再次,通过测量终端和起点的距离,作为这三个参考点22圆的半径,三个参考点22绘制出三个圆,三个圆弧相交于一点,该点为终端位置。最终确定接收点23,接收多个所述调频式波束仪发射的电磁波数据;用于实时、高效、准确的接收多个所述调频式波束仪发射的电磁波数据。当进行实际监测时,第二固定机构44与第二电动液压伸缩杆45牢牢抓住钻孔岩壁防止接收单元2与所在岩层发生滑动,使接收单元2与岩层结成一个整体。接收单元2外设置防爆防水外壳19,用于防爆、防水、防止仪器锈蚀。接收单元2可采用长方体结构,接收单元2的中部留有用于穿过第二预留孔46,具体该孔的大小根据现场实际需求进行设计,目的是使得连接导线13通过。As shown in Fig. 3 and Fig. 4, the
所述处理单元3包括主机24及防爆防水外壳19,在监测时,其安装在地表25,如图5所示,主机24由开关26、驱动模块27、控制模块28、滤波器29、处理模块30、温度传感模块31、自动报警模块32、显示仪成像系统33、电动液压伸缩杆启动开关34、电动滑轮控制升降开关35组成。驱动模块27、控制模块28用于控制发射单元1的开闭,其通过导线共同与滤波器29连接在一起。滤波器29的设置目的是为了从复杂的频率成分中分离出所需要的频率成分,过滤掉无用的频率成分,提高分析精度。其通过导线与处理模块30连接在一起,处理模块30是从主机软件外部收集数据并将数据输入到主机软件内部的一个插口,其拥有数据处理、地形校正以及初步确定各分层结构、裂隙、空间离层14等预处理功能,是实现数据共享的关键环节。其通过导线与温度传感模块31连接在一起,温度传感模块31用于监测矿井及仪器温度并转换成信号输出到主机24,温度传感模块31的设置目的是为了用于矿井防爆安全监测,提高矿井生产力。其通过导线与自动报警模块32连接在一起,自动报警模块32用于自动监测离层14规模大小以及安全防爆,离层14宽度超过10cm、温度低于0摄氏度、高于40摄氏度满足三者之一即启动自动报警模块32,以降低灾害事故发生概率。自动报警模块32通过导线与显示仪成像系统33连接在一起,显示仪成像系统33接收处理模块30传输的数据,绘制出岩层电阻率随深度变化的信息,同时,对监测数据进行整理分析,形成视电阻率等值线图,通过视电阻率曲线反映地层的岩性特征,采用电阻率层析成像技术进行数据采集和计算机处理,通过所采集的数据进行层析成像处理,按一定的图形图像形式输出结果,建立全断面覆岩结构与离层14空间几何模型,可以得到上覆岩层全断面运动状态图,包括各个分层的结构、裂隙、空间分布的离层14等。电动液压伸缩杆启动开关34位于显示仪成像系统33下方,用于控制第一电动液压伸缩杆10、第二电动液压伸缩杆45的拉伸。电动滑轮控制升降开关35位于显示仪成像系统33下方,用于控制第一电动滑轮4、第二电动滑轮43的升降。Described
可以理解,电阻率层析成像技术借用了医学上的X射线CT扫描成像的概念和原理,利用地表25、钻孔或井下巷道等来布置发射点和接收点,接收到带有目标体内部信息的数据后,再用它重构探测体内部物性的分布情况等。电阻率层析成像系统主要包含数据采集和计算机处理两大部分。现场测量时,将全部电极布置在一定间隔的测点上,用多芯电缆与程控开关连接,在预设程序的控制下,实现电极排列方式、极距与测点之间的快速转换和数据采集,然后,通过计算机对所采集的数据进行层析成像处理,按一定的图形图像形式输出结果。三维电阻率层析成像技术具有测点密度大、工作效率高等特点。因此可将电阻率层析3D成像技术运用于工程实践。It can be understood that the electrical resistivity tomography technology borrows the concept and principle of X-ray CT scanning imaging in medicine, and uses the
如图6所示,监测工作选取切眼36至停采线37位于轨道顺槽40上的中间位置点39,自工作面的轨道顺槽40向工作面的回风顺槽38垂直方向推进,每隔30米布置一个调频周期脉冲式电磁装置,钻孔位态分布结构41如图7所示。As shown in Figure 6, the monitoring work selects the
如图8所示,选取地表25作为参考平面,根据矿压及力学理论计算,理论预测可能出现离层14的位置,自地表25布置监测钻孔,钻孔5钻探至弯曲带底部结束。将监测装置11中的发射单元1、接收单元2固定于钻孔最底端,设置好主机24的数据采集间隔,打开主机24的开关26,操作驱动模块27、控制模块28,由监测装置11的发射单元1的供电系统6提供一个周期脉冲式电磁波,经频率转换装置7处理调频,该调频周期脉冲式电磁波由圆弧凸型线圈15发出,由监测装置11的接收单元2中电磁波接收器20经三点定位法处理后接收,电磁场42形态如图8所示,监测半径由a至d。As shown in Fig. 8, the
接收单元2接收信号后传输至处理单元3的滤波器29中,从复杂的频率成分中分离出所需要的频率成分并传输至处理模块30,处理模块30对数据进行数据处理、地形校正等预处理,初步确定上覆岩层全断面的运动状态,包括各分层结构、裂隙以及离层14空间形态等,同时,并对温度传感模块31的数据进行分析,判断是否存在危险区,若存在危险区将启动自动报警模块32。紧接着绘制出岩层电阻率随深度变化的信息。同时,对监测数据进行整理分析,形成视电阻率等值线图,通过视电阻率曲线反映地层的岩性特征,采用电阻率层析成像技术进行数据采集和计算机处理,通过所采集的数据进行层析成像处理,按一定的图形图像形式输出结果,将数据传输至显示仪成像系统33,建立位于钻孔5底部的全断面覆岩结构与离层14空间几何模型,可以得到位于钻孔5底部的上覆岩层全断面运动状态图,包括各个分层的结构、裂隙、空间分布的离层14等。根据构建的位于钻孔5底部的全断面覆岩结构与离层14空间几何结构模型反馈于主机24,主机24控制发射单元1中的供电系统6有针对性的提供不同周期性的脉冲电磁波,频率转换装置7根据全断面覆岩结构及离层14周围不同岩石性质有针对性的进行调频,针对较坚硬岩石采用低频电磁波,针对软弱岩石采用高频电磁波,频率转换装置7的频率由振荡器产生,通过选频网络进行选频,根据岩石性质选取特定频率的信号,更加精准的勘探位于钻孔底部的上覆岩层全断面的运动状态。重复上述发射、接收、处理等一系列操作,得到精准的位于钻孔底部的全断面覆岩结构与离层14空间几何结构模型。紧接着,通过主机24控制电动液压伸缩杆启动开关34、电动滑轮控制升降开关35,收缩第一电动液压伸缩杆10、第二电动液压伸缩杆45,提升第一电动滑轮4、第二电动滑轮43,将发射单元1、接收单元2提升至钻孔5中部,伸长第一电动液压伸缩杆10、第二电动液压伸缩杆45,将发射单元1、接收单元2紧紧地锚固在钻孔5孔壁中部,重复上述发射信号、接收信号、处理信号等所有操作,记录好岩层电阻率随深度变化的信息,形成视电阻率等值线图,通过视电阻率曲线反映地层的岩性特征,采用电阻率层析成像技术进行数据采集和计算机处理,将所采集的数据进行层析成像处理,按一定的图形图像形式输出结果,建立位于钻孔5中部的全断面覆岩结构与离层14空间几何模型。再次,通过主机24控制电动液压伸缩杆启动开关34、电动滑轮控制升降开关35,收缩第一电动液压伸缩杆10、第二电动液压伸缩杆45,提升第一电动滑轮4、第二电动滑轮43,将发射单元1、接收单元2提升至钻孔上部,伸长第一电动液压伸缩杆10、第二电动液压伸缩杆45,将发射单元1、接收单元2紧紧地锚固在钻孔5孔壁上部,重复上述发射、接收、处理等所有操作,记录好岩层电阻率随深度变化的信息,形成视电阻率等值线图,通过视电阻率曲线反映地层的岩性特征,采用电阻率层析成像技术进行数据采集和计算机处理,将所采集的数据进行层析成像处理,按一定的图形图像形式输出结果,建立位于钻孔上部的全断面覆岩结构与离层14空间几何模型。汇总上述测得的位于钻孔5上、中、底部发射单元1、接收单元2探测的全断面覆岩结构与离层14空间几何模型相关资料,建立上覆岩层整个全断面的运动状态模型,包括各分层结构、裂隙以及离层14空间形态几何模型等。The receiving
实施例2,下面以本申请全断面覆岩结构与离层14调频周期脉冲式电磁装置可应用于一切可以钻孔的地下空间为例,对技术方案作进一步描述。
本申请提供的全断面覆岩结构与离层14调频周期脉冲式电磁装置可采用实施例1描述方案。The scheme described in
作为本发明的一个优选方案,所述的供电系统6采用周期式脉冲电磁波,周期性的发射脉冲式电磁波,用于提高勘探信号强度与针对性。As a preferred solution of the present invention, the
作为本发明的一个优选方案,所述的频率转换装置7将根据离层14周围不同岩石性质,通过改变振荡电流的频率而调制信号的强弱,针对较坚硬岩石采用低频电磁波,针对软弱岩石采用高频电磁波,用于提高监测上覆岩层整个全断面的运动状态,包括各分层结构、裂隙以及离层14空间等的准确性。As a preferred solution of the present invention, the
作为本发明的一个优选方案,所述发射线圈8由圆弧凸型线圈15构成,通过增大原始线圈18的缠绕匝数,用于提高发射线圈8产生的磁场强度的面积,增强发射信号强度。As a preferred solution of the present invention, the transmitting
作为本发明的一个优选方案,所述的电磁波接收器20设置三点定位式接收通道,用于实时接收多个来自所述发射单元1发射的电磁波数据。As a preferred solution of the present invention, the
作为本发明的一个优选方案,所述的自动报警模块32用于自动监测离层14规模大小、仪器及矿井温度。离层14宽度超过10cm、温度低于0摄氏度、高于40摄氏度满足三者之一即启动自动报警模块32。As a preferred solution of the present invention, the
如图9所示,本发明实施例还提供一种全断面覆岩结构与离层调频周期脉冲式电磁装置的监测方法包括以下步骤:As shown in Figure 9, the embodiment of the present invention also provides a monitoring method of a full-section overlying rock structure and a layer-separated frequency-modulated periodic pulse electromagnetic device, including the following steps:
S101,选取地表25作为参考平面,根据矿压及力学理论计算,理论预测可能出现离层14的位置;S101, selecting the
自地表25布置钻孔5,钻孔5钻探至弯曲带底部结束,并对钻孔5的相关参数进行设计;Arranging
S102,根据钻孔的设计参数进行钻孔施工;S102, performing drilling construction according to the design parameters of the drilling;
S103,安装监测装置11;S103, installing the
S104,监测搜集数据;S104, monitoring and collecting data;
监测工作选取切眼36至停采线37位于轨道顺槽40上的中间位置点39,自工作面的轨道顺槽40向工作面的回风顺槽38垂直方向推进,每隔30m布置一个监测装置11,设置好主机24的数据采集间隔。此测量工作的监测周期为实时监测;如图6、图7所示;For the monitoring work, the
S105,全断面覆岩结构与离层14空间范围的确定;S105, Determination of the full-section overlying rock structure and the space range of the
将所述的监测装置11的发射单元1、接收单元2通过第一电动滑轮4、第二电动滑轮43放入钻孔5底部,由第一电动液压伸缩杆10、第二电动液压伸缩杆45将其锚固在钻孔5孔壁上。主机24通过驱动模块27、控制模块28、连接导线13向发射单元1发出动作指令,发射单元1中的供电系统6产生周期脉冲式电磁波,由频率转换装置7调制周期脉冲式电磁波信号的强弱,电磁波经由圆弧凸型线圈15发出,接收单元2通过三点定位法接收电磁波后通过连接导线13传输到处理单元3的主机24中的滤波器29中,滤波器29过滤掉无用数据后将数据传输到主机24中的处理模块30,处理模块30进行畸变点消除、地形校正以及初步确定上覆岩层全断面的运动状态,包括各分层结构、裂隙以及离层14空间形态等预处理后,绘制出岩层电阻率随深度变化的信息。同时,对监测数据进行整理分析,形成视电阻率等值线图,通过视电阻率曲线反映地层的岩性特征,采用电阻率层析成像技术进行数据采集和计算机处理,通过所采集的数据进行层析成像处理,按一定的图形图像形式输出结果,建立位于钻孔5底部的全断面覆岩结构与离层14空间几何模型,可以得到位于钻孔5底部的上覆岩层全断面运动状态图,包括各个分层的结构、裂隙、空间离层14等,显示于主机的显示仪成像系统33。根据构建的全断面覆岩结构与离层14空间几何结构模型反馈于主机24,主机24控制发射单元1中的供电系统6有针对性的提供不同周期的脉冲式电磁波,并控制频率转换装置7根据全断面覆岩结构与离层14空间几何结构模型周围不同岩石性质有针对性的进行调频,对较坚硬岩石采用低频电磁波,针对软弱岩石采用高频电磁波,重复上述发射、接收、处理等一系列操作,记录好岩层电阻率随深度变化的信息,形成视电阻率等值线图,通过视电阻率曲线反映地层的岩性特征,采用电阻率层析成像技术进行数据采集和计算机处理,将所采集的数据进行层析成像处理,按一定的图形图像形式输出结果,建立确切的位于钻孔5底部的全断面覆岩结构与离层14空间几何模型。期间,温度传感模块31、自动报警模块32将实时进行信息传输,自动判断是否出现危险区,若出现危险区域将启用自动报警模块32;再次,将监测装置11的发射单元1、接收单元2通过第一电动滑轮4、第二电动滑轮43及第一电动液压伸缩杆10、第二电动液压伸缩杆45提升至钻孔5中部,重复上述发射、接收、处理等所有操作,建立位于钻孔5中部的全断面覆岩结构与离层14空间几何模型。再次将监测装置11的发射单元1、接收单元2提升至钻孔5顶部,重复上述发射、接收、处理等所有操作,建立位于钻孔5上部的全断面覆岩结构与离层14空间几何模型。汇总上述测得的位于钻孔5上、中、底部探测的全断面覆岩结构与离层14空间几何模型相关资料,建立确切的、完整的全断面覆岩结构与离层14空间范围几何模型。The transmitting
作为本发明的一个优选方案,步骤S101中,所述钻孔5的相关参数包括钻孔个数、布置间距、钻孔长度、倾角及孔径;As a preferred solution of the present invention, in step S101, the relevant parameters of the
作为本发明的一个优选方案,本发明步骤S101-步骤S105中,发射单元1、接收单元2、处理单元3均设置防爆防水外壳19,用于防爆、防水、防止仪器锈蚀。As a preferred solution of the present invention, in steps S101-S105 of the present invention, the transmitting
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。In the above-mentioned embodiments, the descriptions of each embodiment have their own emphases, and for parts that are not detailed or recorded in a certain embodiment, refer to the relevant descriptions of other embodiments.
上述装置/单元之间的信息交互、执行过程等内容,由于与本发明方法实施例基于同一构思,其具体功能及带来的技术效果,具体可参见方法实施例部分,此处不再赘述。The information interaction and execution process between the above-mentioned devices/units are based on the same idea as the method embodiment of the present invention, and its specific functions and technical effects can be found in the method embodiment section, and will not be repeated here.
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元3中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本发明的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程。Those skilled in the art can clearly understand that for the convenience and brevity of description, only the division of the above-mentioned functional units and modules is used for illustration. In practical applications, the above-mentioned functions can be assigned to different functional units, Completion of modules means that the internal structure of the device is divided into different functional units or modules to complete all or part of the functions described above. Each functional unit and module in the embodiment can be integrated in one
基于上述本发明实施例记载的技术方案,进一步的可提出以下应用例。Based on the technical solutions described in the above-mentioned embodiments of the present invention, the following application examples can be further proposed.
根据本申请的实施例,本发明还提供了一种计算机设备,该计算机设备包括:至少一个处理器、存储器以及存储在所述存储器中并可在所述至少一个处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述任意各个方法实施例中的步骤。According to an embodiment of the present application, the present invention also provides a computer device, which includes: at least one processor, a memory, and a computer program stored in the memory and operable on the at least one processor, When the processor executes the computer program, the steps in any of the foregoing method embodiments are implemented.
本发明实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时可实现上述各个方法实施例中的步骤。An embodiment of the present invention also provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, the steps in the foregoing method embodiments can be implemented.
本发明实施例还提供了一种信息数据处理终端,所述信息数据处理终端用于实现于电子装置上执行时,提供用户输入接口以实施如上述各方法实施例中的步骤,所述信息数据处理终端不限于手机、电脑、交换机。The embodiment of the present invention also provides an information data processing terminal, the information data processing terminal is used to provide a user input interface to implement the steps in the above-mentioned method embodiments when the information data processing terminal is implemented on an electronic device, the information data Processing terminals are not limited to mobile phones, computers, and switches.
本发明实施例还提供了一种服务器,所述服务器用于实现于电子装置上执行时,提供用户输入接口以实施如上述各方法实施例中的步骤。The embodiment of the present invention also provides a server, which is configured to provide a user input interface to implement the steps in the foregoing method embodiments when executed on an electronic device.
本发明实施例还提供了一种计算机程序产品,当计算机程序产品在电子设备上运行时,使得电子设备执行时可实现上述各个方法实施例中的步骤。The embodiment of the present invention also provides a computer program product, which, when the computer program product is run on the electronic device, enables the electronic device to implement the steps in the foregoing method embodiments.
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质至少可以包括:能够将计算机程序代码携带到拍照装置/终端设备的任何实体或装置、记录介质、计算机存储器、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random AccessMemory,RAM)、电载波信号、电信信号以及软件分发介质。例如U盘、移动硬盘、磁碟或者光盘等。If the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium. Based on this understanding, all or part of the procedures in the method of the above-mentioned embodiments in the present application can be completed by instructing related hardware through a computer program. The computer program can be stored in a computer-readable storage medium. The computer program When executed by a processor, the steps in the above-mentioned various method embodiments can be realized. Wherein, the computer program includes computer program code, and the computer program code may be in the form of source code, object code, executable file or some intermediate form. The computer-readable medium may at least include: any entity or device capable of carrying computer program codes to a photographing device/terminal device, a recording medium, a computer memory, a read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), electrical carrier signals, telecommunication signals, and software distribution media. Such as U disk, mobile hard disk, magnetic disk or optical disk, etc.
以上所述,仅为本发明较优的具体的实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,都应涵盖在本发明的保护范围之内。The above is only a preferred specific implementation of the present invention, but the protection scope of the present invention is not limited thereto. Any person familiar with the technical field is within the technical scope disclosed in the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles shall fall within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310572037.0A CN116299724B (en) | 2023-05-22 | 2023-05-22 | Full-section overlying strata structure and separation layer frequency modulation periodic pulse type electromagnetic device and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310572037.0A CN116299724B (en) | 2023-05-22 | 2023-05-22 | Full-section overlying strata structure and separation layer frequency modulation periodic pulse type electromagnetic device and method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116299724A true CN116299724A (en) | 2023-06-23 |
CN116299724B CN116299724B (en) | 2023-08-08 |
Family
ID=86798221
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310572037.0A Active CN116299724B (en) | 2023-05-22 | 2023-05-22 | Full-section overlying strata structure and separation layer frequency modulation periodic pulse type electromagnetic device and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116299724B (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080253230A1 (en) * | 2007-04-13 | 2008-10-16 | Chevron U.S.A. Inc. | System and method for receiving and decoding electromagnetic transmissions within a well |
US20100277176A1 (en) * | 2009-05-04 | 2010-11-04 | Homan Dean M | Logging tool having shielded triaxial antennas |
US20100307741A1 (en) * | 2007-07-12 | 2010-12-09 | Laurent Mosse | Tool for downhole formation evaluation |
CN103573247A (en) * | 2012-07-20 | 2014-02-12 | 中国石油集团长城钻探工程有限公司 | Parallel planar coil for induction logging and induction logging device |
CN104536052A (en) * | 2014-12-22 | 2015-04-22 | 武汉市工程科学技术研究院 | Pseudorandom spectrum-spread electromagnetic wave tomographic imaging instrument and method for achieving imaging |
CN105092701A (en) * | 2015-07-24 | 2015-11-25 | 广州彩磁信息技术有限公司 | Electromagnetic ultrasonic detection system based on electromechanical hybrid frequency-modulation energy-gathered irradiation and method |
US20170218752A1 (en) * | 2015-07-22 | 2017-08-03 | Halliburton Energy Services, Inc. | Electromagnetic Monitoring with Formation-Matched Resonant Induction Sensors |
CN107702638A (en) * | 2017-11-08 | 2018-02-16 | 山东科技大学 | Country rock excavation deformation overall process monitoring system and application method |
CN114035237A (en) * | 2021-11-01 | 2022-02-11 | 中国矿业大学 | Ground drilling transient electromagnetic method for monitoring coal mining separation layer water forming process |
CN115950396A (en) * | 2023-03-15 | 2023-04-11 | 山西金宝岛基础工程有限公司 | Surface and underground integrated settlement monitoring device and method |
-
2023
- 2023-05-22 CN CN202310572037.0A patent/CN116299724B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080253230A1 (en) * | 2007-04-13 | 2008-10-16 | Chevron U.S.A. Inc. | System and method for receiving and decoding electromagnetic transmissions within a well |
US20100307741A1 (en) * | 2007-07-12 | 2010-12-09 | Laurent Mosse | Tool for downhole formation evaluation |
US20100277176A1 (en) * | 2009-05-04 | 2010-11-04 | Homan Dean M | Logging tool having shielded triaxial antennas |
CN103573247A (en) * | 2012-07-20 | 2014-02-12 | 中国石油集团长城钻探工程有限公司 | Parallel planar coil for induction logging and induction logging device |
CN104536052A (en) * | 2014-12-22 | 2015-04-22 | 武汉市工程科学技术研究院 | Pseudorandom spectrum-spread electromagnetic wave tomographic imaging instrument and method for achieving imaging |
US20170218752A1 (en) * | 2015-07-22 | 2017-08-03 | Halliburton Energy Services, Inc. | Electromagnetic Monitoring with Formation-Matched Resonant Induction Sensors |
CN105092701A (en) * | 2015-07-24 | 2015-11-25 | 广州彩磁信息技术有限公司 | Electromagnetic ultrasonic detection system based on electromechanical hybrid frequency-modulation energy-gathered irradiation and method |
CN107702638A (en) * | 2017-11-08 | 2018-02-16 | 山东科技大学 | Country rock excavation deformation overall process monitoring system and application method |
CN114035237A (en) * | 2021-11-01 | 2022-02-11 | 中国矿业大学 | Ground drilling transient electromagnetic method for monitoring coal mining separation layer water forming process |
CN115950396A (en) * | 2023-03-15 | 2023-04-11 | 山西金宝岛基础工程有限公司 | Surface and underground integrated settlement monitoring device and method |
Also Published As
Publication number | Publication date |
---|---|
CN116299724B (en) | 2023-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105116440B (en) | A kind of slope rock mass monitoring system and monitoring method | |
CN103410565B (en) | Bump many reference amounts process monitoring system and method for early warning | |
CN111208555B (en) | Active and passive detection and positioning method for underground coal fire danger sound waves | |
CN106089304A (en) | A kind of based on stratum construction multifunctional electric control early warning communication system | |
CN102385070A (en) | Radio wave perspective captive test (CT) method for overlong working surface | |
CN102768027A (en) | Method for monitoring whole-process safe displacement of underground surrounding rock | |
CN108107478A (en) | Magnetotelluric synchronizing detection and real time inversion method and system | |
CN103529488A (en) | Mine roof and floor water inrush monitoring and prediction system and method | |
CN114241720A (en) | An intelligent forecasting and early warning system and method for tunnel construction based on digital twin | |
CN211291565U (en) | Tunnel construction dynamic monitoring and early warning system | |
CN103174418A (en) | Advanced detection system and method for excavation hazards | |
CN102691525A (en) | Method and system for remote three-dimensional digital safety early warming for tunnel construction landslide | |
CN114839672A (en) | A fast advanced geological prediction method for tunnels with advanced horizontal drilling and measurement while drilling | |
CN105699432A (en) | Paste filling effect evaluating method | |
CN104407392A (en) | One-transmitting and three-receiving type detection device for water filling goaf, and detection method | |
CN113484910B (en) | Tunnel advanced geological prediction method and system based on seismic interferometry | |
CN105137504A (en) | Advanced geological forecast system and method under tunnel borer construction conditions | |
CN110824568A (en) | A built-in focusing electric water detection system and method mounted on a shield machine cutter head | |
CN113107507A (en) | Advanced detection device | |
CN102797504A (en) | Remote three-dimensional digital alarm method and facility of deformation stability of primary tunnel supporting body | |
CN116299724B (en) | Full-section overlying strata structure and separation layer frequency modulation periodic pulse type electromagnetic device and method | |
CN104199110A (en) | Method for channel wave earthquake stereoscopic advanced detection during underground coal mine support | |
CN206833669U (en) | A kind of slope geological monitoring and warning system | |
CN105301645A (en) | Advanced geological forecasting method of shield construction | |
CN111830580B (en) | Mine water inrush vertical electric source TEM real-time monitoring system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |