CN116291394A - Shallow well soil layer stepped geothermal temperature measurement drilling device - Google Patents
Shallow well soil layer stepped geothermal temperature measurement drilling device Download PDFInfo
- Publication number
- CN116291394A CN116291394A CN202310293723.4A CN202310293723A CN116291394A CN 116291394 A CN116291394 A CN 116291394A CN 202310293723 A CN202310293723 A CN 202310293723A CN 116291394 A CN116291394 A CN 116291394A
- Authority
- CN
- China
- Prior art keywords
- sleeve
- temperature
- temperature measuring
- temperature measurement
- sliding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000009529 body temperature measurement Methods 0.000 title claims abstract description 93
- 238000005553 drilling Methods 0.000 title claims abstract description 33
- 239000002689 soil Substances 0.000 title claims abstract description 32
- 238000003780 insertion Methods 0.000 claims description 10
- 230000037431 insertion Effects 0.000 claims description 10
- 230000006835 compression Effects 0.000 claims description 7
- 238000007906 compression Methods 0.000 claims description 7
- 230000009471 action Effects 0.000 claims description 5
- 238000003825 pressing Methods 0.000 claims description 3
- 230000008859 change Effects 0.000 abstract description 4
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000005755 formation reaction Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 238000009423 ventilation Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/06—Measuring temperature or pressure
- E21B47/07—Temperature
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/01—Devices for supporting measuring instruments on drill bits, pipes, rods or wirelines; Protecting measuring instruments in boreholes against heat, shock, pressure or the like
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/10—Geothermal energy
Landscapes
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Geophysics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
本发明提供了一种浅井土层阶梯式地热测温钻孔装置,包括钻具和多点测温单元。钻具,具有钻头部及钻杆部。多点测温单元,包括第一套筒、第二套筒、第一测温组件、第二测温组件以及固定测温组件,用于相互套设,可以伸缩,以便于多点位测温。本发明提供的浅井土层阶梯式地热测温钻孔装置设置了钻具可以进行测温浅井的开设,开设不同深度的测温浅井。设置了多点测温单元,通过第一套筒、第二套筒、第一测温组件、第二测温组件以及固定测温组件,可以分段对不同深度的土层进行实时的温度测量。通过固定测温组件可以控制多点测温单元适应测温浅井的深度进行固定测温,对土层进行测温来建立地温‑深度变化曲线,实用性好。
The invention provides a stepped geothermal temperature-measuring drilling device for shallow well soil layers, which includes a drilling tool and a multi-point temperature-measuring unit. The drilling tool has a drill head and a drill pipe. The multi-point temperature measurement unit, including the first sleeve, the second sleeve, the first temperature measurement component, the second temperature measurement component and the fixed temperature measurement component, is used for nesting each other and can be stretched to facilitate multi-point temperature measurement . The shallow well soil layer stepped geothermal temperature measuring drilling device provided by the present invention is equipped with a drilling tool to open temperature measuring shallow wells and open temperature measuring shallow wells of different depths. A multi-point temperature measurement unit is set up, through the first sleeve, the second sleeve, the first temperature measurement component, the second temperature measurement component and the fixed temperature measurement component, real-time temperature measurement can be carried out on different depths of soil layers in sections . The fixed temperature measurement component can control the multi-point temperature measurement unit to adapt to the depth of the temperature measurement shallow well for fixed temperature measurement, and measure the temperature of the soil layer to establish a ground temperature-depth change curve, which is very practical.
Description
技术领域technical field
本发明属于地热温度测量技术领域,具体涉及一种浅井土层阶梯式地热测温钻孔装置。The invention belongs to the technical field of geothermal temperature measurement, and in particular relates to a stepped geothermal temperature measuring drilling device for shallow well soil layers.
背景技术Background technique
地热资源作为一种可再生能源,具有储量大、环保无污染、利用系数高等特点,相比其他清洁能源有分布广泛、稳定性好等优势。目前对地热资源进行勘探开发前,一般会通过地热浅井来获取地层温度、地温梯度及大地热流值等关键参数,从而对区域内地热资源进行资源评价和区域优选工作。地层温度作为地热开发的关键参数和热储层的评价指标,其测量是地热井十分重要的技术手段,意义重大。As a renewable energy, geothermal resources have the characteristics of large reserves, environmental protection and pollution-free, and high utilization coefficient. Compared with other clean energy sources, they have the advantages of wide distribution and good stability. At present, before the exploration and development of geothermal resources, key parameters such as formation temperature, geothermal gradient and earth heat flow value are generally obtained through geothermal shallow wells, so as to conduct resource evaluation and regional optimization of geothermal resources in the region. Formation temperature is a key parameter for geothermal development and an evaluation index for thermal reservoirs. Its measurement is a very important technical means for geothermal wells and is of great significance.
现有技术中,对于地热井常用的测温手段通常采用测温仪,但是测温仪都需要等钻头停钻且取出后,下放至钻孔中进行测温,这种测温方法获取的温度数据会有滞后,无法实时、精准获取真实地层温度值,测量温度与实际温度具有与较大的误差。另外,该种测温方法获取的一般是井底地层温度,无法连续获取不同地层深度对应的实时温度,进而导致建立的不同深度段地层的地温-深度变化曲线不准确,实用性差。In the prior art, the commonly used temperature measurement method for geothermal wells usually uses a thermometer, but the thermometer needs to be lowered into the borehole for temperature measurement after the drill bit is stopped and taken out. The temperature obtained by this temperature measurement method The data will lag, and it is impossible to obtain real-time and accurate formation temperature values in real time, and there is a large error between the measured temperature and the actual temperature. In addition, this temperature measurement method generally obtains the formation temperature at the bottom of the well, and cannot continuously obtain real-time temperatures corresponding to different formation depths, which leads to inaccurate and poor practicability of the established ground temperature-depth change curves of formations at different depths.
发明内容Contents of the invention
本发明实施例提供一种浅井土层阶梯式地热测温钻孔装置,旨在能够解决因建立的不同深度段地层的地温-深度变化曲线不准确而导致的实用性差的问题The embodiment of the present invention provides a stepped geothermal temperature measuring drilling device for shallow well soil, aiming to solve the problem of poor practicability caused by the inaccurate geothermal-depth variation curves of strata at different depths established
为实现上述目的,本发明采用的技术方案是:提供一种浅井土层阶梯式地热测温钻孔装置,包括:In order to achieve the above object, the technical solution adopted by the present invention is to provide a stepped geothermal temperature measuring drilling device for shallow well soil, including:
钻具,具有钻头部及钻杆部;以及a drilling tool having a drill head and a drill pipe portion; and
多点测温单元,包括第一套筒、第二套筒、第一测温组件、第二测温组件以及固定测温组件;所述第一套筒滑动套设在所述钻杆部上;所述第二套筒滑动套设在所述第一套筒上;所述第一测温组件设置在所述第一套筒的底端;所述第二测温组件设置在所述第二套筒的底端;所述固定测温组件设置在所述第二套筒的顶端,所述固定测温组件用于在所述第二套筒到达钻孔的待测深度位置后,伸向钻孔的侧壁进行测温,并对所述第二套筒的位置进行固定;The multi-point temperature measurement unit includes a first sleeve, a second sleeve, a first temperature measurement assembly, a second temperature measurement assembly and a fixed temperature measurement assembly; the first sleeve is slidably set on the drill pipe part ; the second sleeve is slidingly sleeved on the first sleeve; the first temperature measuring assembly is arranged at the bottom of the first sleeve; the second temperature measuring assembly is arranged at the first sleeve The bottom end of the second sleeve; the fixed temperature measurement assembly is arranged on the top of the second sleeve, and the fixed temperature measurement assembly is used to extend the second sleeve after the second sleeve reaches the depth to be measured in the borehole. Carrying out temperature measurement to the side wall of the borehole, and fixing the position of the second sleeve;
其中,所述第二套筒位置固定后,所述第一套筒随着所述钻杆部向下移动至所述第二套筒的底端,所述第二测温组件受到所述第二套筒的作用后,伸向钻孔的侧壁进行测温;所述第一套筒位置固定后,所述钻杆部向下移动,所述第一测温组件受到所述第二套筒的作用后,伸向钻孔的侧壁进行测温。Wherein, after the position of the second sleeve is fixed, the first sleeve moves down to the bottom end of the second sleeve along with the drill pipe part, and the second temperature measuring assembly is subjected to the first temperature measurement. After the action of the second sleeve, it extends to the side wall of the borehole for temperature measurement; after the position of the first sleeve is fixed, the drill pipe part moves downward, and the first temperature measuring component is subjected to the second sleeve After the action of the barrel, it extends to the side wall of the borehole for temperature measurement.
在一种可能的实现方式中,所述固定测温组件包括定位座、顶出定位杆、第二复位弹簧、气囊以及第三测温结构;所述定位座固定套设在所述第二套筒上,所述定位座中设有环形空腔,所述定位座的侧壁上设有至少四个沿着所述第二套筒径向设置且与所述环形空腔连通的滑孔,多个所述滑孔沿着所述第二套筒轴线环形间隔设置,所述定位座上还设有至少四个第三测温滑槽,多个所述第三测温滑槽沿着所述第二套筒轴线环形间隔设置,且设有与各所述第三测温滑槽连通的第三过孔;所述顶出定位杆至少设有四个,各所述顶出定位杆与各所述滑孔一一对应设置,每个所述顶出定位杆均滑动设置在对应的所述滑孔中,每个所述顶出定位杆位于所述环形空腔的一端设有限位帽;所述弹簧至少设有四个,各所述弹簧与各所述顶出定位杆一一对应设置,每个所述弹簧均套设在对应的所述顶出定位杆上,且一端所述环形空腔的内壁抵接,另一端与所述限位帽抵接;所述气囊设置在所述环形空腔中,用于在充气后推动各所述顶出定位杆滑动;所述第三测温结构至少设有四个,各所述第三测温结构与所述各第三测温滑槽一一对应,用于在所述气囊充气后伸出并与钻孔侧壁抵接,以对所述定位座所在的位置进行测温。In a possible implementation manner, the fixed temperature measurement assembly includes a positioning seat, a ejection positioning rod, a second return spring, an air bag, and a third temperature measurement structure; the positioning seat is fixedly sleeved on the second sleeve On the cylinder, an annular cavity is provided in the positioning seat, and at least four sliding holes arranged radially along the second sleeve and communicating with the annular cavity are provided on the side wall of the positioning seat, A plurality of sliding holes are arranged at annular intervals along the axis of the second sleeve, and at least four third temperature-measuring chutes are provided on the positioning seat, and the plurality of third temperature-measuring chutes are arranged along the axis of the second sleeve. The axes of the second sleeve are arranged at annular intervals, and there are third via holes communicating with each of the third temperature measuring chutes; there are at least four ejection positioning rods, and each of the ejection positioning rods is connected to the Each of the sliding holes is provided in one-to-one correspondence, each of the ejection positioning rods is slidably disposed in the corresponding sliding hole, and each ejection positioning rod is provided with a limit cap at one end of the annular cavity There are at least four springs, each of which is set in one-to-one correspondence with each of the ejection positioning rods, and each of the springs is sleeved on the corresponding ejection positioning rod, and one end of the ejection positioning rod The inner wall of the annular cavity abuts, and the other end abuts against the limit cap; the airbag is arranged in the annular cavity, and is used to push each ejection positioning rod to slide after inflation; the third There are at least four temperature measuring structures, each of the third temperature measuring structures corresponds to each of the third temperature measuring chutes, and is used to protrude after the airbag is inflated and abut against the side wall of the borehole, To measure the temperature of the position where the positioning seat is located.
在一种可能的实现方式中,每个所述第三测温结构包括第三固定板、第三滑杆、第三弹簧以及第三测温曲柄;所述第三固定板固设在所述第三测温滑槽中,所述第三固定板上具有第三穿孔;所述第三滑杆沿着竖直方向滑动设置在所述第三穿孔中,所述第三滑杆的顶端穿过所述第三过孔后伸入至所述环形空腔中,并与所述气囊抵接,所述第三滑杆上固设有第三限位套环,所述第三限位套环位于所述第三测温滑槽中;所述第三弹簧套设在所述第三滑杆上,所述第三弹簧的一端与所述第三固定板抵接,另一端与所述第三限位套环抵接;所述第三测温曲柄包括与所述第三滑杆底端铰接的竖直段和与所述竖直段一体成型的倾斜段,所述竖直段与所述倾斜段的夹角为135°,所述倾斜段远离所述竖直段的端部设有测温传感器;In a possible implementation manner, each of the third temperature measuring structures includes a third fixing plate, a third sliding rod, a third spring, and a third temperature measuring crank; the third fixing plate is fixed on the In the third temperature measuring chute, there is a third perforation on the third fixing plate; the third sliding rod is slidably arranged in the third perforation along the vertical direction, and the top end of the third sliding rod passes through After passing through the third via hole, it extends into the annular cavity and abuts against the airbag. The third sliding rod is fixed with a third stop collar, and the third stop collar The ring is located in the third temperature measuring chute; the third spring is sleeved on the third sliding rod, one end of the third spring is in contact with the third fixing plate, and the other end is in contact with the The third limit collar abuts; the third temperature measuring crank includes a vertical section hinged with the bottom end of the third slide bar and an inclined section integrally formed with the vertical section, and the vertical section is integrated with the vertical section. The included angle of the inclined section is 135°, and the end of the inclined section away from the vertical section is provided with a temperature sensor;
在一种可能的实现方式中,所述第二套筒的底部设有第二测温滑槽,所述第二测温滑槽至少设有四个;所述第二测温组件至少设有四个,各所述第二测温组件沿着所述第二套筒轴线环形间隔设置第二套筒内壁上,且与各所述第二测温滑槽一一对应;每个所述第二测温组件包括第二固定板、第二滑杆、第二弹簧以及第二测温曲柄;所述第二固定板固设在所述第二测温滑槽中,所述第二固定板上具有第二穿孔;所述第二滑杆沿着竖直方向滑动设置在所述第二穿孔中,所述第二滑杆上固设有第二限位套环,所述第二限位套环位于所述第二测温滑槽中;所述第二弹簧套设在所述第二滑杆上,所述第二弹簧的一端与所述第二固定板抵接,另一端与所述第二限位套环抵接;所述第二测温曲柄包括与所述第二滑杆底端铰接的竖直段和与所述竖直段一体成型的倾斜段,所述竖直段与所述倾斜段的夹角为135°,所述倾斜段远离所述竖直段的端部设有测温传感器;In a possible implementation manner, the bottom of the second sleeve is provided with a second temperature measuring chute, and the second temperature measuring chute is provided with at least four; the second temperature measuring assembly is provided with at least Four, each of the second temperature measuring components is arranged on the inner wall of the second sleeve at annular intervals along the axis of the second sleeve, and corresponds to each of the second temperature measuring chute; each of the first The second temperature measuring assembly includes a second fixed plate, a second slide rod, a second spring, and a second temperature measuring crank; the second fixed plate is fixed in the second temperature measuring chute, and the second fixed plate There is a second perforation on the top; the second sliding rod is slidably arranged in the second perforation along the vertical direction, and a second limiting collar is fixed on the second sliding rod, and the second limiting The collar is located in the second temperature measuring chute; the second spring is sleeved on the second sliding rod, one end of the second spring is in contact with the second fixing plate, and the other end is in contact with the second The second limit collar abuts; the second temperature measuring crank includes a vertical section hinged with the bottom end of the second slide bar and an inclined section integrally formed with the vertical section, and the vertical section The included angle with the inclined section is 135°, and the end of the inclined section away from the vertical section is provided with a temperature sensor;
其中,所述第一套筒的顶端设有插接限位结构,用于在所述第一套筒顶端下移至所述第二套筒底端时压动各所述第二滑杆。Wherein, the top end of the first sleeve is provided with a plug-in limiting structure for pressing each of the second slide bars when the top end of the first sleeve moves down to the bottom end of the second sleeve.
在一种可能的实现方式中,所述第一套筒的顶端侧壁中设有至少四个滑动空腔;所述插接结构至少设有四个,各所述插接结构与各所述滑动空腔一一对应设置;In a possible implementation manner, at least four sliding cavities are provided in the top end sidewall of the first sleeve; The sliding cavities are set in one-to-one correspondence;
每个所述插接限位结构包括楔形插接块、压簧、楔形滑柱以及第一复位弹簧;所述楔形插接块均沿着竖直方向滑动设置在所述滑动空腔中,每个所述楔形插接块上均设有竖直向下伸出的插接柱,所述插接柱穿过所述滑孔空腔后伸出,所述楔形插接块上还设有第一楔形面;所述压簧设置在所述滑动空腔中,用于弹动所述楔形插接块持续保持具有向下移动的趋势;所述楔形滑柱沿着所述第一套筒的径向滑动设置在所述第一套筒上,且一端穿过所述第一套筒的内壁并伸出,所述楔形滑柱位于所述滑动空腔的一端设有与所述第一楔形面适配的第二楔形面,且设有限位块;所述第一复位弹簧位于所述滑动空腔中,且套设在楔形滑柱上,一端与限位块抵接,另一端与滑动空腔的内壁抵接,用于使楔形滑柱持续保持具有向滑动空腔中移动的趋势;Each of the plug-in limiting structures includes a wedge-shaped plug, a compression spring, a wedge-shaped sliding column, and a first return spring; the wedge-shaped plugs are all slid in the sliding cavity along the vertical direction, and each Each of the wedge-shaped plug-in blocks is provided with a vertically extending downward plug-in post, and the plug-in post protrudes through the cavity of the slide hole, and the wedge-shaped plug-in block is also provided with a second plug-in post. a wedge-shaped surface; the compression spring is arranged in the sliding cavity, and is used for springing the wedge-shaped plug-in block to continuously maintain a tendency to move downward; the wedge-shaped sliding post is along the The radial slide is arranged on the first sleeve, and one end passes through the inner wall of the first sleeve and protrudes. The wedge-shaped sliding column is located at one end of the sliding cavity and is provided with the first wedge The second wedge-shaped surface adapted to the surface, and a limit block is provided; the first return spring is located in the sliding cavity, and is sleeved on the wedge-shaped sliding column, one end is in contact with the limit block, and the other end is in contact with the sliding The inner wall of the cavity is abutted to keep the wedge-shaped sliding column with a tendency to move into the sliding cavity;
其中,所述钻杆部上设有与各所述楔形滑柱对应的顶推环,用于推动各所述楔形滑柱向下移动。Wherein, the drill pipe part is provided with a push ring corresponding to each of the wedge-shaped sliding columns, and is used to push each of the wedge-shaped sliding columns to move downward.
在一种可能的实现方式中,所述浅井土层阶梯式地热测温钻孔装置还包括辅助套管,辅助套管转动设置在第一套筒和钻杆部之间,所述顶推环固设在辅助套管上。In a possible implementation manner, the shallow well soil stepped geothermal temperature measurement drilling device further includes an auxiliary casing, the auxiliary casing is rotatably arranged between the first sleeve and the drill pipe part, and the pushing ring fixed on the auxiliary casing.
在一种可能的实现方式中,所述第一套筒的底部设有第一测温滑槽,所述第一测温滑槽至少设有四个;所述第一测温组件至少设有四个,各所述第一测温组件沿着所述第一套筒轴线环形间隔设置在所述第一套筒内壁上,且与各所述第一测温滑槽一一对应;每个所述第一测温组件包括第一固定板、第一滑杆、第一弹簧以及第一测温曲柄;所述第一固定板固设在所述第一测温滑槽中,所述第一固定板上具有第一穿孔;所述第一滑杆沿着竖直方向滑动设置在所述第一穿孔中,所述第一滑杆上固设有第一限位套环,所述第一限位套环位于所述第一测温滑槽中;所述第一弹簧套设在所述第一滑杆上,所述第一弹簧的一端与所述第一固定板抵接,另一端与所述第一限位套环抵接;所述第一测温曲柄包括与所述第一滑杆底端铰接的竖直段和与所述竖直段一体成型的倾斜段,所述竖直段与所述倾斜段的夹角为135°,所述倾斜段远离所述竖直段的端部设有测温传感器;In a possible implementation manner, the bottom of the first sleeve is provided with a first temperature measuring chute, and the first temperature measuring chute is provided with at least four; the first temperature measuring assembly is provided with at least Four, each of the first temperature-measuring components is arranged on the inner wall of the first sleeve at annular intervals along the axis of the first sleeve, and corresponds to each of the first temperature-measuring chute; each The first temperature measuring assembly includes a first fixing plate, a first sliding rod, a first spring, and a first temperature measuring crank; the first fixing plate is fixed in the first temperature measuring chute, and the first There is a first through hole on a fixed plate; the first sliding rod is slidably arranged in the first through hole along the vertical direction, and a first limiting collar is fixed on the first sliding rod; A limit collar is located in the first temperature measuring chute; the first spring is sleeved on the first sliding rod, one end of the first spring is in contact with the first fixing plate, and the other One end abuts against the first limit collar; the first temperature measuring crank includes a vertical section hinged to the bottom end of the first slide bar and an inclined section integrally formed with the vertical section, the The angle between the vertical section and the inclined section is 135°, and the end of the inclined section away from the vertical section is provided with a temperature sensor;
其中,所述辅助套管上套设有插接限位环,所述插接限位环与所述辅助套管滑动连接,用于在所述顶推环下移至所述第一套筒底端时通过所述插接限位环压动各所述第一滑杆。Wherein, the auxiliary sleeve is sleeved with a plug-in stop ring, and the plug-in stop ring is slidably connected with the auxiliary sleeve for moving down the push ring to the first sleeve. At the bottom end, each of the first sliding rods is pressed by the insertion limit ring.
在一种可能的实现方式中,所述插接限位环上至少设有四个插接连接杆,多个所述插接连接杆与各所述第一测温滑槽一一对应。In a possible implementation manner, at least four plug-in connecting rods are provided on the plug-in limiting ring, and the plurality of plug-in connecting rods correspond to each of the first temperature measuring chute one by one.
在本实现方式中,与现有技术相比,设置了钻具可以进行测温浅井的开设,开设不同深度的测温浅井;设置了多点测温单元,通过第一套筒、第二套筒、第一测温组件、第二测温组件以及固定测温组件,可以分段对不同深度的土层进行实时的温度测量,保证测量工的准确性,同时可保证建立的不同深度段地层的地温-深度变化曲线的精确。另外通过固定测温组件可以控制不同的测温深度,可保证温度测量的灵活性。In this implementation, compared with the prior art, a drilling tool is provided to set up shallow temperature-measuring wells, and shallow temperature-measuring wells of different depths are set up; The cylinder, the first temperature measuring component, the second temperature measuring component and the fixed temperature measuring component can carry out real-time temperature measurement on soil layers of different depths in sections to ensure the accuracy of the measurement work, and at the same time, it can ensure the establishment of strata of different depths The accuracy of the ground temperature-depth change curve. In addition, different temperature measurement depths can be controlled by fixing the temperature measurement components, which can ensure the flexibility of temperature measurement.
附图说明Description of drawings
图1为本发明实施例提供的浅井土层阶梯式地热测温钻孔装置未处于工作状态的平面连接结构剖视结构示意图;Fig. 1 is a schematic cross-sectional structure diagram of a planar connection structure of a stepped geothermal temperature measuring drilling device in a shallow well soil layer provided by an embodiment of the present invention that is not in a working state;
图2为图1提供的浅井土层阶梯式地热测温钻孔装置A出的放大结构示意图;Fig. 2 is the enlarged schematic diagram of the shallow well soil layer stepped geothermal temperature measuring drilling device A provided in Fig. 1;
图3为图1提供的浅井土层阶梯式地热测温钻孔装置B出的放大结构示意图;Fig. 3 is the enlarged schematic diagram of the shallow well soil layer stepped geothermal temperature measuring drilling device B provided in Fig. 1;
图4为图1提供的浅井土层阶梯式地热测温钻孔装置C出的放大结构示意图;Fig. 4 is the enlarged schematic diagram of the shallow well soil layer stepped geothermal temperature measuring drilling device C provided in Fig. 1;
图5为图1提供的浅井土层阶梯式地热测温钻孔装置D出的放大结构示意图;Fig. 5 is the enlarged structural schematic diagram of the stepped geothermal temperature measuring drilling device D in the shallow well soil layer provided in Fig. 1;
图6为本发明实施例提供的浅井土层阶梯式地热测温钻孔装置处于工作状态的平面连接结构剖视结构示意图;Fig. 6 is a schematic cross-sectional structural view of the planar connection structure of the step-type geothermal temperature measurement drilling device in the shallow well soil layer provided by the embodiment of the present invention in the working state;
附图标记说明:Explanation of reference signs:
100、钻具;110、钻头部;120、钻杆部;121、辅助套管;1211、顶推环;1212、插接限位环;200、多点测温单元;210、第一套筒;211、第一测温滑槽;220、第二套筒;221、第二测温滑槽;222、第三测温滑槽;230、第一测温组件;231、第一固定板;232、第一滑杆;233、第一弹簧;234、第一测温曲柄;240、第二测温组件;241、第二固定板;242、第二滑杆;243、第二弹簧;244、第二测温曲柄;250、固定测温组件;251、定位座;252、顶出定位杆;253、第二复位弹簧;254、气囊;255、第三测温结构;2551、第三固定板;2552、第三滑杆;2553、第三弹簧;2554、第三测温曲柄;300、插接限位结构;310、楔形插接块;320、压簧;330、楔形滑柱;340、第一复位弹簧。100. Drilling tool; 110. Drill head; 120. Drill pipe part; 121. Auxiliary casing; 1211. Push ring; 1212. Plug-in limit ring; 200. Multi-point temperature measurement unit; ; 211, the first temperature measuring chute; 220, the second sleeve; 221, the second temperature measuring chute; 222, the third temperature measuring chute; 230, the first temperature measuring component; 231, the first fixing plate; 232, the first slide bar; 233, the first spring; 234, the first temperature measuring crank; 240, the second temperature measuring assembly; 241, the second fixed plate; 242, the second slide bar; 243, the second spring; 244 , the second temperature measuring crank; 250, the fixed temperature measuring assembly; 251, the positioning seat; 252, the ejection positioning rod; 253, the second return spring; 254, the air bag; Plate; 2552, the third slide rod; 2553, the third spring; 2554, the third temperature measuring crank; 300, plug-in limit structure; 310, wedge-shaped plug-in block; 320, compression spring; 330, wedge-shaped sliding column; 340 , The first return spring.
具体实施方式Detailed ways
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the technical problems, technical solutions and beneficial effects to be solved by the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
请一并参阅图1至图6,现对本发明提供的浅井土层阶梯式地热测温钻孔装置进行说明。浅井土层阶梯式地热测温钻孔装置,包括钻具100,具有钻头部110及钻杆部120。多点测温单元200,包括第一套筒210、第二套筒220、第一测温组件230、第二测温组件240以及固定测温组件250。第一套筒210滑动套设在钻杆部120上。第二套筒220滑动套设在第一套筒210上。第一测温组件230设置在第一套筒210的底端。第二测温组件240设置在第二套筒220的底端。固定测温组件250设置在第二套筒220的顶端,固定测温组件250用于在第二套筒220到达钻孔的待测深度位置后,伸向钻孔的侧壁进行测温,并对第二套筒220的位置进行固定。Please refer to Fig. 1 to Fig. 6 together, and now the shallow well soil layer stepped geothermal temperature measuring drilling device provided by the present invention will be described. The shallow well soil step-type geothermal temperature measurement drilling device includes a
其中,第二套筒220位置固定后,第一套筒210随着钻杆部120向下移动至第二套筒220的底端,第二测温组件240受到第二套筒220的作用后,伸向钻孔的侧壁进行测温。第一套筒210位置固定后,钻杆部120向下移动,第一测温组件230受到第二套筒220的作用后,伸向钻孔的侧壁进行测温。Wherein, after the position of the
本实施例提供的浅井土层阶梯式地热测温钻孔装置,与现有技术相比,设置了钻具100可以进行测温浅井的开设,开设不同深度的测温浅井。设置了多点测温单元200,通过第一套筒210、第二套筒220、第一测温组件230、第二测温组件240以及固定测温组件250,可以分段对不同深度的土层进行实时的温度测量。通过固定测温组件250可以控制多点测温单元200适应测温浅井的深度进行固定测温,对土层进行测温来建立地温-深度变化曲线,实用性好。Compared with the prior art, the step-type geothermal temperature measurement drilling device for shallow well soil layer provided in this embodiment is equipped with a
在一些实施例中,上述固定测温组件250可以采用如图1、图2以及图6所示结构。参见图1、图2以及图6,固定测温组件250包括定位座251、顶出定位杆252、第二复位弹簧253、气囊254以及第三测温结构255。定位座251固定套设在第二套筒220上,定位座251中设有环形空腔,定位座251的侧壁上设有至少四个沿着第二套筒220径向设置且与环形空腔连通的滑孔,多个滑孔沿着第二套筒220轴线环形间隔设置,定位座251上还设有至少四个第三测温滑槽222,多个第三测温滑槽222沿着第二套筒220轴线环形间隔设置,且设有与各第三测温滑槽222连通的第三过孔。顶出定位杆252至少设有四个,各顶出定位杆252与各滑孔一一对应设置,每个顶出定位杆252均滑动设置在对应的滑孔中,每个顶出定位杆252位于环形空腔的一端设有限位帽。弹簧至少设有四个,各弹簧与各顶出定位杆252一一对应设置,每个弹簧均套设在对应的顶出定位杆252上,且一端环形空腔的内壁抵接,另一端与限位帽抵接。气囊254设置在环形空腔中,用于在充气后推动各顶出定位杆252滑动。第三测温结构255至少设有四个,各第三测温结构255与各第三测温滑槽222一一对应,用于在气囊254充气后伸出并与钻孔侧壁抵接,以对定位座251所在的位置进行测温。In some embodiments, the above-mentioned fixed
多点测温单元200为伸缩结构,由第一套筒210和第二套筒220组合而成,进行三次测温工作。固定测温组件250绕设在第二套筒220的顶部,定位座251内设有环形空腔,环形空腔的外侧壁上设有至少四个沿第二套筒220轴线均匀绕设的圆形滑孔。各个顶出定位杆252对应滑动设置在各个滑孔中,每个顶出定位杆252上均固设有供第二复位弹簧253抵接复位的限位帽。气囊254依次穿过环形空腔,依次抵接在各个顶出定位杆252上,并设有连通气囊254的通气管路,当通气管路向气囊254内充气时,气囊254膨胀,各个顶出定位杆252将第二套筒220固定在测温浅井的井壁上,实现固定和后续的测温工作,当通气管路抽离气囊254内气体时,气囊254复位解除顶出定位杆252对测温井壁的固定。The multi-point
在一些实施例中,上述第三测温结构255可以采用如图1、图2以及图6所示结构。参见图1、图2以及图6,每个第三测温结构255包括第三固定板2551、第三滑杆2552、第三弹簧2553以及第三测温曲柄2554。第三固定板2551固设在第三测温滑槽222中,第三固定板2551上具有第三穿孔。第三滑杆2552沿着竖直方向滑动设置在第三穿孔中,第三滑杆2552的顶端穿过第三过孔后伸入至环形空腔中,并与气囊254抵接,第三滑杆2552上固设有第三限位套环,第三限位套环位于第三测温滑槽222中。第三弹簧2553套设在第三滑杆2552上,第三弹簧2553的一端与第三固定板2551抵接,另一端与第三限位套环抵接。第三测温曲柄2554包括与第三滑杆2552底端铰接的竖直段和与竖直段一体成型的倾斜段,竖直段与倾斜段的夹角为135°,倾斜段远离竖直段的端部设有测温传感器。In some embodiments, the above-mentioned third
其中,第三测温滑槽222具有竖直段和倾斜段,竖直段竖直设置,倾斜段沿第二套筒220由内向外的径向方向倾斜,倾斜夹角为135°。Wherein, the third
第三测温结构255为多点测温单元200的第一测温点,在固定测温组件250固定时,同时对固定点的土层进行测温。定位座251上设置的至少四个第三测温滑槽222,并在每个第三测温滑槽222上设有连通各定位座251的第三过孔,可以供第三测温结构255向下移动沿第二套筒220上的第三测温滑槽222移动探出,实现测温。第三固定板2551为环形板,环形板上的通孔为第三穿孔,设置在第三测温滑槽222中,将第三测温滑槽222分隔成两个滑移空腔,第三滑杆2552上设有第三限位套环,第三限位套环以上的第三滑杆2552端部穿过第三过孔伸入至环形空腔中,与气囊254抵接,第三限位套环以下的第三滑杆2552端部穿过第三穿孔,铰接在第三测温曲柄2554上,当气囊254充气膨胀时,顶推第三滑杆2552向下移动,沿第三测温滑槽222顶出第三测温曲柄2554。第三弹簧2553套设在第三滑杆2552上,可以在气囊254排除内部气体后,使第三测温结构255复位。第三测温滑槽222具有竖直段和倾斜段,倾斜段沿第二套筒220由内向外的径向方向倾斜,倾斜夹角为135°。所对应的第三测温曲柄2554也包括竖直段和倾斜段,竖直段与倾斜段的夹角为135°,倾斜段远离竖直段的端部设有测温传感器。The third
在一些实施例中,上述第二套筒220可以采用如图1、图3以及图6,所示结构。参见图1、图3以及图6,第二套筒220的底部设有第二测温滑槽221,第二测温滑槽221至少设有四个。第二测温组件240至少设有四个,各第二测温组件240沿着第二套筒220轴线环形间隔设置第二套筒220内壁上,且与各第二测温滑槽221一一对应。每个第二测温组件240包括第二固定板241、第二滑杆242、第二弹簧243以及第二测温曲柄244。第二固定板241固设在第二测温滑槽221中,第二固定板241上具有第二穿孔。第二滑杆242沿着竖直方向滑动设置在第二穿孔中,第二滑杆242上固设有第二限位套环,第二限位套环位于第二测温滑槽221中。第二弹簧243套设在第二滑杆242上,第二弹簧243的一端与第二固定板241抵接,另一端与第二限位套环抵接。第二测温曲柄244包括与第二滑杆242底端铰接的竖直段和与竖直段一体成型的倾斜段,竖直段与倾斜段的夹角为135°,倾斜段远离竖直段的端部设有测温传感器。In some embodiments, the above-mentioned
其中,第二测温滑槽221具有竖直段和倾斜段,竖直段竖直设置,倾斜段沿第二套筒220由内向外的径向方向倾斜,倾斜夹角为135°。Wherein, the second
其中,第一套筒210的顶端设有插接限位结构300,用于在第一套筒210顶端下移至第二套筒220底端时压动各第二滑杆242。Wherein, the top end of the
第二测温结构为多点测温单元200的第二测温点,在固定测温组件250固定会后,通过第一套筒210顶端的插接限位结构300,驱动第二测温结构对其固定位置的土层进行测温。第二套筒220底端设置的至少四个第二测温滑槽221。第二固定板241为环形板,环形板上的通孔为第二穿孔,设置在第二测温滑槽221中,将第二测温滑槽221分隔成两个滑移空腔,第二滑杆242上设有第二限位套环,第二限位套环与第二穿孔的上滑移空腔底部抵接,第二限位套环以下的第二滑杆242端部穿过第二穿孔,铰接在第二测温曲柄244上,当第一套筒210顶端的插接限位结构300插接进入第二测温滑槽221时,顶推第二滑杆242向下移动,沿第二测温滑槽221顶出第二测温曲柄244。第二弹簧243套设在第二滑杆242上,可以在插接限位结构300脱离第二测温滑槽221时,使第二测温结构复位。第二测温滑槽221具有竖直段和倾斜段,倾斜段沿第二套筒220由内向外的径向方向倾斜,倾斜夹角为135°。所对应的第二测温曲柄244也包括竖直段和倾斜段,竖直段与倾斜段的夹角为135°,倾斜段远离竖直段的端部设有测温传感器。The second temperature measurement structure is the second temperature measurement point of the multi-point
在一些实施例中,上述第一套筒210可以采用如图1、图5以及图6所示结构。参见图1、图5以及图6,第一套筒210的顶端侧壁中设有至少四个滑动空腔。插接结构至少设有四个,各插接结构与各滑动空腔一一对应设置。In some embodiments, the above-mentioned
每个插接限位结构300包括楔形插接块310、压簧320、楔形滑柱330以及第一复位弹簧340。楔形插接块310均沿着竖直方向滑动设置在滑动空腔中,每个楔形插接块310上均设有竖直向下伸出的插接柱,插接柱穿过滑孔空腔后伸出,楔形插接块310上还设有第一楔形面。压簧320设置在滑动空腔中,用于弹动楔形插接块310持续保持具有向下移动的趋势。楔形滑柱330沿着第一套筒210的径向滑动设置在第一套筒210上,且一端穿过第一套筒210的内壁并伸出,楔形滑柱330位于滑动空腔的一端设有与第一楔形面适配的第二楔形面,且设有限位块。第一复位弹簧340位于滑动空腔中,且套设在楔形滑柱330上,一端与限位块抵接,另一端与滑动空腔的内壁抵接,用于使楔形滑柱330持续保持具有向滑动空腔中移动的趋势。Each
其中,钻杆部120上设有与各楔形滑柱330对应的顶推环1211,用于推动各楔形滑柱330向下移动。Wherein, the
插接限位结构300可以对钻杆部120上的顶推环1211进行限位,使其在插接限位结构300没有进入第三测温滑槽222前,无法向下移动至第一套筒210底端。滑动空腔内设有供插接柱滑动的滑槽,使插接柱只能沿滑孔轴线方向移动。插接柱的向第一套筒210内壁的伸出端设有固定楔形面。楔形插接块310的第一楔形面与插接柱的第二楔形面滑动设置,当楔形插接块310向上移动时,插接柱向滑动空腔内移动,固定楔形面解除对顶推环1211的固定,使钻杆部120继续向下移动。The
在一些实施例中,上述辅助套管121可以采用如图1、图6所示结构。参见图1、图6,钻杆部120还包括辅助套管121,辅助套管121转动设置在第一套筒210和钻杆部120之间,顶推环1211固设在辅助套管121上。辅助套管121与钻杆部120之间设有止推轴承,保持其同步移动。In some embodiments, the aforementioned
在一些实施例中,上述第一套筒210可以采用如图1、图4以及图6所示结构。参见图1、图4以及图6,,第一套筒210的底部设有第一测温滑槽211,第一测温滑槽211至少设有四个。第一测温组件230至少设有四个,各第一测温组件230沿着第一套筒210轴线环形间隔设置在第一套筒210内壁上,且与各第一测温滑槽211一一对应。每个第一测温组件230包括第一固定板231、第一滑杆232、第一弹簧233以及第一测温曲柄234。第一固定板231固设在第一测温滑槽211中,第一固定板231上具有第一穿孔。第一滑杆232沿着竖直方向滑动设置在第一穿孔中,第一滑杆232上固设有第一限位套环,第一限位套环位于第一测温滑槽211中。第一弹簧233套设在第一滑杆232上,第一弹簧233的一端与第一固定板231抵接,另一端与第一限位套环抵接。第一测温曲柄234包括与第一滑杆232底端铰接的竖直段和与竖直段一体成型的倾斜段,竖直段与倾斜段的夹角为135°,倾斜段远离竖直段的端部设有测温传感器。In some embodiments, the above-mentioned
其中,第一测温滑槽211具有竖直段和倾斜段,竖直段竖直设置,倾斜段沿第一套筒210由内向外的径向方向倾斜,倾斜夹角为135°。Wherein, the first
其中,辅助套管121上套设有插接限位环1212,插接限位环1212与辅助套管121滑动连接,用于在顶推环1211下移至第一套筒210底端时通过插接限位环1212压动各第一滑杆232。Wherein, the
第一测温结构为多点测温单元200的第三测温点,在固定测温组件250固定会后,通过插接限位环1212,驱动第一测温结构对其固定位置的土层进行测温。第一套筒210底端设置的至少四个第一测温滑槽211。第一固定板231为环形板,环形板上的通孔为第一穿孔,设置在第一测温滑槽211中,将第一测温滑槽211分隔成两个滑移空腔,第一滑杆232上设有第一限位套环,第一限位套环与第一穿孔的上滑移空腔底部抵接,第一限位套环以下的第一滑杆232端部穿过第一穿孔,铰接在第一测温曲柄234上,当辅助套管121上的顶推环1211顶推插接限位环1212进入第一测温滑槽211时,顶推第一滑杆232向下移动,沿第一测温滑槽211顶出第一测温曲柄234。第一弹簧233套设在第一滑杆232上,可以在辅助套管121上的顶推环1211脱离第一测温滑槽211时,使第一测温结构复位。第一测温滑槽211具有竖直段和倾斜段,倾斜段沿第一套筒210由内向外的径向方向倾斜,倾斜夹角为135°。所对应的第二测温曲柄244也包括竖直段和倾斜段,竖直段与倾斜段的夹角为135°,倾斜段远离竖直段的端部设有测温传感器。The first temperature measurement structure is the third temperature measurement point of the multi-point
在一些实施例中,上述插接限位环1212可以采用如图1、图6所示结构。参见图1、图6,插接限位环1212上至少设有四个插接连接杆,多个插接连接杆与各第一测温滑槽211一一对应。各个插接连接杆顶推各个第一测温滑槽211内的第一滑杆232向下移动,使各个第一测温曲柄234实现测温。In some embodiments, the above-mentioned plug-in limiting
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention should be included in the protection scope of the present invention. Inside.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310293723.4A CN116291394B (en) | 2023-03-23 | 2023-03-23 | Shallow well soil layer stepped geothermal temperature measurement drilling device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310293723.4A CN116291394B (en) | 2023-03-23 | 2023-03-23 | Shallow well soil layer stepped geothermal temperature measurement drilling device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116291394A true CN116291394A (en) | 2023-06-23 |
CN116291394B CN116291394B (en) | 2024-02-02 |
Family
ID=86801164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310293723.4A Active CN116291394B (en) | 2023-03-23 | 2023-03-23 | Shallow well soil layer stepped geothermal temperature measurement drilling device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116291394B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117027771A (en) * | 2023-08-28 | 2023-11-10 | 河北省地质矿产勘查开发局第一地质大队(河北省清洁能源应用技术中心) | Geothermal investigation and geothermal temperature measuring device |
Citations (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1037143A (en) * | 1975-02-14 | 1978-08-22 | William E. Showalter | Apparatus for detecting high temperature in wells |
US20060191332A1 (en) * | 2005-02-28 | 2006-08-31 | Schlumberger Technology Corporation | Method for measuring formation properties with a formation tester |
CN101294490A (en) * | 2008-06-06 | 2008-10-29 | 上海工程技术大学 | Multi-point temperature measurement method and temperature measurement equipment in downhole formation |
CN201306168Y (en) * | 2008-12-19 | 2009-09-09 | 安徽鑫国仪表有限公司 | A multi-point thermocouple for high-temperature ultra-long oil well |
CN201381852Y (en) * | 2009-03-04 | 2010-01-13 | 李文军 | Measuring device for temperature in underground coal gasification drill holes |
CN104405291A (en) * | 2014-12-05 | 2015-03-11 | 吉林大学 | Combined in-situ shallow layer geotherm measurement drill |
CN204854987U (en) * | 2015-07-30 | 2015-12-09 | 河北省地球物理勘查院 | Shallow layer ground temperature monitor sensor cluster |
CN204964068U (en) * | 2015-07-17 | 2016-01-13 | 西北大学 | Device is surveyd in step to many degree of depth river bed deposit thing temperature |
CN105784144A (en) * | 2016-03-22 | 2016-07-20 | 天津市市政工程设计研究院 | On-site road surface internal temperature test device and on-site drilling method |
CN205691262U (en) * | 2016-05-24 | 2016-11-16 | 邹琤 | A kind of multilamellar geothermometry device |
CN106644118A (en) * | 2016-12-07 | 2017-05-10 | 四川秋明山测绘有限公司 | Telescopic rock temperature measurement device |
CN107842361A (en) * | 2017-10-30 | 2018-03-27 | 西南石油大学 | Prime stratum temperature, empty well cylinder static temperature, the measuring method of annular space static temperature and annular space dynamic temperature |
CN207528356U (en) * | 2017-12-15 | 2018-06-22 | 中国地质调查局水文地质环境地质调查中心 | A kind of multichannel temperature monitoring device for underground heat shallow well |
CN207620785U (en) * | 2017-12-12 | 2018-07-17 | 中国地质科学院水文地质环境地质研究所 | A kind of multisection type High-Temperature Well Logging equipment |
CN109209238A (en) * | 2018-10-27 | 2019-01-15 | 江苏中煤地质工程研究院有限公司 | A kind of Portable in-situ near-surface temperature survey drill bit |
CN109764978A (en) * | 2019-03-22 | 2019-05-17 | 中国煤炭地质总局地球物理勘探研究院 | Temperature acquisition device and method |
CN110242214A (en) * | 2019-05-10 | 2019-09-17 | 湖南达道新能源开发有限公司 | A kind of geothermal measurement equipment suitable for different terrain environment |
CN110411599A (en) * | 2019-08-07 | 2019-11-05 | 中国核动力研究设计院 | Reusable contact liquid internal temperature measuring device and measurement method |
CN210571075U (en) * | 2019-08-01 | 2020-05-19 | 阳泉煤业(集团)股份有限公司 | A portable retractable thermometer |
CN211234781U (en) * | 2020-02-24 | 2020-08-11 | 代志飞 | Novel be used for shallow geothermal energy to measure temperature measuring device |
CN212535643U (en) * | 2020-07-08 | 2021-02-12 | 王敬 | Geothermal deep well wall temperature monitoring device |
CN213239219U (en) * | 2020-08-17 | 2021-05-18 | 范彦庆 | This mineral coal seam temperature-detecting device |
US20210238984A1 (en) * | 2020-01-31 | 2021-08-05 | Halliburton Energy Services, Inc. | Fiber optic distributed temperature sensing of annular cement curing using a cement plug deployment system |
CN213898956U (en) * | 2020-12-02 | 2021-08-06 | 四川航天烽火伺服控制技术有限公司 | Underground pressure and temperature measuring device of oil and gas well |
CN215004014U (en) * | 2021-06-30 | 2021-12-03 | 白海云 | Temperature measuring device for highway ground temperature acquisition |
CN216050351U (en) * | 2021-06-28 | 2022-03-15 | 江苏熙景环境科技有限公司 | A high-efficient soil temperature acquisition equipment for intelligent greenhouse system |
CN114264391A (en) * | 2021-12-22 | 2022-04-01 | 中铁十六局集团第四工程有限公司 | A device for measuring the temperature of the rock mass in the tunnel body in the high geothermal fault area |
CN216524448U (en) * | 2021-12-14 | 2022-05-13 | 上海海洋地质勘察设计有限公司 | Geothermal measuring instrument for geothermal exploration |
WO2022128069A1 (en) * | 2020-12-15 | 2022-06-23 | Lytt Limited | Distributed temperature sensing autocalibration |
CN217001708U (en) * | 2022-01-26 | 2022-07-19 | 山东金岭矿业股份有限公司 | Temperature measurement drill bit drilling rod mechanism that mine was opened and is adopted |
CN217505557U (en) * | 2022-04-21 | 2022-09-27 | 广州海关技术中心 | Sleeve type temperature-measurable migration test pool |
CN217872755U (en) * | 2022-06-23 | 2022-11-22 | 北京六合伟业科技股份有限公司 | Sleeve type downhole parameter measuring instrument |
CN115655527A (en) * | 2022-10-31 | 2023-01-31 | 山东省地质矿产勘查开发局第八地质大队(山东省第八地质矿产勘查院) | Geothermal detection device for geological exploration |
-
2023
- 2023-03-23 CN CN202310293723.4A patent/CN116291394B/en active Active
Patent Citations (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1037143A (en) * | 1975-02-14 | 1978-08-22 | William E. Showalter | Apparatus for detecting high temperature in wells |
US20060191332A1 (en) * | 2005-02-28 | 2006-08-31 | Schlumberger Technology Corporation | Method for measuring formation properties with a formation tester |
CN101294490A (en) * | 2008-06-06 | 2008-10-29 | 上海工程技术大学 | Multi-point temperature measurement method and temperature measurement equipment in downhole formation |
CN201306168Y (en) * | 2008-12-19 | 2009-09-09 | 安徽鑫国仪表有限公司 | A multi-point thermocouple for high-temperature ultra-long oil well |
CN201381852Y (en) * | 2009-03-04 | 2010-01-13 | 李文军 | Measuring device for temperature in underground coal gasification drill holes |
CN104405291A (en) * | 2014-12-05 | 2015-03-11 | 吉林大学 | Combined in-situ shallow layer geotherm measurement drill |
CN204964068U (en) * | 2015-07-17 | 2016-01-13 | 西北大学 | Device is surveyd in step to many degree of depth river bed deposit thing temperature |
CN204854987U (en) * | 2015-07-30 | 2015-12-09 | 河北省地球物理勘查院 | Shallow layer ground temperature monitor sensor cluster |
CN105784144A (en) * | 2016-03-22 | 2016-07-20 | 天津市市政工程设计研究院 | On-site road surface internal temperature test device and on-site drilling method |
CN205691262U (en) * | 2016-05-24 | 2016-11-16 | 邹琤 | A kind of multilamellar geothermometry device |
CN106644118A (en) * | 2016-12-07 | 2017-05-10 | 四川秋明山测绘有限公司 | Telescopic rock temperature measurement device |
CN107842361A (en) * | 2017-10-30 | 2018-03-27 | 西南石油大学 | Prime stratum temperature, empty well cylinder static temperature, the measuring method of annular space static temperature and annular space dynamic temperature |
CN207620785U (en) * | 2017-12-12 | 2018-07-17 | 中国地质科学院水文地质环境地质研究所 | A kind of multisection type High-Temperature Well Logging equipment |
CN207528356U (en) * | 2017-12-15 | 2018-06-22 | 中国地质调查局水文地质环境地质调查中心 | A kind of multichannel temperature monitoring device for underground heat shallow well |
CN109209238A (en) * | 2018-10-27 | 2019-01-15 | 江苏中煤地质工程研究院有限公司 | A kind of Portable in-situ near-surface temperature survey drill bit |
CN109764978A (en) * | 2019-03-22 | 2019-05-17 | 中国煤炭地质总局地球物理勘探研究院 | Temperature acquisition device and method |
CN110242214A (en) * | 2019-05-10 | 2019-09-17 | 湖南达道新能源开发有限公司 | A kind of geothermal measurement equipment suitable for different terrain environment |
CN210571075U (en) * | 2019-08-01 | 2020-05-19 | 阳泉煤业(集团)股份有限公司 | A portable retractable thermometer |
CN110411599A (en) * | 2019-08-07 | 2019-11-05 | 中国核动力研究设计院 | Reusable contact liquid internal temperature measuring device and measurement method |
US20210238984A1 (en) * | 2020-01-31 | 2021-08-05 | Halliburton Energy Services, Inc. | Fiber optic distributed temperature sensing of annular cement curing using a cement plug deployment system |
CN211234781U (en) * | 2020-02-24 | 2020-08-11 | 代志飞 | Novel be used for shallow geothermal energy to measure temperature measuring device |
CN212535643U (en) * | 2020-07-08 | 2021-02-12 | 王敬 | Geothermal deep well wall temperature monitoring device |
CN213239219U (en) * | 2020-08-17 | 2021-05-18 | 范彦庆 | This mineral coal seam temperature-detecting device |
CN213898956U (en) * | 2020-12-02 | 2021-08-06 | 四川航天烽火伺服控制技术有限公司 | Underground pressure and temperature measuring device of oil and gas well |
WO2022128069A1 (en) * | 2020-12-15 | 2022-06-23 | Lytt Limited | Distributed temperature sensing autocalibration |
CN216050351U (en) * | 2021-06-28 | 2022-03-15 | 江苏熙景环境科技有限公司 | A high-efficient soil temperature acquisition equipment for intelligent greenhouse system |
CN215004014U (en) * | 2021-06-30 | 2021-12-03 | 白海云 | Temperature measuring device for highway ground temperature acquisition |
CN216524448U (en) * | 2021-12-14 | 2022-05-13 | 上海海洋地质勘察设计有限公司 | Geothermal measuring instrument for geothermal exploration |
CN114264391A (en) * | 2021-12-22 | 2022-04-01 | 中铁十六局集团第四工程有限公司 | A device for measuring the temperature of the rock mass in the tunnel body in the high geothermal fault area |
CN217001708U (en) * | 2022-01-26 | 2022-07-19 | 山东金岭矿业股份有限公司 | Temperature measurement drill bit drilling rod mechanism that mine was opened and is adopted |
CN217505557U (en) * | 2022-04-21 | 2022-09-27 | 广州海关技术中心 | Sleeve type temperature-measurable migration test pool |
CN217872755U (en) * | 2022-06-23 | 2022-11-22 | 北京六合伟业科技股份有限公司 | Sleeve type downhole parameter measuring instrument |
CN115655527A (en) * | 2022-10-31 | 2023-01-31 | 山东省地质矿产勘查开发局第八地质大队(山东省第八地质矿产勘查院) | Geothermal detection device for geological exploration |
Non-Patent Citations (3)
Title |
---|
XU, LONGFEI ET AL.: "Hydro-Mechanical Triaxial Behaviour of Compacted Earth at Different Temperatures", 《6TH BIOT CONFERENCE ON POROMECHANICS》, pages 164 - 171 * |
周众钦等: "基于分布式测温技术的常州市金坛地区浅层地温能研究与评价", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》, pages 1 - 80 * |
陈海波等: "天津市浅层地热能地质环境监测研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》, pages 1 - 75 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117027771A (en) * | 2023-08-28 | 2023-11-10 | 河北省地质矿产勘查开发局第一地质大队(河北省清洁能源应用技术中心) | Geothermal investigation and geothermal temperature measuring device |
CN117027771B (en) * | 2023-08-28 | 2024-02-09 | 河北省地质矿产勘查开发局第一地质大队(河北省清洁能源应用技术中心) | Geothermal investigation and geothermal temperature measuring device |
Also Published As
Publication number | Publication date |
---|---|
CN116291394B (en) | 2024-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109538185B (en) | Multilayer cased well shaft integrity analysis model under coupled temperature field condition | |
US5610331A (en) | Thermal imager for fluids in a wellbore | |
CN107842361B (en) | Method for measuring original formation temperature, empty wellbore static temperature, annulus static temperature and annulus dynamic temperature | |
CN116291394A (en) | Shallow well soil layer stepped geothermal temperature measurement drilling device | |
CN111814100B (en) | Method for dynamically simulating circulating temperature change of marine subsea pump lifting drilling system without marine riser | |
CN110656915B (en) | Shale gas multi-section fracturing horizontal well multi-working-system productivity prediction method | |
CA2434657C (en) | Determining the pvt properties of a hydrocarbon reservoir fluid | |
CN106285594A (en) | A kind of sand-filling tube combination device and boundary temperature control method thereof | |
WO2021239152A1 (en) | System and method for measuring equivalent geothermal temperature | |
CN106437692A (en) | Deep karst leakage channel detection structure and method based on water level of inner pipe of drill pipe | |
CN110107277A (en) | Well bores the method for meeting the volume of solution cavity in a kind of acquisition Carbonate Reservoir | |
CN109242364A (en) | A kind of volume displaced evaluating production capacity method of gas well at HTHP simulation wellbore hole | |
CN117144769A (en) | Road surface thickness detection device and detection method for highway engineering | |
WO2009102526A2 (en) | Methods for the identification of bubble point pressure | |
CN111505732B (en) | A simulation system and method for simulating regional geothermal distribution using equivalent temperature | |
CN115096492A (en) | In-situ stress measurement device and method by drilling stress relief method for deep oil and gas reservoirs | |
CN111386383B (en) | Tool for determining thermal response of downhole fluid | |
CN111950112A (en) | Dynamic analysis method for carbonate reservoir suitable for bottom sealing | |
CN111827945B (en) | Method for measuring starting pressure gradient in oil sand reservoir steam assisted gravity drainage process and application thereof | |
Proett et al. | New Exact Spherical Flow Solution With Storage for Early-Time Test Interpretation | |
CN218782007U (en) | Well circumferential crack printing simulation test device | |
CN105003238A (en) | Method for analyzing dryness of downhole steam by aid of pressure and temperature profiles of well bores | |
CN111950111A (en) | Dynamic analysis method for carbonate reservoir suitable for bottom opening | |
CN212060611U (en) | A Simulation System Using Equivalent Temperature to Model Regional Geothermal Distribution | |
CN109100307A (en) | For monitoring the experimental provision and system of simulation oil reservoir rock deformation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |